
THE OPEN BOOK SERIES 1

ANTS X
Proceedings of the Tenth
Algorithmic Number Theory Symposium

msp

On the evaluation of modular polynomials
Andrew V. Sutherland

THE OPEN BOOK SERIES 1 (2013)

Tenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2013.1.531

msp

On the evaluation of modular polynomials

Andrew V. Sutherland

We present two algorithms that, given a prime ` and an elliptic curve E=Fq ,
directly compute the polynomial ˆ`.j.E/; Y / 2 FqŒY � whose roots are the j -
invariants of the elliptic curves that are `-isogenous to E. We do not assume
that the modular polynomial ˆ`.X; Y / is given. The algorithms may be adapted
to handle other types of modular polynomials, and we consider applications to
point counting and the computation of endomorphism rings. We demonstrate
the practical efficiency of the algorithms by setting a new point-counting record,
modulo a prime q with more than 5,000 decimal digits, and by evaluating a
modular polynomial of level `D 100,019.

1. Introduction

Isogenies play a crucial role in the theory and application of elliptic curves. A stan-
dard method for identifying (and computing) isogenies uses the classical modular
polynomial ˆ` 2 ZŒX; Y �, which parametrizes pairs of `-isogenous elliptic curves
in terms of their j -invariants. More precisely, over a field F of characteristic not
equal to `, the modular equation ˆ`.j1; j2/ D 0 holds if and only if j1 and j2
are the j -invariants of elliptic curves defined over F that are related by a cyclic
isogeny of degree `. In practical applications, F is typically a finite field Fq , and `
is a prime, as we shall assume throughout. For the sake of simplicity we assume
that q is prime, but this is not essential.

A typical scenario is the following: We are given an elliptic curve E=Fq and
wish to determine whether E admits an `-isogeny defined over Fq , and if so, to
identify one or all of the elliptic curves that are `-isogenous to E. This can be
achieved by computing the instantiated modular polynomial

�`.Y /Dˆ`.j.E/; Y / 2 FqŒY �;

MSC2010: primary 11Y16; secondary 11G15, 11G20.
Keywords: elliptic curves, isogenies, point counting, SEA algorithm.

531

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2013.1-1
http://msp.org

532 ANDREW V. SUTHERLAND

and finding its roots in Fq (if any). Each root is the j -invariant of an elliptic curve
that is `-isogenous to E over Fq , and every such j -invariant is a root of �`.Y /.

For large ` the main obstacle to obtaining �` is the size ofˆ`, which isO.`3 log `/
bits; storing ˆ` requires several gigabytes for ` � 103, and many terabytes for
`� 104 — see [8, Table 1]. In practice, alternative modular polynomials that are
smaller than ˆ` by a large constant factor are often used, but their size grows at
the same rate, and this quickly becomes the limiting factor, as noted in [15, §5.2]
and elsewhere. The 2009 INRIA Project-Team TANC report states:

“. . . computing modular polynomials remains the stumbling block for
new point counting records. Clearly, to circumvent the memory prob-
lems, one would need an algorithm that directly obtains the polynomial
specialized in one variable.” [26, p. 9]

Here we present just such an algorithm (two in fact), based on the isogeny vol-
cano approach of [8]. Our basic strategy is to compute the instantiated modular
polynomial �.Y /Dˆ`.j.E/; Y / modulo many “suitable” primes p and apply the
explicit Chinese remainder theorem modulo q (see Section 2.4 and Section 2.5 for
a discussion of the explicit CRT and suitable primes). However, two key issues
arise.

First, if we simply lift the j -invariant j.E/ from Fq 'Z=qZ to Z and reduce the
result modulo p, when we instantiateˆ`.j.E/; Y / the powers of j.E/ we compute
may correspond to integers that are much larger than the coefficients of ˆ`, forcing
us to use many more CRT primes than we would otherwise need. We address this
issue by instead exponentiating in Fq , lifting the powers to Z, and then reducing
them modulo p. This yields our first algorithm, which is well-suited to situations
where q is much larger than `, say log q � `, as in point-counting applications.

Second, to achieve the optimal space complexity we must avoid computing
ˆ` mod p. Indeed, if log q � log `, then ˆ` mod p will not be much smaller
than ˆ` mod q. Our second algorithm uses an online approach to avoid storing all
the coefficients of ˆ` mod p simultaneously. This algorithm is well-suited to situ-
ations where log q is not dramatically larger than log `, say O.log `/ or O.log2`/.
This occurs, for example, in algorithms that compute the endomorphism ring of an
elliptic curve [3], or algorithms to evaluate isogenies of large degree [27].

Under the generalized Riemann hypothesis (GRH), our first algorithm has an
expected running time of O.`3 log3` llog `/ and uses O.`2 log `C ` log q/ space,
assuming log q DO.` log `/.1 This time complexity is the same as (and in practice
is faster than) the time to compute ˆ`, and the space complexity is reduced by up
to a factor of `. When log q� ` the space complexity is nearly optimal: quasilinear

1See Theorem 4 for a more precise bound. Throughout, we write llogn for log logn and lllogn
for log log logn.

ON THE EVALUATION OF MODULAR POLYNOMIALS 533

in the size of �`. The second algorithm uses O.`3.log qC log `/ log1Co.1/`/ time
and O.` log q C ` log `/ space, under the GRH. Its space complexity is optimal
for q D�.`/, and when log q DO.log2��`/ its time complexity is better than the
time to compute ˆ`. For log q� log2` its running time becomes less attractive
and the first algorithm may be preferred; alternatively, see Section 3.4 for a hybrid
approach.

In conjunction with the SEA algorithm, the first algorithm allows us to compute
the cardinality of an elliptic curve modulo a prime q with a heuristic2 running
time of O.n4 log3n llogn/, using O.n2 logn/ space, where n D log q. To our
knowledge, all alternative approaches applicable to prime fields increase at least
one of these bounds by a factor of n or more. The running time is competitive
with SEA implementations that rely on precomputed modular polynomials (as can
be found in Magma [4] and PARI [32]), and can easily handle much larger values
of q.

As an important practical optimization, we also evaluate modular polynomi-
als �f

`
.Y / D ˆ

f

`
.f .E/; Y / defined by modular functions f .z/ other than the

j -function. This includes the Weber f-function, whose modular polynomials are
smaller than the classical modular polynomial by a factor of 1728 and can be
computed much more quickly (by roughly the same factor). This speedup also
applies when computing �f

`
.

To demonstrate the capability of the new algorithms, we use a modified version
of the SEA algorithm to count points on an elliptic curve modulo a prime of more
than 5,000 decimal digits, and evaluate a modular polynomial of level `D 100,019
modulo a prime of more than 25,000 decimal digits.

2. Background

This section contains a brief summary of background material that can be found
in standard references such as [31; 39; 40], or in the papers [8; 42], both of which
exploit isogeny volcanoes using a CRT-based approach, as we do here. For the sake
of brevity, we recall only the results we need, and only in the generality necessary.

To simplify the presentation, we assume throughout that Fp and Fq denote prime
fields with ` ¤ p; q, and, where relevant, that q is sufficiently large (typically
q > 2`). But this assumption is not needed for our main result; Algorithms 1
and 2 work correctly for any prime q (even q D `), and can be extended to handle
nonprime q.

2.1. Isogenies. Let E be an elliptic curve defined over a field F. Recall that an
isogeny is a nonconstant morphism WE! zE of elliptic curves that is also a group

2The heuristic relates to the distribution of Elkies primes and is a standard assumption made when
using the SEA algorithm; without it there is no advantage over Schoof’s algorithm.

534 ANDREW V. SUTHERLAND

homomorphism from E.F/ to zE.F/. The kernel of an isogeny is a finite subgroup
of E.F/, and when is separable, the size of its kernel is equal to its degree.
Conversely, every finite subgroup G of E.F/ is the kernel of a separable isogeny
(defined over the fixed field of the stabilizer of G in Gal.F=F/). We say that is
cyclic if its kernel is cyclic, and call an N -isogeny when it has degree N . Note
that an isogeny of prime degree `¤ char F is necessarily cyclic and separable.

The classical modular polynomial ˆN is the minimal polynomial of the func-
tion j.Nz/ over the field C.j /, where j.z/ is the modular j -function. As a polyno-
mial in two variables, ˆN 2 ZŒX; Y � is symmetric in X and Y and has the defining
property that the roots of ˆ`.j.E/; Y / are precisely the j -invariants of the elliptic
curves zE that are related to E by a cyclic N -isogeny. In this paper N D ` is prime,
in which case ˆ`.X; Y / has degree `C 1 in each variable.

If E is given by a short Weierstrass equation Y 2 DX3Ca4X Ca6, then can
be expressed in the form

 .x; y/D

�
 1.x/; cy

d

dx
 1.x/

�
for some c 2 F�. When c D 1 we say that and its image are normalized. Given a
finite subgroup G of E.F/, a normalized isogeny with G as its kernel can be con-
structed using Vélu’s formulae [45], along with an explicit equation for its image zE.
Conversely, suppose we are given a root z| D j. zE/ of �`.Y /Dˆ`.j.E/; Y /, and
also the values of ˆX .j; z| /, ˆY .j; z| /, ˆXX .j; z| /, ˆXY .j; z| /, and ˆY Y .j; z| /,
where j D j.E/ and

ˆX D
@

@X
ˆ`; ˆY D

@

@Y
ˆ`;

ˆXX D
@2

@X2
ˆ`; ˆXY D

@2

@X@Y
ˆ`; ˆY Y D

@2

@Y 2
ˆ`:

To this data we may apply an algorithm of Elkies [13] that computes an equation
for zE that is the image of a normalized `-isogeny W E ! zE, along with an
explicit description of its kernel: the monic polynomial h`.X/ whose roots are the
abscissae of the nontrivial points in ker ; see [19, Algorithm 27]. The quantities
ˆXX .j; z| /, ˆXY .j; z| /, and ˆY Y .j; z| / are not strictly necessary; the equation
for zE depends only on j , z| , ˆX .j; z| / and ˆY .j; z| /, and we may then apply
algorithms of Bostan et al. [5] to compute h`.X/, and an equation for , directly
from E and zE.

