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1. Introduction, The following theorem was proved and used by Jehlke [2] to

obtain elegant improvements of the classic tests of Gauss and Weierstrass for

convergence of series of real and of complex terms.

THEOREM 1. If the terms of two series Σ ^ = 0 o r t and Σ ^ = 0 ^ Λ are such that

(1) ^-=—(1+0 ( n = O f l , ),

where Σ^= o cn is absolutely convergent, then the two series

Έin=obn are both convergent or both divergent.
=o a

n

It is the main object of this note to prove that Theorem 1 is a best possible

theorem in that no hypothesis weaker than the hypothesis that Σ n =o I cn I < °°is

sufficient to imply the conclusion of the theorem. The final result, Theorem 4, is

obtained from two preliminary theorems, Theorems 2 and 3, which seem to have

independent interest.

2. Preliminary theorems. We first establish the following result.

THEOREM 2. Let cn ψ ~~1> n ~ 0,1,2, β . In order that the sequence \cn}

be such that Σ Λ = 0 bn converges whenever (1) holds and Σ Λ = 0 an converges, it

is necessary and sufficient that

00

( 2 ) Σ | ( 1 + c o ) ( l + c χ ) - - - ( l + c ^ K I < o o .

Proof. To prove Theorem 2, let (l) hold. Then

(3) ^ — - ( 1 + c J (n=0Λ2. . ).
α n + l α n

and hence
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(4) ^ - = ^ - ( l + c o ) ( l + c 1 ) • • . ( l + c n - 1 ) ( n = l , 2 , . ) .
an a0

Let

(5) pn = — (1 + c o ) ( l + c θ ••• (1 + c n - x ) (n - 1,2, •••) .
α 0

Then i>Λ

 = pnan9 But by a well-known theorem of Hadamard Li] , Σ^°=o pnan con-

verges whenever Σ£°=o an converges if and only if Σ^°=o \pn+ι """ Pn I < °° . But

(5) implies that

(6) p n + i - p n = — (1 + c o ) ( l + C l ) ••• (1 + 0 ^ ! ) ^ ,
α 0

and the conclusion of Theorem 2 follows.

THEOREM 3. Let cn ψ — 1 , n = 0,1,2, . In order that the sequence \cn\

be such that Σ Λ = 0 an converges whenever (l) holds and Σ^= o bn converges, iί is

necessary and sufficient that

(7)
n-\

1 1

1 + Co 1 + c x 1 + cn-x I + cn
< °° .

Proof. Theorem 3 may be proved by revising the proof of Theorem 2 to use the

relations

(n = 0, 1, 2, )()
an bn 1 + cn

instead of (l) or, which amounts to the same thing, replacing 1 + c^ by 1/(1 + c'^)

in (2) and then removing the primes.

3. Theorem. Our main result is the following.

THEOREM 4. Let cn f1 — 1 , n — 0,1,2, ' . In order that this sequence be

such that the two series Σ Λ = 0 an and Σ π = 0 bn are both convergent or both di-

vergent whenever (1) holds, it is necessary and sufficient that Σ ^ = o \cn\ < °°.

Proof. To prove necessity, suppose Σ^=o an and Σ^=o bn are both convergent

or both divergent whenever (1) holds. Then, by Theorems 2 and 3, both (2) and (7)
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hold. Denoting the nth terms of the series in (2) and (7) by un and vn, we see that,

as n—>°°, we have un—>0 and vn—>0 and hence

(9)

This implies that cn—» 0 and hence that 11/(1 + cn) \ > 1/2 for n sufficiently

great. This and (7) imply that

(10) Σ
1 1 1

< °° .1 + Co 1 + c j 1 + c π - i

If w e l e t x n - I (1 + c o ) ( l + cx) • • • ( ! + c n - χ ) | , t h e n (2) a n d (10) imply t h a t

(ID Σ (x + x'1) \c\xn » xn ) \cn

But the mere fact that xn > 0 implies that (xn + %Λ

ι ) > 2, and it follows that

2«=o I c n I < °°. This proves necessity. To prove sufficiency, suppose that

^n-o \cn\ ^ °° Then the infinite product H ( l "̂  c^) converges to a number not

zero, and this means that each of (1 + c o ) ( l + c t ) (1 + cn-ι) and [(1 + c 0)

(1 + cι) (1 + c n )] x converges to a number not zero. This and Σ^=o \cn\

< °° imply (2) and (7). Therefore Theorems 2 and 3 imply that Σ °̂=o an and Σ^=o bn

are both convergent or both divergent. This completes the proof of Theorem 4.
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