2.2. Explicit CM theory. Recall that the endomorphism ring of an ordinary elliptic
curve E over a finite field Fp is isomorphic to an order O in an imaginary quadratic
field K. In this situation E is said to have complex multiplication (CM) by O.
The elliptic curve E=Fp is the reduction of an elliptic curve yE=C that also has

ON THE EVALUATION OF MODULAR POLYNOMIALS 535

CM by O. The j -invariant of yE generates the ring class field KO of O, and its
minimal polynomial over K is the Hilbert class polynomial HO 2 ZŒX�, whose
degree is the class number h.O/.3 The prime p splits completely in KO, and HO

splits completely in FpŒX�. For p > 3, the prime p splits completely in KO if and
only if it satisfies the norm equation 4p D t2 � v2D, where D D disc O, and for
D < �4 the integers t D t .p/ and v D v.p/ are uniquely determined up to sign.

We define the set

EllO.Fp/D
˚
j.E/ WE=Fp with End.E/' O

	
;

which consists of the roots of HO in Fp . Let � W O ,! End.E/ denote the normalized
embedding (so �.˛/�! D ˛! for all ˛ 2 O and invariant differentials ! on E; see
[40, Proposition II.1.1, p. 97]). The ideals of O act on EllO.Fp/ via isogenies as
follows. Let a be an O-ideal of norm N , and define EŒa�D

T
˛2a ker �.˛/. There

is a separable N -isogeny from E to zE DE=EŒa�, and the action of a sends j.E/
to j. zE/. Principal ideals act trivially, and this induces a regular action of the class
group Cl.O/ on EllO.Fp/. Thus EllO.Fp/ is a principal homogeneous space, a
torsor, for Cl.O/.

Writing the Cl.O/-action on the left, we note that if a has prime norm `, then
ˆ`.j; Œa�j / D 0 for all j 2 EllO.Fp/. For ` not dividing v.p/, the polynomial
�`.Y / D ˆ`.j; Y / has either one or two roots in Fp, depending on whether `
ramifies or splits in K. In the latter case, the two roots Œa�j and Œa�1�j can be
distinguished using the Elkies kernel polynomial h`.X/, as described in [6, §5]
and [20, §3].

2.3. Polycyclic presentations. In order to efficiently realize the action of Cl.O/ on
EllO.Fp/, it is essential to represent elements of Cl.O/ in terms of a set of generators
with small norm. We will choose O so that Cl.O/ is generated by ideals of norm
bounded by O.1/, via [8, Theorem 3.3], but these generators will typically not be
independent. Thus, as explained in [42, §5.3], we use polycyclic presentations.

Any sequence of generators ˛D .˛1; : : : ; ˛k/ for a finite abelian groupG defines
a polycyclic series

1DG0 CG1 C � � �CGk�1 CGk DG;

with Gi D h˛1; : : : ; ˛i i, in which every quotient Gi=Gi�1 ' h˛i i is cyclic. We
associate to ˛ the sequence of relative orders r.˛/D .r1; : : : ; rk/ defined by ri D
ŒGi WGi�1�. Every element ˇ 2G has a unique ˛-representation of the form

ˇ D ˛e
D ˛

e1

1 � � �˛
ek

k
.0� ei < ri /:

3As in [1], we call HO a Hilbert class polynomial even when O is not the maximal order.

536 ANDREW V. SUTHERLAND

We also associate to ˛ the matrix of power relations s.˛/D Œsij � defined by

˛
ri

i D ˛
si;1

1 ˛
si;2

2 � � �˛
si; i�1

i�1 .0� sij < rj /;

with sij D 0 for i � j .
We call ˛, together with r.˛/ and s.˛/, a (polycyclic) presentation for G, and if

all the ri are greater than 1, we say that the presentation is minimal. A generic algo-
rithm to compute a minimal polycyclic presentation is given in [42, Algorithm 2.2].
Having constructed such an ˛, we can efficiently enumerate G D Cl.O/ (or the
torsor EllO.Fq/, given a starting point), by enumerating ˛-representations.

2.4. Explicit CRT. Let p1; : : : ; pn be primes with product M , let Mi DM=pi ,
and let aiMi � 1 mod pi . If c 2 Z satisfies c � ci mod pi , then c �

P
i ciaiMi

modM . If M > 2jcj, this congruence uniquely determines c. This is the usual
CRT method.

Now suppose M > 4jcj and let q be a prime (or any integer). Then we may
apply the explicit CRT mod q [2, Theorem 3.1] to compute

c �

�P
i

ciaiMi � rM

�
mod q; (1)

where r is the closest integer to
P
i ciai=pi ; when computing r , it suffices to

approximate each ciai=pi to within 1=.4n/, by [2, Theorem 2.2].
As described in [42, §6], we may use the explicit CRT to simultaneously com-

pute c mod q for many integers c (the coefficients of �`, for example), using an
online algorithm. We first precompute the ai and aiMi mod q. Then, for each
prime pi , we determine the values ci for all the coefficients c (by computing
�` mod pi), update two partial sums for each coefficient, one for

P
ciaiMi mod q

and one for
P
ciai=pi , and then discard the ci . When the computations for all

the pi have been completed (these may be performed in parallel), we compute r
and apply (1) for each coefficient. The space required by the partial sums is just
O.log q/ bits per coefficient. See [42, §6] for further details, including algorithms
for each step.

2.5. Modular polynomials via isogeny volcanoes. For distinct primes ` and p,
we define the graph of `-isogenies �`.Fp/, with vertex set Fp and edges .j1; j2/
present if and only if ˆ`.j1; j2/ D 0. Ignoring the connected components of 0
and 1728, the ordinary components of �`.Fp/ are `-volcanoes [18; 30], a term we
take to include cycles as a special case [42]. In this paper we focus on `-volcanoes
of a particular form, for which we can compute ˆ` mod p very quickly, via [8,
Algorithm 2.1].

Let O be an order in an imaginary quadratic field K with maximal order OK , let `
be an odd prime not dividing ŒOK WO�, let O0 be the order of index l in O, and assume

ON THE EVALUATION OF MODULAR POLYNOMIALS 537

D D disc O< �4. Let p be a prime of the form 4p D t2� `2v2D with ` − v and
p � 1 mod `. Then p splits completely in the ring class fields of O and O0, but not
in the ring class field of the order of index `2 in O. The requirement p � 1 mod `
ensures that for j.E/ 2 EllO.Fp/ we can choose E so that EŒ`��E.Fp/, which is
critical to the efficiency of both the algorithm in [8] and our algorithms here.

The components of �`.Fp/ that intersect EllO.Fp/ are isomorphic `-volcanoes
with two levels: the surface, whose vertices lie in EllO.Fp/, and the floor, whose
vertices lie in EllO0.Fp/. Each vertex on the surface is connected to 1C

�
D
`

�
D 0; 1

or 2 siblings on the surface, and `�
�
D
`

�
children on the floor. An example with

`D 7 and
�
D
`

�
D 1 is shown below:

Provided that h.O/ � `C 2, this set of `-volcanoes contains enough informa-
tion to completely determine ˆ` mod p. This is the basis of the algorithm in [8,
Algorithm 2.1], which we adapt here. Selecting a sufficiently large set of such
primes p allows one to compute ˆ` over Z (via the CRT), or modulo an arbitrary
prime q (via the explicit CRT). In order to achieve the best complexity bounds, it is
important to choose both the order O and the primes p carefully. We thus introduce
the following definitions, in which c1 and c2 are fixed constants that do not depend
on ` or O. (In our implementation we used c1 D 1:5 and c2 D 256.)

Definition 1. Let O be a quadratic order with discriminantDDu2D0<0, withD0
fundamental, and let c1; c2 > 1 be constants. We say that O is suitable for ` if

(1) `C 2� h.O/� c1`,

(2) 4 < jD0j � c22 ,

(3) `2 � jDj � c22`
2,

(4) gcd.u; 2`D/D 1, and

(5) l0 <min.c2; `/ for all primes l0 j u.

This definition combines the criteria in [8, Definition 4.2] and [8, Theorem 5.1].
Provided that c1 and c2 are not too small, suitable orders exist for every odd prime `;
with c1D 4 and c2D 16, for example, we may use orders with DD�7 �32n for all
` > 3. Ideally we want c1 to be as close to 1 as possible, but this makes it harder to
find suitable orders. For the asymptotic analysis, any values of c1 and c2 will do.

Definition 2. A prime p is suitable for ` and O if p � 1 mod ` and p satisfies
4p D t2� `2v2D for some t; v 2 Z with ` − v and !.v/� 2 log.log vC 3/.

The function !.v/ counts the distinct prime divisors of v. The bound on !.v/
ensures that if O is suitable for ` then many small primes split in O and do not
divide u or v. Such primes allow us to more efficiently enumerate Cl.O/ and Cl.O0/.

538 ANDREW V. SUTHERLAND

2.6. Selecting primes with the GRH. In order to apply the isogeny volcano method
to compute ˆ` mod q (or �` mod q, as we shall do), we need a sufficiently large
set S of suitable primes p. We deem S to be sufficiently large wheneverP

p2S

logp � BC log 4;

where B is an upper bound on the logarithmic height of the integers whose re-
ductions mod q we wish to compute with the explicit CRT. For ˆ`.X; Y / DP
i;j aijX

iY j , we may bound h.ˆ`/D log maxi;j jaij j using

h.ˆ`/� 6` log `C 18`; (2)

h.ˆ`/� 6` log `C 16`C 14
p
` log `; (3)

as proved in [9]. (We prefer the latter bound when ` > 3187.)
Heuristically (and in practice), it is easy to construct the set S . Given an order O

of discriminant D suitable for `, we fix vD2 if D�1 mod 8 and vD1 otherwise,
and for increasing t�2 mod ` of correct parity we test whether pD.t2�v2`2D/=4
is prime. We add each prime value of p to S , and stop when S is sufficiently large.

Unfortunately, we cannot prove that this method will find any primes, even under
the GRH. Instead, we use Algorithm 6.2 in [8], which picks an upper bound x
and generates random integers t and v in suitable intervals to obtain candidate
primes p D .t2� v2`2D/=4� x that are then tested for primality. The algorithm
periodically increases x, so its expected running time is O.B1C�/, even without the
GRH. To ensure that the bound on !.v/ in Definition 2 is satisfied, unsuitable v’s
are discarded; this occurs with negligible probability.

Under the GRH, there are effective constants c3; c4 > 0 such that x � c3`6 log4`
guarantees at least c4`3 log3` suitable primes less than x, by [8, Theorem 4.4].
Asymptotically, this is far more than theO.`/ primes we need to computeˆ` mod q.
Here we may consider larger values of B , and in general, x DO.B2C `6 log4`/
suffices. We note that S contains O.B= logB/ primes (unconditionally), and under
the GRH we have logp DO.logBC log `/ for all p 2 S .

3. Algorithms

Let q be a prime and let E be an elliptic curve over Fq . A simple algorithm to
compute �`.Y /D ˆ`.j.E/; Y / 2 FqŒY � with the explicit CRT works as follows.
Let y| be the integer in Œ0; q � 1� corresponding to j.E/ 2 Fq ' Z=qZ. For a
sufficiently large set S of suitable primes p, compute ˆ`.X; Y / mod p using the
isogeny volcano algorithm and evaluate ˆ`.y| ; Y / mod p to obtain �` 2 FpŒY �,
and use the explicit CRT mod q to eventually obtain �` 2 FqŒY �.

This naïve algorithm suffers from two significant defects. The most serious is
that we may now require a much larger set S than is needed to compute ˆ` mod q.

ON THE EVALUATION OF MODULAR POLYNOMIALS 539

Compared to the coefficients ofˆ`, which have height h.ˆ`/DO.` log `/ bounded
by inequalities (2) and (3), we now need to use the O.` log `C ` log q/ bound

h.ˆ`.y| ; Y //� h.ˆ`/C .`C 1/ log qC log.`C 2/; (4)

since ˆ`.y| ; Y / involves powers of y| up to y| `C1.
If log q is comparable to log `, then the difference between the bounds in in-

equalities (2) and (3) and the bound in inequality (4) may be negligible. But when
log q is comparable to `, using the bound in inequality (4) increases the running
time dramatically. This issue is addressed by Algorithm 1.

The second defect of the naïve algorithm is that although its space complexity
may be significantly better than the O.`2 log q/ space required to compute ˆ`
mod q, it is still quasiquadratic in `. But the size of �` is linear in `, so we might
hope to do better, and indeed we can. This is achieved by Algorithm 2.

A hybrid approach that combines aspects of both algorithms is discussed in
Section 3.4.

3.1. Algorithm 1. The increase in the height bound from inequalities (2) and (3)
to inequality (4) is caused by the fact that we are exponentiating in the wrong ring.
Rather than lifting j.E/2 Fq to the integer y| and computing powers of its reduction
in Fp (which simulates powering in Z), we should instead compute powers j.E/,
j.E/2, . . . , j.E/`C1 in Fq , lift these values to integers yx1, yx2, . . . , yx`C1, and work
with their reductions in Fp, as in [43, §4.4] (a similar strategy is used in [28]). Of
course the reductions of yx1, yx2, . . . , yx`C1 need not correspond to powers of any
particular element in Fp; nevertheless, if we simply replace each occurrence of X i

in the modular polynomial ˆ`.X; Y / mod p with yxi mod p, we achieve the same
end result using a much smaller height bound.

We now present Algorithm 1 to compute �.Y / D �`.Y / D ˆ`.j.E/; y/. If
desired, the algorithm can also compute the polynomials

�X .Y /D
@ˆ`

@X
.j.E/; Y / and �XX .Y /D

@2ˆ`

@X2
.j.E/; Y /;

which may be used to compute normalized isogenies, as described in Section 3.8.

Algorithm 1.

Input: An odd prime `, a prime q, and j.E/ 2 Fq .

Output: The polynomial �.Y /D ˆ`.j.E/; Y / 2 FqŒY �, and, optionally, �X .Y /
and �XX .Y /.

1. Select an order O suitable for ` and a set of suitable primes S (see Section 2.6),
using the height bound B D 6` log `C 18`C log qC 3 log.`C 2/.

2. Compute the Hilbert class polynomial HO.X/ via [42, Algorithm 2].

540 ANDREW V. SUTHERLAND

3. Perform CRT precomputation mod q using S (see Section 2.4).

4. Compute integers yxi 2 Œ0; q�1� such that yxi � j.E/i mod q, for 0� i � `C1.

5. For each prime p 2 S :
(a) Compute ˆ`.X; Y / mod p using HO, via [8, Algorithm 2.1].
(b) Compute

�.Y /D
P
i;j

aij yxiY
j mod p;

where ˆ`.X; Y /D
P
i;j aijX

iY j .
(c) (Optional.) Compute

�X .Y /D
P
i;j

iaij yxiY
j mod p

and
�XX .Y /D

P
i;j

i.i � 1/aij yxiY
j mod p:

(d) Update CRT sums for each coefficient ci of � (and of �X and �XX).

6. Perform CRT postcomputation to obtain � (and �X and �XX) mod q.

7. Output � and (optionally) �X and �XX .

Proposition 3. The output �.Y / of Algorithm 1 is equal to ˆ`.j.E/; Y / (and
�X .Y /D .@ˆ`=@X/.j.E/; Y / and �XX .Y /D .@2ˆ`=@X2/.j.E/; Y /).

Proof. Let ' D ˆ`.y| ; Y / 2 FqŒY �. Let yxi 2 Z be as in step 4. Write ˆ` asP
i;j aijX

iY j , with aij 2Z and let y�D
P
i;j aij yxiY

j 2ZŒY �. Then '� y� mod q,
and � � y� mod p. To prove � D ', we only need to show h.y�/� B . We haveˇ̌̌̌P

i

aij yxi

ˇ̌̌̌
� .`C 2/q exp h.ˆ`/;

for 0 � j � `C 1, hence h.y�/ � B . The proofs for �X and �XX are analogous.
We note that the last term in B can be reduced to log.`C2/ if �X and �XX are not
being computed. �

Theorem 4. Assume the GRH. Then the expected running time of Algorithm 1 is
O.`2B log2B llogB/, where B DO.` log `C log q/ is as specified in step 1. The
algorithm uses O.` log qC `2 logB/ space.

Proof. We use M.n/DO.n logn llogn/ to denote the cost of multiplication [35].
For step 1, we assume the time spent selecting O is negligible (as noted in Section 2.5,
one may simply choose orders with discriminants of the formDD�7 �32n), and un-
der the GRH the expected time to construct S isO.B1C�/, usingO.B/ space, as ex-
plained in Section 2.6. Step 2 uses O.`2C�/ expected time and O.`.log `C log q//
space, by [42, Theorem 1], since h.D/DO.`/. An analysis as in [42, §6.3] shows

ON THE EVALUATION OF MODULAR POLYNOMIALS 541

that the total cost of all CRT operations is O.`M.B/ logB/ time and O.` log q/
space. Step 4 uses O.`M.log q// time and O.` log q/ space.

The set S containsO.B= logB/ primesp, and under the GRH, logpDO.logB/;
see Section 2.6. Step 5(a) dominates the cost per p, taking O.`2 log3B llogB/
expected time and O.`2 logB/ space, by [8]. This yields an O.`2B log2B llogB/
bound for step 5, which dominates, and the total space is O.` log qC`2 logB/. �

When log q D‚.`/, the time bound in Theorem 4 reduces to O.`3 log3` llog `/,
the same as the time to compute ˆ` mod q, and the space bound is O.` log ` log q/,
which is within an O.log `/ factor of the best possible.

3.2. Algorithm 2. We now present Algorithm 2, which for q > ` has optimal
space complexity O.` log q/. When q is reasonably small, say log q D o.log2`/,
Algorithm 2 is also faster than Algorithm 1, but when log q is large it may be
much slower, since it uses the same height bound — inequality (4) — as the naïve
approach (see Section 3.4 for a hybrid approach). The computation of � 2 FpŒY � is
more intricate, so we present it separately as Algorithm 2.1. Unlike Algorithm 1, it
is not so easy to also compute �X and �XX , but an alternative method to compute
normalized isogenies using Algorithm 2 is given in Section 3.8.

Algorithm 2.
Input: An odd prime `, a prime q, and j.E/ 2 Fq .

Output: The polynomial �.Y /Dˆ`.j.E/; Y / 2 FqŒY �.

1. Select an order O suitable for ` and a suitable set of primes S (see Section 2.6),
using the height bound B D 6` log `C 18`C .`C 1/ log qC log.`C 2/.

2. Compute the Hilbert class polynomial HO via [42, Algorithm 2].

3. Perform precomputation for the explicit CRT mod q using S .

4. Let y| be the integer in Œ0; q� 1� congruent to j.E/ mod q.

5. For each prime p 2 S :
(a) Compute �.Y /Dˆ`.y| ; Y / mod p using O and HO via Algorithm 2.1.
(b) Update CRT sums for each coefficient ci of �.

6. Perform postcomputation for the explicit CRT to obtain � 2 FqŒX�.

7. Output �.

Proposition 5. The output �.Y / of Algorithm 2 is equal to ˆ`.j.E/; Y /.

Proof. This follows immediately from Proposition 7 below and the bound

h.ˆ`.y| ; Y //D log max
j

ˇ̌̌̌P
i

aij y|
i

ˇ̌̌̌
� log.`C 2/C .`C 1/ log qC h.ˆ`/� B

on the height of ˆ`.y| ; Y / 2 ZŒY �. �

542 ANDREW V. SUTHERLAND

Theorem 6. Assume the GRH and that log q D O.`k/ for some constant k. The
expected running time of Algorithm 2 is O.`3.log q C log `/ log ` llog2` lllog2`/
and it uses O.` log qC ` log `/ space.

Proof. As in the proof of Theorem 4, the expected running time is dominated by the
time to compute �.Y /, which by Theorem 8 is O.`2 log2p llog2p lllog2p/. There
are O.B= logB/ primes p 2 S , and under the GRH we have logp DO.logB/D
O.log `/. The space complexity is dominated by the O.B/DO.` log `C ` log q/
size of S . �

3.3. Algorithm 2.1. The algorithm in [8, Algorithm 2.1] computes ˆ` mod p by
enumerating the sets EllO.Fp/ and EllO0.Fp/, where O0 D ZC `O, the latter of
which contains approximately `2 elements. To achieve a space complexity that is
quasilinear in `, we cannot afford to store the entire set EllO0.Fp/. We must compute
ˆ`.y| ; Y / mod p using an online algorithm, processing each jk 2 EllO0.Fp/ as we
enumerate it, and then discarding it. Let us consider how this may be done.

Let y1; : : : ; yh.O/ be the elements of EllO.Fp/, as enumerated using a polycyclic
presentation ˛ for Cl.O/. Each yi is `-isogenous to a set Si of siblings in EllO.Fp/,
and to a set Ci of children in EllO0.Fp/; see Section 2.5. Thus we have

ˆ`.X; yi /D

� Q
z| 2Si

.X � z| /

�� Q
z| 2Ci

.X � z| /

�
:

The siblings can be readily identified in our enumeration of EllO.Fp/ using the CM
action (see Section 2.2). To identify the children, we need to be able to determine,
for any given j 2 O0, the set Ci in which it lies. Each Ci is a subset of the torsor
EllO0.Fp/ corresponding to a coset of the subgroup C � Cl.O0/ generated by the
ideals of norm `2; indeed, two children have the same parent if and only if they
are related by an isogeny of degree `2 (the composition of two `-isogenies).

The group Cl.O0/ acts on the cosets of C , and we need to compute this ac-
tion explicitly in terms of the polycyclic presentation ˇ used to enumerate Cl.O0/.
This problem is addressed by a generic group algorithm in the next section that
computes a polycyclic presentation for the quotient Cl.O0/=C , along with the
-representation of the image of each generator in ˇ.

As we enumerate the elements jk of EllO0.Fp/, starting from a child j1 of y1
obtained via Vélu’s algorithm, we keep track of the element ık 2 Cl.O0/ whose
action sends j1 to jk . The image of ık in Cl.O0/=C is the coset of C corresponding
to the set Ci containing jk , and we simply identify Ci with the i-th element of
Cl.O0/=C as enumerated by (in the lexicographic ordering of -representations).

Thus we can compute the polynomials �i .X/ D ˆ`.X; yi / as we enumerate
EllO0.Fp/ by accumulating a partial product of linear factors for each �i . But since

ON THE EVALUATION OF MODULAR POLYNOMIALS 543

our goal is to evaluate zi D �i .y| / mod p, we simply substitute x D y| mod p into
each linear factor, as we compute it, and accumulate the partial product in zi .

Having computed the values zi for 1 � i � `C 2, we interpolate the unique
polynomial �.Y / of degree at most `C 1 for which �.yi /D zi , using Lagrange
interpolation. This polynomial must be ˆ`.y| ; Y /. We now give the algorithm.

Algorithm 2.1.

Input: An odd prime `, a suitable order O, a suitable prime p, and x 2 Fp.

Output: The polynomial �.Y /Dˆ`.x; Y / 2 FpŒY �.

1. Compute presentations ˛ of Cl.O/ and ˇ of Cl.O0/ suitable for p.

2. Represent generators of the subgroup C � Cl.O0/ defined above in terms of ˇ.

3. Compute the presentation of Cl.O0/=C derived from ˇ, via Algorithm 3.

4. Find a root w1 of HO mod p (compute HO mod p if needed).

5. Enumerate EllO.Fp/ as w1; w2; : : : ; wh.O/ using ˛.

6. Obtain j1 2 EllO0.Fp/ from w1 using Vélu’s algorithm.

7. Set zi 1 and yi null for 1� i � `C 2.

8. For each jk D ıkj1 in EllO0.Fp/ enumerated using ˇ:

(a) Compute the index i of ık in the -enumeration of Cl.O0/=C . If i > `C 2
then proceed to the next jk , skipping steps (b) and (c) below.

(b) If yi D null then set yi to the `-parent of jk (via Vélu’s algorithm) and
for each `-sibling z| of yi in EllO.Fp/ set zi zi .x� z| /.

(c) Set zi zi .x� jk/.

9. Interpolate � 2 FpŒY � such that deg� � `C1 and �.yi /D zi for 1� i � `C2.

10. Output �.

The value null assigned to yi in step 7 is used to indicate that the value of yi is
not yet known. Each yi is eventually set to a distinct wj 2 EllO.Fp/.

Remark. In practical implementations, Algorithm 2 selects the primes p 2 S so
that the presentations ˛, ˇ, and are the same for every p and precomputes them
(the only reason they might not be the same is the presence of prime ideals whose
norm divides v D v.p/, but in practice we fix v � 2, as discussed in Section 2.6).

Proposition 7. Algorithm 2.1 outputs �.Y /Dˆ`.x; Y / mod p.

Proof. Let '.Y /Dˆ`.x; Y /. It follows from the discussion above that Algorithm 2.1
computes zi D ˆ`.x; yi / for 1 � i � `C 2. Thus �.yi / D zi D '.yi / for `C 2
values yi 2 EllO.Fp/, and these values are necessarily distinct. The polynomials �
and ' both have degree at most `C 1, therefore � D '. �

544 ANDREW V. SUTHERLAND

Theorem 8. Assume the GRH. Algorithm 2.1 runs in O.`2n2 log2n llog2n/ ex-
pected time using O.`n/ space, where nD logp.

Proof. The time complexity is dominated by step 8, which enumerates the O.`2/
elements of EllO0.Fp/ using ˇ. By [8, Theorem 5.1] and the suitability of O and p,
we may assume each ˇi D Œbi �, where bi has prime norm bi DO.logn llogn/. Us-
ing Kronecker substitution and probabilistic root-finding [21], the expected time to
find the (at most 2) roots of ˆbi

.jk; Y / is O.nM.n logn llogn//, which dominates
the cost for each jk . Applying M.n/ D O.n logn llogn/ and multiplying by `2

yields the desired time bound. Taking into account h.O/ D O.`/ and p > `, the
computation of HO mod p uses O.`n/ space, by [42, Theorem 1], and this bounds
the total space. �

3.4. A hybrid approach. Algorithm 2 achieves an essentially optimal space com-
plexity, but its time complexity is attractive only when log q is not too large, say
log q DO.log2`/. Algorithm 1 has an excellent time complexity, but achieves an
optimal space complexity only when log q is very large, say log q D�.` log `/. To
address the intermediate range, we present a hybrid approach suggested by Daniel
Kane that has the same space complexity as Algorithm 2 and a time complexity
that is within a polylogarithmic factor of the time complexity of Algorithm 1.

The strategy is to replace the computation of �.Y / D
P
i;j aij yxiY

j mod p
in step 5 of Algorithm 1 with Algorithm 2.2 below. Algorithm 2.2 is similar to
Algorithm 2.1, but rather than accumulating `C2 values zi in parallel, we compute
them individually by enumerating the each of the sets Ci of children yi in turn.

Algorithm 2.2.
Input: An odd prime `, suitable order O, suitable prime p, and x1; : : : ; x`C1 2Fp .

Output: �.Y /D
P
i;j aijxiY

j 2 FpŒY �, where ˆ`.X; Y /D
P
i;j aijX

iY j .

1. Compute presentations ˛, ˇ, and as in Algorithm 2.1.

2. Find a root y1 of HO mod p (compute HO mod p if needed).

3. Enumerate EllO.Fq/ as y1; y2; : : : ; yh.O/ using ˛.

4. Obtain j1 2 EllO0.Fq/ from y1 using Vélu’s algorithm.

5. For i from 1 to `C 2 do the following:
(a) Use ˛ to compute the set Si of siblings of yi in EllO.Fp/.
(b) Use ˇ and to compute the set Ci of children of yi in EllO0.Fp/ (see below).
(c) Compute �i .X/D

Q
z| 2Si

.X � z| /
Q
z| 2Ci

.X � z| /D
P
cikX

k mod p.
(d) Compute zi D

P
k cikxk .

6. Interpolate � 2 FpŒY � such that deg� � `C1 and �.yi /D zi for 1� i � `C2.

7. Output �.

ON THE EVALUATION OF MODULAR POLYNOMIALS 545

To compute the set Ci in step 5(b), for each z| 2 Ci we determine the ı 2 Cl.O0/
for which z| D ıj1. Under the GRH, it follows from [11, Theorem 2.1] that we can
express ı in the form ıD Œp1 � � � pt �, where the ideals pi have prime norms bounded
by logc`, for any c >2, with t DO.log `/. Assuming logpDO.log `/, this implies
that we can compute each z| in O.log6C�`/ expected time, for any � > 0.

Proposition 9. Algorithm 2.2 outputs �.Y /D
P
i;j aijxiY

j .

Proof. Let '.y/D
P
i;j aijxiY

j . The roots of �i .X/ are the roots of ˆ`.X; yi /,
thus

P
k cikXk D

P
k;j akjX

ky
j
i , and we have cik D

P
j akjy

j
i . It follows that

�.yi /D zi D
P
k

P
j akjxky

j
i D '.yi /. Since �.Y / and '.Y / both have degree

at most `C 1 and agree at `C 2 distinct values yi , they must be equal. �

Theorem 10. Assume the GRH and that log q D O.` log `/. If Algorithm 1 uses
Algorithm 2.2 to compute �.Y / in step 5, its expected running time isO.`3 log6C�`/
using O.` log qC ` log `/ space.

Proof. It suffices to show that if logp D O.log `/, then Algorithm 2.2 runs in
O.`2 log6C�`/ expected time using O.` log `/ space. The space bound is clear.
For the time bound, the cost of step 5(b) is O.` log6C�`/ (see above), yielding an
O.`2 log6C�`/ bound on the expected time for step 5, which dominates. �

The extra logarithmic factors make the hybrid approach significantly slower than
Algorithm 1 in practice, but it does allow us to achieve an essentially optimal space
complexity with a quasicubic running time across the entire range of parameters.

3.5. Computing a polycyclic presentation for a quotient group. We now give a
generic algorithm to derive a polycyclic presentation for a quotient of finite
abelian groups G=H . This presentation can be used to efficiently compute in G=H ,
and to compute the image of elements of G, as required by Algorithm 2.1.

Algorithm 3.

Input: A minimal polycyclic presentation ˇ D .ˇ1; : : : ; ˇk/ for a finite abelian
group G and a subgroup H D h˛1; : : : ; ˛t i, with each ˛i specified in
terms of ˇ.

Output: A polycyclic presentation for G=H , with i D Œˇi � for each ˇi 2 ˇ.

1. Derive a polycyclic presentation ˛ for H from ˛1; : : : ; ˛t by using [42, Algo-
rithm 2.2].

2. Enumerate H using ˛ and create a lookup table TH to test membership in H .

3. Derive a polycyclic presentation for G=H from Œˇ1�; : : : ; Œˇk� by using [42,
Algorithm 2.2], using TH as described below.

4. Output , with relative orders r./ and relations s./.

546 ANDREW V. SUTHERLAND

The polycyclic presentation output by Algorithm 3 is not necessarily minimal.
It can be converted to a minimal presentation by simply removing those i with
r.i /D 1, but for the purpose of computing the image in G=H of elements of G
represented in terms of ˇ, it is better not to do so.

Algorithm 2.2 of [42] requires a TABLELOOKUP function that searches for a
given group element in a table of distinct group elements. In Algorithm 3 above,
the elements of G are uniquely represented by their ˇ-representations, but elements
ofG=H are represented as equivalence classes Œı�, with ı 2G, which is not a unique
representation. To implement the TABLELOOKUP function for G=H , we do the
following: Given Œı0� 2G=H and a table TG=H of distinct elements Œıi � in G=H ,
we test whether ı0ı�1i 2 H , for each Œıi � 2 T . With a suitable implementation
of TH (such as a hash table or balanced tree), membership in H can be tested in
O.logjGj/ time, which is dominated by the O.log2jGj/ time to compute ı0ı�1i .

Once Algorithm 3 completes, the problem of uniquely representing elements of
G=H is solved: Every element of G=H has a unique -representation.

Theorem 11. Algorithm 3 runs in O.n log2n/ time using O..mC n=m/ logn/
space, where nD jGj and mD jH j.

Proof. The time complexity is dominated by the n=m calls to the TABLELOOKUP

function performed by [42, Algorithm 2.2] in step 3, each of which performs m
operations in G (using ˇ-representations) and m lookups in TH , yielding a total
cots of O.n log2n/. The space bound is the size of TH plus the size of TG=H . �

3.6. Other modular functions. For a modular function g of level N and a prime
` −N , the modular polynomial ˆg

`
is the minimal polynomial of the function g.`z/

over the field C.g/. For suitable functions g, the isogeny volcano algorithm for
computing ˆ`.X; Y / can be adapted to compute ˆg

`
.X; Y /, as described in [8, §7].

There are some restrictions: ˆg
`

must have degree `C 1 in both X and Y , and we
require some additional constraints on the suitable orders O that we use. Specifi-
cally, we require that there is a generator � of O for which g.�/ lies in the ring class
fieldKO. In this case we say that g.�/ is a class invariant, and we letHg

O .X/ denote
its minimal polynomial over K; see [7; 14; 16] for algorithms to compute Hg

O .X/.
We also require the polynomial Hg

O to be defined over Z.
With this setup, there is then a one-to-one correspondence between the roots j.�/

of HO and the roots g.�/ of Hg
O in which ‰g.g.�/; j.�// D 0, where ‰g is the

minimal polynomial of g over C.j /; note that ‰g does not depend on ` and is
assumed to be given. The class group Cl.O/'Gal.KO=K/ acts compatibly on both
sets of roots, and this allows us to compute ˆg

`
modulo suitable primes p using

essentially the same algorithm that is used to compute ˆ` mod p. In particular,
we can enumerate the set EllgO .Fp/ D fx 2 Fp W H

g
O .x/ D 0g using a polycyclic

ON THE EVALUATION OF MODULAR POLYNOMIALS 547

presentation ˛ for Cl.O/, provided that we exclude from ˛ generators whose norm
divides the level of g, and similarly for EllgO0.Fp/, where O0 D ZC `O.

Thus Algorithms 1 and 2 can both be adapted to compute instantiated modular
polynomials �g.Y /Dˆg

`
.x; Y / mod q. Some effort may be required to determine

the correspondence between EllO.Fp/ and EllgO .Fp/ in cases where ‰g.X; j.E// or
‰g.g.E/; Y / has multiple roots in Fp; this issue arises when we need to compute a
child or parent using Vélu’s algorithm. There are several techniques for resolving
such ambiguities; see [8, §7.3] and especially [16], which explores this issue in
detail.

We emphasize that the point x at which we are evaluating ˆg
`
.x; Y / may be any

element of Fq; it need not correspond to the “g-invariant” of an elliptic curve.4

This permits a very useful optimization that speeds up our original version of
Algorithm 1 for computing �`.Y / D �

j

`
.Y / by a factor of at least 9, as we now

explain.

3.7. Accelerating the computation of �`.Y / using 2. Let 2.z/ be the unique
cube root of j.z/ with integral Fourier expansion, a modular function of level 3
that yields class invariants for O whenever 3 − disc O. As noted in [8, §7.2], for
` > 3 the modular polynomial ˆ2

`
can be written as

ˆ
2

`
.X; Y /DR.X3; Y 3/Y eCS.X3; Y 3/XY CT .X3; Y 3/X2Y 2�e; (5)

with e D `C 1 mod 3 and R; S; T 2 ZŒX; Y �. We then have the identity

ˆ` DR
3Y eC .S3� 3RST /XY CTX2Y 2�e: (6)

When computing ˆ2

`
mod p with the isogeny volcano algorithm, one can ex-

ploit (5) to speed up the computation by at least a factor of 3. In addition, the
integer coefficients of ˆ2

`
are also smaller than those of ˆ` by roughly a factor

of 3; we may use the height bound h.ˆ2

`
/� 2` log `C 8` from [8, Equation 18].

Let us consider how we may modify Algorithm 1 to exploit (6), thereby accel-
erating the computation of �`.Y /Dˆ`.x; Y / mod q, where x D j.E/ 2 Fq . Let
r.Y /DR.x; Y / mod q, and similarly define s and t in terms of S and T . Rather
than computing ˆ` mod p in step 5(a), we compute ˆ2

`
mod p and derive R, S ,

and T from (5). We then compute polynomials r , s, and t mod p instead of � in
step 5(b). Finally, we recover r , s, and t mod q in step 6 via the explicit CRT and
output

� D r3Y eC x.s3� 3rst/Y C x2t3Y 2�e (7)

4Every x 2 Fq is j.E/ for some E=Fq , and when E is ordinary, j.E/ is the reduction of some
j.�/D j. yE/ with ZŒ� �D O' End.E/. But g.�/ might not be a class invariant for this O.

548 ANDREW V. SUTHERLAND

in step 7. Adjusting the height bound B appropriately, this yields a speedup of
nearly a factor of 9. Note that we are not assuming x D j.E/ has a cube root in Fq ,
or that End.E/' O satisfies 3 − disc O; the identity (7) holds for all x.

We can similarly compute �X and �XX . To simplify the formulas, let us define
U D .S3� 3RST / and uD U.x; Y / mod q. Define

r 0.Y /D
@R

@X
.x; Y / and r 00.Y /D

@2R

@X2
.x; Y /;

and similarly for s; t , and u. Note that u, u0, and u00 can all be easily expressed
in terms of r; r 0; r 00; s; s0; s00; t; t 0, and t 00. We replace the computation of �X and
�XX in step 5(c) with analogous computations of r 0; r 00; s0; s00; t 0, and t 00 mod p.
We then obtain r; r 0; r 00; s; s0; s00; t; t 0, and t 00 via the explicit CRT mod q and apply

�X D 3r
2r 0Y eC .uC xu0/Y C .2xt3C 3x2t2t 0/Y 2�e;

�XX D .6rr
0r 0C 3r2r 00/Y e

C .2u0Cu00/Y C .2t3C 12xt2t 0C 6x2t t 0t 0C 3x2t2t 00/Y 2�e:

3.8. Normalized isogenies. We now explain how Algorithms 1 and 2 may be used
to compute normalized isogenies , first using j -invariants, and then using g-
invariants. Throughout this section j D j.E/ 2 Fq denotes the j -invariant of a
given elliptic curve E=Fq , defined by y2 D x3CAxCB , and �.Y /Dˆ`.j; Y /.
We use z| D j. zE/ to denote a root of �.Y / in Fq . Our goal is to compute an
equation for the image of WE! zE, and the kernel polynomial h`.X/ for .

3.8.1. Algorithm 1. When computing �, we also compute the optional outputs �X
and �XX , and then

�Y .Y /D
d

dY
�.Y /; �Y Y .Y /D

d

dY
�Y .Y /; and �XY D

d

dY
�X .Y /:

We then compute the quantities ˆ�.j; z| / D ��.z| /, for � D X; Y;XX;XY; Y Y ,
as defined in Section 2.1, and apply Elkies’s algorithm [19, Algorithm 27] to com-
pute zE and h`.X/.

3.8.2. Algorithm 2. Having computed � and obtained z| , we run Algorithm 2
again, this time with the input z| , obtaining z�.Y / D ˆ`.z| ; Y /, which we now
regard as z�.X/Dˆ`.X; z| /, by the symmetry of ˆ`. We then compute

ˆX .j; z| /D

�
d

dX
z�

�
.j / and ˆY .j; z| /D

�
d

dY
�

�
.z| /;

as well as the quantities

j 0 D
18B

A
j; z| 0 D

�ˆX .j; z| /

`ˆY .j; z| /
j 0; zmD

z| 0

z|
; and zk D

z| 0

1728� z|
;

ON THE EVALUATION OF MODULAR POLYNOMIALS 549

as in [19, Algorithm 27]. The normalized equation for zE is then

y2 D x3C
`4 zmzk

48
xC

`6 zm2zk

864
;

and the fastElkies0 algorithm in [5] may be used to compute h`.X/.

3.8.3. Handling g-invariants. We assume that g.E/ is known to be a class invari-
ant (see Section 3.9 below). Let g D g.E/, �g.Y /Dˆg

`
.g; Y /, and let zg D g. zE/

denote a root of �g.Y / in Fq . In the case of Algorithm 1 we compute

ˆ
g
X .g; zg/D �

g
X .zg/ and ˆ

g
Y .g; zg/D

�
d

dY
�g
�
.zg/;

and in the case of Algorithm 2 we make a second call with input zg to obtain
z�g.X/Dˆ

g

`
.X; zg/ as above. We then compute

ˆ
g
X .g; zg/D

�
d

dX
z�g
�
.g/ and ˆ

g
Y .g; zg/D

�
d

dY
�g
�
.zg/:

We assume the modular equation ‰g
`
.G; J /D 0 relating g.z/ to j.z/ can be solved

for j.z/ (for the g.z/ considered in [8], we have degJ ‰
g.G; J /� 2), and let F.G/

satisfy ‰g
`
.F.J /; J /D 0 and F 0 D dF=dG.

To compute the normalized equation for zE, we proceed as in Section 3.8.2,
except now

z| 0 D
�ˆ

g
X .g; zg/F

0.zg/

`ˆ
g
Y .g; zg/=F

0.g/
j 0:

The fastElkies0 algorithm in [5] may then be used to compute h`, or, in the case
of Algorithm 1, one may derive the trace of h` using ˆgXX .g; zg/, ˆ

g
XY .g; zg/,

and ˆgY Y .g; zg/ as in Section 3.8.1, and compute h` as usual. We omit the de-
tails.

3.9. Verifying that g.E/ is a class invariant. Let E=Fq be an elliptic curve that
is not supersingular (see [44] for fast tests), with End.E/' O. As in Section 3.6,
we call an element g.E/ of Fq a class invariant if

(1) Hg
O .X/ splits into linear factors in the ring class field of O , and

(2) g.E/ is a common root of Hg
O .X/ and ‰g.X; j.E//.

For practical applications, we would like to determine whether g.E/ is a class
invariant without computing O (indeed, the application may be to compute O).
This is often easy to do, at least as far as condition (1) is concerned. As noted
in Section 3.6, condition (1) can typically be guaranteed by constraints involving
DD disc O and the levelN of g. Verifying condition (2) is more difficult, in general,
but it can be easily addressed in particular cases if we know that ‰g.X; j.E//

550 ANDREW V. SUTHERLAND

either has a unique root in Fq (which then must also be a root of Hg.O/ once
condition (1) is satisfied), or that all its roots in Fq are roots of Hg.O/, or of
Hg.O/ for some g with ˆg

`
Dˆ

g

`
. In the latter case we may not determine g.E/

uniquely, but for the purposes of computing a normalized `-isogeny this does not
matter, any choice will work.

Taking 2 D 3
p
j as an example, condition (1) holds when

�
D
3

�
¤ 0, which

means j.E/ is on the surface of its 3-volcano and has either 0 or 2 siblings. This
can be easily determined using [18] or [42, §4.1]. If we have q � 2 mod 3, the
polynomial ‰g.X; j.E//D X3 � j.E/ has a unique root g.E/ in Fq and condi-
tion (2) also holds. (There are techniques to handle q � 1 mod 3— see [7], for
example — but they assume that O is known.)

As a second example, consider the Weber f-function, which is related to the
j -function by ‰f.X; J / D .X24 � 16/3 �X24J . Now we require

�
D
3

�
¤ 0 and�

D
2

�
D 1. The latter is equivalent to j.E/ being on the surface of its 2-volcano

with 2 siblings. If we also have q � 11 mod 12, then ‰f.X; j.E// has exactly
two roots f.E/ and �f.E/, by [8, Lemma 7.3], and either may be used since
ˆ

f
`
Dˆ

�f
`

.
For a more general solution, having verified condition (1), we may simply com-

pute instantiated polynomials �.Y /Dˆ`.x; Y / for every root x of ‰g.X; j.E//
in Fq . This can be done at essentially no additional cost, and we may then attempt to
compute a normalized isogeny corresponding to each root x, which we validate by
computing the dual isogeny (using the normalization factor cD ` rather than 1) and
checking whether the composition corresponds to scalar multiplication by ` using
randomly generated points in E.Fq/. The cost of these validations is negligible
compared to the cost of computing �.Y / for even one x.

As a final remark, we note that in applications such as point counting where
one is only concerned with the isogeny class of E, in cases where condition (1)
is not satisfied, one may be able to obtain an isogenous zE for which condition (1)
holds by simply climbing to the surface of the relevant `0-volcanoes for the primes
`0 jN (we regard N as fixed so `0 is small; `0 D 2; 3 in the examples above).

4. Applications

In this section we analyze the use of Algorithms 1 and 2 in two particular applica-
tions: counting points and computing endomorphism rings.

Recall that for an elliptic curve E=Fq , an odd prime ` is called an Elkies prime
whenever �.Y /Dˆ`.j.E/; Y / has a root in Fq . This holds if and only if t2�4q is
a square mod `, where t D qC1� #E.Fq/. It follows from the Chebotarev density
theorem that the set of Elkies primes for E has density 1=2. The complexity of
the Schoof-Elkies-Atkin algorithm [36] for computing #E.Fq/ depends critically

ON THE EVALUATION OF MODULAR POLYNOMIALS 551

on the number of small Elkies primes, specifically, the least LD L.E/ for whichX
Elkies primes `�L.E/

log ` > log.4
p
q/: (8)

On average, one expects L� log q, but even under the GRH the best proven bound
is LDO.log2C�q/; see Appendix A of [34] by Satoh and Galbraith. This yields a
complexity bound that is actually slightly worse than Schoof’s original algorithm.

For practical purposes, the heuristic assumption L.E/DO.log q/ is often used
when analyzing the complexity of the SEA algorithm. This assumption holds for
almost all elliptic curves [38], but it is known to fail in infinitely many cases [37].
We instead adopt the following weaker heuristic.

Heuristic 12. There exists a constant c such that for all sufficiently large q we
have L.E/� c log q llog q for every elliptic curve E=Fq .

Theorem 13. Assume the GRH and Heuristic 12. Let E=Fq be an elliptic curve
over a prime field Fq and let nD log q. There is a Las Vegas algorithm to compute
#E.Fq/ that runs in O.n4 log3n llogn/ expected time using O.n2 logn/ space.

Proof. Apply the SEA algorithm, using Algorithm 1 to compute �.Y /Dˆ`.j.E/;Y /
(and also �X and �XX), and ignore the Atkin primes, as in [38, Algorithm 1], for
example. There are O.n= logn/ primes in the sum (8), and under Heuristic 12,
they are bounded by L D O.n logn/. It follows from [38, Table 1] that the ex-
pected time to process each Elkies prime given � is O.n3 log3n llog2n/, which is
dominated by the time to compute �, as is the space. The theorem then follows
from Theorem 4. �

A common application of the SEA algorithm is to search for random curves
of prime (or near prime) order, for use in cryptographic applications. As shown
in [38], we no longer need Heuristic 12 to do this; we can assume L.E/DO.log q/
for a randomly chosen elliptic curve. Additionally, since we expect to count points
on many curves (� log q), we can take advantage of batching, whereby we extend
Algorithm 1 to take multiple inputs j.E1/ 2 Fq1

; : : : ; j.Ek/ 2 Fqk
and produce

corresponding outputs for each (the Fqi
may coincide, but they need not). Provided

k DO.log `/, this does not change the time complexity (relative to the largest Fqi
),

since the most time-consuming steps depend only on `, not j.E/, and the space
complexity is increased by at most a factor of k.5

Let Ea;b denote the elliptic curve defined by y2D x3CaxCb, and for any real
number x > 3, let T .x/ denote the set of all triples .q; a; b/ with q 2 Œx; 2x� prime,
a; b 2 Fq , and #Ea;b prime. The following result strengthens [38, Theorem 3].

5These remarks also apply to Algorithm 2.

552 ANDREW V. SUTHERLAND

Theorem 14. There is a Las Vegas algorithm that, given x, outputs a random triple
.q; a; b/ 2 T .x/ and the prime #Ea;b.Fq/, with q uniformly distributed over the
primes in Œx;2x� and .a;b/ uniformly distributed over the pairs .c;d/2F2q for which
#Ec;d .Fq/ is prime. Under the GRH, its expected running time isO.n5 log2n llogn/
using O.n2 log2n/ space, where nD log x.

Proof. We modify the algorithm in [38] to use Algorithm 1, operating on batches
of O.logn/ inputs at a time. One then obtains an O.n4 logn llogn/ bound on the
average time to compute #Ea;b.Fq/ for primes q 2 Œx; 2x�, and a space complexity
of O.n2 log2n/. The theorem then follows from the proof of [38, Theorem 3]. �

A second application of Algorithms 1 and 2 is in the computation of the endomor-
phism ring of an ordinary elliptic curve. The algorithm in [3] achieves a heuristically
subexponential running time of LŒ1=2;

p
3=2� using LŒ1=2; 1=

p
3� space. Algo-

rithms 1 and 2 both improve the space complexity bound to LŒ1=2; 1=
p
12�, which

is significant, since space is the limiting factor in these computations. Algorithm 2
also provides a slight improvement to the time complexity that is not visible in the
LŒ˛; c� notation but may be practically useful. These remarks also apply to the
algorithm in [27] for evaluating isogenies of large degree.

5. Computations

Using a modified version of the SEA algorithm incorporating Algorithm 1, we
determined the number of points on the elliptic curve

y2 D x3C 2718281828xC 3141592653;

modulo the 5011-digit prime qD 16219299585 �216612�1. The algorithm ignored
the Atkin primes and computed the trace of Frobenius t modulo 700 Elkies primes,
the largest of which was `D 11681; see [41] for details, including the exact value
of t , which is too large to print here. The computation was distributed over 32 cores
(3.0 GHz AMD Phenom II), and took about 6 weeks. Table 1 gives the time taken
for various parts of the computation.

For ` D 11681, the size of �f
`
.Y / D ˆ

f
`
.f.E/; Y / was under 20MB and took

about two hours to compute on a single core. As can be seen in Table 1, the com-
putation of �f

`
accounted for less than 3% of the total running time, despite being

the asymptotically dominant step. This is primarily due to the use of the Weber
f-invariant; with a less advantageous invariant (in the worst case, the j -invariant
with the optimization of Section 3.7), the time spent computing �` would have
been comparable to or greater than the time spent on the remaining steps. But in
any case the computation would still have been quite feasible.

To demonstrate the scalability of the algorithm, we computed �f
`
.Y / for an el-

liptic curve E=Fq , with ` D 100019 and q D 286243 � 1. Running on 32 cores

ON THE EVALUATION OF MODULAR POLYNOMIALS 553

Task CPU days

Computing �f
`
.Y / with Algorithm 1 32

Computing Xq mod �` (using [24]) 995
Computing h` using [19, Algorithm 27] 3
Computing Y q and Xq mod h`; E using [22] 326
Computing the eigenvalue �` using BSGS 22

Total 1378

Table 1. Breakdown of time spent computing #E.Fq/ for a 5011-bit prime q.
The computation was performed on 32 cores of a 3.0 GHz AMD Phenom II.

(Algorithms 1 and 2 are both easily parallelized), this computation took less than
a week. We note that the size of the instantiated modular polynomial �f

`
(and �`)

is almost exactly one gigabyte, whereas the size of ˆf
`

is many terabytes, and we
estimate that the size of ˆ` is around 20 or 30 petabytes.

Acknowledgments

I am grateful to David Harvey for his assistance with the algorithms for fast poly-
nomial arithmetic used in the computations described in Section 5, and to Daniel
Kane for suggesting the hybrid approach outlined in Section 3.4. I also thank the
referees for their comments and helpful suggestions.

This work was partially supported by NSF grant DMS-1115455.

References

[1] Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter, Computing Hilbert class
polynomials, in van der Poorten and Stein [33], 2008, pp. 282–295. MR 2009j:11200

[2] Daniel J. Bernstein and Jonathan P. Sorenson, Modular exponentiation via the explicit Chinese
remainder theorem, Math. Comp. 76 (2007), no. 257, 443–454. MR 2007f:11142

[3] Gaetan Bisson and Andrew V. Sutherland, Computing the endomorphism ring of an ordinary el-
liptic curve over a finite field, J. Number Theory 131 (2011), no. 5, 815–831. MR 2012a:11080

[4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system, I: The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. MR 1484478

[5] A. Bostan, F. Morain, B. Salvy, and É. Schost, Fast algorithms for computing isogenies between
elliptic curves, Math. Comp. 77 (2008), no. 263, 1755–1778. MR 2009k:11207

[6] Reinier Bröker, A p-adic algorithm to compute the Hilbert class polynomial, Math. Comp. 77
(2008), no. 264, 2417–2435. MR 2009j:11093

[7] , p-adic class invariants, LMS J. Comput. Math. 14 (2011), 108–126. MR 2801172

[8] Reinier Bröker, Kristin Lauter, and Andrew V. Sutherland, Modular polynomials via isogeny
volcanoes, Math. Comp. 81 (2012), no. 278, 1201–1231. MR 2012m:11180

[9] Reinier Bröker and Andrew V. Sutherland, An explicit height bound for the classical modular
polynomial, Ramanujan J. 22 (2010), no. 3, 293–313. MR 2011g:11123

http://dx.doi.org/10.1007/978-3-540-79456-1_19
http://dx.doi.org/10.1007/978-3-540-79456-1_19
http://msp.org/idx/mr/2009j:11200
http://dx.doi.org/10.1090/S0025-5718-06-01849-7
http://dx.doi.org/10.1090/S0025-5718-06-01849-7
http://msp.org/idx/mr/2007f:11142
http://dx.doi.org/10.1016/j.jnt.2009.11.003
http://dx.doi.org/10.1016/j.jnt.2009.11.003
http://msp.org/idx/mr/2012a:11080
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://msp.org/idx/mr/1484478
http://dx.doi.org/10.1090/S0025-5718-08-02066-8
http://dx.doi.org/10.1090/S0025-5718-08-02066-8
http://msp.org/idx/mr/2009k:11207
http://dx.doi.org/10.1090/S0025-5718-08-02091-7
http://msp.org/idx/mr/2009j:11093
http://dx.doi.org/10.1112/S1461157009000175
http://msp.org/idx/mr/2801172
http://dx.doi.org/10.1090/S0025-5718-2011-02508-1
http://dx.doi.org/10.1090/S0025-5718-2011-02508-1
http://msp.org/idx/mr/2012m:11180
http://dx.doi.org/10.1007/s11139-010-9231-8
http://dx.doi.org/10.1007/s11139-010-9231-8
http://msp.org/idx/mr/2011g:11123

554 ANDREW V. SUTHERLAND

[10] D. A. Buell and J. T. Teitelbaum (eds.), Computational perspectives on number theory: Proceed-
ings of the conference in honor of A. O. L. Atkin held at the University of Illinois, Chicago, IL,
September 1995, AMS/IP Studies in Advanced Mathematics, no. 7, Providence, RI, American
Mathematical Society, 1998. MR 98g:11001

[11] Andrew M. Childs, David Jao, and Vladimir Soukharev, Constructing elliptic curve isogenies
in quantum subexponential time, 2012. arXiv 1012.4019v2 [quant-ph]

[12] Jean-Guillaume Dumas (ed.), ISSAC 2006: Proceedings of the 2006 International Symbolic
and Algebraic Computation held in Genova, July 9–12, 2006, New York, ACM Press, 2006.
MR 2289094

[13] Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues,
in Buell and Teitelbaum [10], 1998, pp. 21–76. MR 99a:11078

[14] Andreas Enge, The complexity of class polynomial computation via floating point approxima-
tions, Math. Comp. 78 (2009), no. 266, 1089–1107. MR 2010h:11097

[15] , Computing modular polynomials in quasi-linear time, Math. Comp. 78 (2009), no. 267,
1809–1824. MR 2010b:11171

[16] Andreas Enge and Andrew V. Sutherland, Class invariants by the CRT method, in Hanrot et al.
[23], 2010, pp. 142–156. MR 2012d:11246

[17] Claus Fieker and David R. Kohel (eds.), Algorithmic number theory: Proceedings of the 5th
International Symposium (ANTS-V) held at the University of Sydney, July 7–12, 2002, Lecture
Notes in Computer Science, no. 2369, Berlin, Springer, 2002. MR 2004j:11002

[18] Mireille Fouquet and François Morain, Isogeny volcanoes and the SEA algorithm, in Fieker and
Kohel [17], 2002, pp. 276–291. MR 2005c:11077

[19] Steven D. Galbraith, Mathematics of public key cryptography, Cambridge University Press,
2012. MR 2931758

[20] Steven D. Galbraith, Florian Hess, and Nigel P. Smart, Extending the GHS Weil descent attack,
in Knudsen [29], 2002, pp. 29–44. MR 2004f:94060

[21] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge
University Press, 2003. MR 2004g:68202

[22] P. Gaudry and F. Morain, Fast algorithm for computing the eigenvalue in the Schoof-Elkies-
Atkin algorithm, in Dumas [12], 2006, pp. 109–115. MR 2289108

[23] Guillaume Hanrot, François Morain, and Emmanuel Thomé (eds.), Algorithmic number theory:
Proceedings of the 9th Biennial International Symposium (ANTS-IX) held in Nancy, July 19–23,
2010, Lecture Notes in Computer Science, no. 6197, Berlin, Springer, 2010. MR 2011g:11002

[24] David Harvey, A cache-friendly truncated FFT , Theoret. Comput. Sci. 410 (2009), no. 27–29,
2649–2658. MR 2010g:68327

[25] IEEE (ed.), Proceedings of the 49th IEEE Symposium on Foundations of Computer Science held
in Philadelphia, October 25–28, 2008, Los Alamitos, CA, Institute of Electrical and Electronics
Engineers, IEEE Computer Society, 2008.

[26] INRIA Project-Team TANC, 2009 activity report, 2009. http://raweb.inria.fr/rapportsactivite/
RA2009/tanc/tanc.pdf

[27] David Jao and Vladimir Soukharev, A subexponential algorithm for evaluating large degree
isogenies, in Hanrot et al. [23], 2010, pp. 219–233. MR 2011h:11144

[28] Kiran S. Kedlaya and Christopher Umans, Fast Modular Composition in any Characteristic, in
IEEE [25], 2008, pp. 146–155.

http://msp.org/idx/mr/98g:11001
http://arxiv.org/abs/1012.4019v2
http://portal.acm.org/toc.cfm?id=1145768
http://portal.acm.org/toc.cfm?id=1145768
http://msp.org/idx/mr/2289094
http://msp.org/idx/mr/99a:11078
http://dx.doi.org/10.1090/S0025-5718-08-02200-X
http://dx.doi.org/10.1090/S0025-5718-08-02200-X
http://msp.org/idx/mr/2010h:11097
http://dx.doi.org/10.1090/S0025-5718-09-02199-1
http://msp.org/idx/mr/2010b:11171
http://dx.doi.org/10.1007/978-3-642-14518-6_14
http://msp.org/idx/mr/2012d:11246
http://dx.doi.org/10.1007/3-540-45455-1
http://dx.doi.org/10.1007/3-540-45455-1
http://msp.org/idx/mr/2004j:11002
http://dx.doi.org/10.1007/3-540-45455-1_23
http://msp.org/idx/mr/2005c:11077
http://dx.doi.org/10.1017/CBO9781139012843
http://msp.org/idx/mr/2931758
http://dx.doi.org/10.1007/3-540-46035-7_3
http://msp.org/idx/mr/2004f:94060
http://www.cambridge.org/9781107039032
http://msp.org/idx/mr/2004g:68202
http://dx.doi.org/10.1145/1145768.1145791
http://dx.doi.org/10.1145/1145768.1145791
http://msp.org/idx/mr/2289108
http://dx.doi.org/10.1007/978-3-642-14518-6
http://dx.doi.org/10.1007/978-3-642-14518-6
http://dx.doi.org/10.1007/978-3-642-14518-6
http://msp.org/idx/mr/2011g:11002
http://dx.doi.org/10.1016/j.tcs.2009.03.014
http://msp.org/idx/mr/2010g:68327
http://dx.doi.org/10.1109/FOCS.2008.92
http://dx.doi.org/10.1109/FOCS.2008.92
http://raweb.inria.fr/rapportsactivite/RA2009/tanc/tanc.pdf
http://dx.doi.org/10.1007/978-3-642-14518-6_19
http://dx.doi.org/10.1007/978-3-642-14518-6_19
http://msp.org/idx/mr/2011h:11144
http://dx.doi.org/10.1109/FOCS.2008.13

ON THE EVALUATION OF MODULAR POLYNOMIALS 555

[29] Lars Knudsen (ed.), Advances in cryptology—EUROCRYPT 2002: Proceedings of the 21st
International Annual Conference on the Theory and Applications of Cryptographic Techniques
held in Amsterdam, April 28–May 2, 2002, Lecture Notes in Computer Science, no. 2332,
Berlin, Springer, 2002. MR 2003m:94074

[30] David Russell Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D. thesis, Uni-
versity of California, Berkeley, 1996, p. 117. http://search.proquest.com/docview/304241260
MR 2695524

[31] Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, no. 112, Springer, New
York, 1987. MR 88c:11028

[32] The PARI Group, PARI/GP (version 2.4.3), 2011. http://pari.math.u-bordeaux.fr/

[33] Alfred J. van der Poorten and Andreas Stein (eds.), Algorithmic number theory: Proceedings
of the 8th International Symposium (ANTS-VIII) held in Banff , AB, May 17–22, 2008, Lecture
Notes in Computer Science, no. 5011, Berlin, Springer, 2008. MR 2009h:11002

[34] Takakazu Satoh, On p-adic point counting algorithms for elliptic curves over finite fields, in
Fieker and Kohel [17], 2002, pp. 43–66. MR 2004k:11098

[35] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing .Arch. Elek-
tron. Rechnen/ 7 (1971), 281–292. MR 45 #1431

[36] René Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux
7 (1995), no. 1, 219–254. MR 97i:11070

[37] Igor Shparlinski, On the product of small Elkies primes, 2013. arXiv 1301.0035 [math.NT]

[38] Igor E. Shparlinski and Andrew V. Sutherland, On the distribution of Atkin and Elkies primes,
2011. arXiv 1112.3390 [math.NT]

[39] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, no. 106,
Springer, New York, 1986. MR 87g:11070

[40] , Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics,
no. 151, Springer, New York, 1999. MR 96b:11074

[41] Andrew V. Sutherland, Genus 1 point counting records over prime fields, 2010. http://
math.mit.edu/~drew/SEArecords.html

[42] , Computing Hilbert class polynomials with the Chinese remainder theorem, Math.
Comp. 80 (2011), no. 273, 501–538. MR 2011k:11177

[43] , Accelerating the CM method, LMS J. Comput. Math. 15 (2012), 172–204. MR 2970725

[44] , Identifying supersingular elliptic curves, LMS J. Comput. Math. 15 (2012), 317–325.
MR 2988819

[45] Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273 (1971),
A238–A241. http://gallica.bnf.fr/ark:/12148/bpt6k56191248/f52.image MR 45 #3414

ANDREW V. SUTHERLAND: drew@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
United States

msp

http://dx.doi.org/10.1007/3-540-46035-7
http://dx.doi.org/10.1007/3-540-46035-7
http://dx.doi.org/10.1007/3-540-46035-7
http://msp.org/idx/mr/2003m:94074
http://search.proquest.com/docview/304241260
http://msp.org/idx/mr/2695524
http://dx.doi.org/10.1007/978-1-4612-4752-4
http://msp.org/idx/mr/88c:11028
http://pari.math.u-bordeaux.fr/
http://dx.doi.org/10.1007/978-3-540-79456-1
http://dx.doi.org/10.1007/978-3-540-79456-1
http://msp.org/idx/mr/2009h:11002
http://dx.doi.org/10.1007/3-540-45455-1_5
http://msp.org/idx/mr/2004k:11098
http://dx.doi.org/10.1007/BF02242355
http://msp.org/idx/mr/45:1431
http://dx.doi.org/10.5802/jtnb.142
http://msp.org/idx/mr/97i:11070
http://arxiv.org/abs/1301.0035
http://arxiv.org/abs/1112.3390
http://dx.doi.org/10.1007/978-0-387-09494-6
http://msp.org/idx/mr/87g:11070
http://msp.org/idx/mr/96b:11074
http://math.mit.edu/~drew/SEArecords.html
http://dx.doi.org/10.1090/S0025-5718-2010-02373-7
http://msp.org/idx/mr/2011k:11177
http://dx.doi.org/10.1112/S1461157012001015
http://msp.org/idx/mr/2970725
http://dx.doi.org/10.1112/S1461157012001106
http://msp.org/idx/mr/2988819
http://gallica.bnf.fr/ark:/12148/bpt6k56191248/f52.image
http://msp.org/idx/mr/45:3414
mailto:drew@math.mit.edu
http://msp.org

VOLUME EDITORS

Everett W. Howe
Center for Communications Research

4320 Westerra Court
San Diego, CA 92121-1969

United States

Kiran S. Kedlaya
Department of Mathematics

University of California, San Diego
9500 Gilman Drive #0112
La Jolla, CA 92093-0112

Front cover artwork based on a detail of
Chicano Legacy 40 Años ©2010 Mario Torero.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/1
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-00-2 (print), 978-1-935107-01-9 (electronic)

First published 2013.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/1
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 1
Tenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier
international forum for research in computational number theory. ANTS is devoted to algorithmic
aspects of number theory, including elementary, algebraic, and analytic number theory, the
geometry of numbers, arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the tenth ANTS meeting, held July 9–13, 2012, at the Univer-
sity of California, San Diego. It includes revised and edited versions of the 25 refereed papers
presented at the conference, together with extended abstracts of two of the five invited talks.

TABLE OF CONTENTS

1Deterministic elliptic curve primality proving for a special sequence of numbers — Alexander Abatzoglou,
Alice Silverberg, Andrew V. Sutherland, and Angela Wong

21Imaginary quadratic fields with isomorphic abelian Galois groups — Athanasios Angelakis and Peter
Stevenhagen

41Iterated Coleman integration for hyperelliptic curves — Jennifer S. Balakrishnan

63Finding ECM-friendly curves through a study of Galois properties — Razvan Bărbulescu, Joppe W. Bos, Cyril
Bouvier, Thorsten Kleinjung, and Peter L. Montgomery

87Two grumpy giants and a baby — Daniel J. Bernstein and Tanja Lange

113Improved techniques for computing the ideal class group and a system of fundamental units in number fields —
Jean-François Biasse and Claus Fieker

135Conditionally bounding analytic ranks of elliptic curves — Jonathan W. Bober

145A database of elliptic curves over Q(
√

5): a first report — Jonathan Bober, Alyson Deines, Ariah Klages-Mundt,
Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein

167Finding simultaneous Diophantine approximations with prescribed quality — Wieb Bosma and Ionica Smeets

187Success and challenges in determining the rational points on curves — Nils Bruin

213Solving quadratic equations in dimension 5 or more without factoring — Pierre Castel

235Counting value sets: algorithm and complexity — Qi Cheng, Joshua E. Hill, and Daqing Wan

249Haberland’s formula and numerical computation of Petersson scalar products — Henri Cohen

271Approximate common divisors via lattices — Henry Cohn and Nadia Heninger

295Explicit descent in the Picard group of a cyclic cover of the projective line — Brendan Creutz

317Computing equations of curves with many points — Virgile Ducet and Claus Fieker

335Computing the unit group, class group, and compact representations in algebraic function fields — Kirsten
Eisenträger and Sean Hallgren

359The complex polynomials P(x) with Gal(P(x)− t)∼= M23 — Noam D. Elkies

369Experiments with the transcendental Brauer-Manin obstruction — Andreas-Stephan Elsenhans and Jörg Jahnel

395Explicit 5-descent on elliptic curves — Tom Fisher

413On the density of abelian surfaces with Tate-Shafarevich group of order five times a square — Stefan Keil and
Remke Kloosterman

437Improved CRT algorithm for class polynomials in genus 2 — Kristin E. Lauter and Damien Robert

463Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent — Reynald Lercier,
Christophe Ritzenthaler, and Jeroen Sijsling

487Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups — Jennifer Paulhus

507Isogeny volcanoes — Andrew V. Sutherland

531On the evaluation of modular polynomials — Andrew V. Sutherland

557Constructing and tabulating dihedral function fields — Colin Weir, Renate Scheidler, and Everett W. Howe

A
N

T
S

X
:

Tenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

H
ow

e,Kedlaya
O

B
S

1

http://dx.doi.org/10.2140/obs.2013.1.1
http://dx.doi.org/10.2140/obs.2013.1.21
http://dx.doi.org/10.2140/obs.2013.1.41
http://dx.doi.org/10.2140/obs.2013.1.63
http://dx.doi.org/10.2140/obs.2013.1.87
http://dx.doi.org/10.2140/obs.2013.1.113
http://dx.doi.org/10.2140/obs.2013.1.135
http://dx.doi.org/10.2140/obs.2013.1.145
http://dx.doi.org/10.2140/obs.2013.1.167
http://dx.doi.org/10.2140/obs.2013.1.187
http://dx.doi.org/10.2140/obs.2013.1.213
http://dx.doi.org/10.2140/obs.2013.1.235
http://dx.doi.org/10.2140/obs.2013.1.249
http://dx.doi.org/10.2140/obs.2013.1.271
http://dx.doi.org/10.2140/obs.2013.1.295
http://dx.doi.org/10.2140/obs.2013.1.317
http://dx.doi.org/10.2140/obs.2013.1.335
http://dx.doi.org/10.2140/obs.2013.1.359
http://dx.doi.org/10.2140/obs.2013.1.369
http://dx.doi.org/10.2140/obs.2013.1.395
http://dx.doi.org/10.2140/obs.2013.1.413
http://dx.doi.org/10.2140/obs.2013.1.437
http://dx.doi.org/10.2140/obs.2013.1.463
http://dx.doi.org/10.2140/obs.2013.1.487
http://dx.doi.org/10.2140/obs.2013.1.507
http://dx.doi.org/10.2140/obs.2013.1.557

	1. Introduction
	2. Background
	2.1. Isogenies
	2.2. Explicit CM theory
	2.3. Polycyclic presentations
	2.4. Explicit CRT
	2.5. Modular polynomials via isogeny volcanoes
	2.6. Selecting primes with the GRH

	3. Algorithms
	3.1. 0=algorithm.251=Algorithm 1
	3.2. 0=algorithm.401=Algorithm 2
	3.3. 0=algorithm.531=Algorithm 2.1
	3.4. A hybrid approach
	3.5. Computing a polycyclic presentation for a quotient group
	3.6. Other modular functions
	3.7. Accelerating the computation of phi ell(Y) using gamma 2
	3.8. Normalized isogenies
	3.8.1. 0=algorithm.251=Algorithm 1
	3.8.2. 0=algorithm.401=Algorithm 2
	3.8.3. Handling g-invariants

	3.9. Verifying that g(E) is a class invariant

	4. Applications
	5. Computations
	Acknowledgments
	References
	
	

