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DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED

B. H. ARNOLD

1. Introduction. If L is the direct union of two distributive lattices, one may
define a new operation ^ between any two elements (a,b) and (c,d) of L by

(1) (a,b) * (c,d) = (a fl c, bΌd).

This operation % is:

PI . Idempotent
P2. Commutative
P3. Associative
P4. Distributive with * , U, Π in all possible ways.

The main results of this paper are the following.
First (Theorem 16), this is essentially the only way in which an operation with

properties P1-P4 can arise in a distributive lattice. That is, if L is a distributive
lattice with a binary operation * having properties P1-P4, then L is a sublattice
of the direct union of two distributive lattices, and the operation * is given by
equation (1).

Second (Theorem 9), if

P5. L contains an identity element e for the operation ^ ,

then L is the entire direct union. Here P5 is sufficient but not necessary; a neces-
sary and sufficient condition is given in Theorem 17. In case * is identical with
U or Π, Theorems 9, 16, and 17 still hold, but give trivial decompositions.

Finally, Section 5 shows that the presence of an operation % is equivalent to
the existence of a partial ordering with certain properties, so that our theorems
may be restated so as to apply to distributive lattices with an auxiliary partial
ordering.

2. Preliminary considerations. Throughout the paper, L is a distributive lat-

tice with an operation * having at least properties P1-P4. By an isomorphism
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34 B. H. ARNOLD

between two such algebraic structures, we shall mean a one-to-one correspondence
which preserves the operations U, Π, * ; as is customary, in the direct union
A X B of two such algebraic structures, all operations act coordinate wise; for
example , {a,b) * (cfd) = (a* c, b * d).

For later reference, we collect here several simple consequences of P1-P4.
The proofs consist of repeated applications of the idempotent and other laws, and
will be presented briefly and without annotation of the separate steps. These re-
sults will be used frequently in later proofs without any explicit reference being
made In these theorems, small Latin letters represent arbitrary elements of L.

T H E O R E M 1. x Γ ) y < χ * y < χ ϋ y .

Proof. We have

(x Π y) U (x * y) = [(* Π y) U x] * [(* Π y) U y] = x * y

thus x Π y < x * y. Similarly for the other inequality.

THEOREM 2. If χ\ < χ2

 an& J\S. J2> t^ιen x ι * ϊι £ *2 * >2

Proo/. We have

(*i * 7i) Π (%! * y2) = «! * (y! Π y2) = «i * yi

thus Λ;L ̂  yt < %t * y2. Similarly, Λ;L ̂  y2 < %2 * 72 > a n <^ ̂ e theorem follows.

THEOREM 3. x * (x \J y) = x \J (x * y) and x * {x Γ\ y) = x Γi (x * y).

Proof. Clearly,

* * U U y) = (* * *) U U * y) = * U (* * y) .

Similarly for the other equation.

T H E O R E M 4. * * y = U Π y) * (% U y).

Proof. The result follows from the continued equation,

(* Π y) * (* U y) = [(* Π y) * x] U [U Π y) * y]

= [(* * y) Π Λ] U [U * y) n y]

= U * y) Π (* U y) = * * y.

T H E O R E M 5. x * (x * y) = Λ * y .

Proof. Clearly,

* * (Λ * y) = (x * Λ) * y = * * y .
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T H E O R E M 6. lfχ<u<χ*y<v<y9 then u * v - % * y.

Proof. Since x < u and x * y < v9 Theorem 2 shows that

x*y = x*(x*y)< u* v.

Similarly,

3. The operation * has properties Pl-P5 In this section, we prove one of the
main results of the paper (Theorem 9), using the assumption that L contains an
element e which is an identity element for the operation * .

THEOREM 7. If a < e and c < e, then a * c = a Γ) c.

Proof. Since a * c = (α Π c) * (a U c), it i s sufficient to consider the case
a ^ c ^ e a n ( l prove a % c — α. But then a<a<a%:e<c<e9 and Theorem 6
shows that a^c~a^e~a.

THEOREM 8. If b >e and d > e, then b * d- b U d.

The proof is similar to that of Theorem 7

THEOREM 9. If L is a distributive lattice with a binary operation * having
properties P1-P5, then L is isomorphic to the direct union of two distributive lat-
tices Ay B each with an operation % having properties PI-PS; and if (a,b)9 (c,d)
are any two elements of A X B, then (a,b) * (c,d) = (α Π c, b U d).

Proof. Set

A = {a I a < e } 9 β = { b \ b > e } ;

then, with the same operations as in L, A and B are distributive lattices each
with an operation *fc having properties PI-PS,

We prove that the correspondence {a,b) —> α * ό is the required isomorphism
from A X B onto L. It is clearly a single valued correspondence from A X B into L.
It covers L because, for any element x of L, we have x Γ) e 6 A9 x \J e € B and,
by Theorem 4, ( a c ί l e ) * ( x U e ) = * * e = 3 c . It is one-to-one because, for any
α € Ay b e By we have e Π (α * b) = (e Π α) * (e ΓΊ b) = a * e = α. Thus Ίί a * b
— c * dy c € Ay d € By then a — c. Similarly, b ~ d.

This correspondence preserves the three operations U, Π, * . For instance,

(α,6) U (cyd) = ( α U c , i U Λ ^ ( α U c ) * ( 4 U ( ί ) = ( α U c ) * [(b U d) * (6 U Λ]

By Theorem 8, 6 U f i ? = & * G ? ; making this replacement in one parenthesis only,
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and rearranging the factors connected by * , we have [{a U c) * b] * [(b U d) # d].
But b = b U c, ίi = α U cί, so that we have

[(α U c ) ^ ( t U c)] * [(b U d) * (α U <0]

= [(α * A) U <?] * [(b * α) U d] = (β * £) U (c * </),

whence the operation U is preserved by our correspondence. Similarly for Π .
For the operation * ,

(a9b) * {c,d)- {a * c, b * d) ~* (a * c) * (b * d) - (a * b) * (c * d).

Thus our correspondence is an isomorphism.

By Theorems 7 and o, {a,b) * (c,eθ - (α Π c, ί> U cO This completes the proof.

REMARK. The element e will be the / in A and the 0 in β. The lattice A will
have an 0 if and only if L has one; β will have an / if and only if L has one.

4. The operation * has properties P1-P4. In this section, we prove one of the
main results of the paper (Theorem 16). The method employed is to complete L in
such a way that * has properties P1-P5 and then to apply Theorem 9. Several pre-
liminary definitions and theorems will be of use.

DEFINITION l We extend the operations U 9 Π, * to act on any subsets H, K
of L by defining H U K = ! % U y | * e / / , y e X } , and similarly for the other
operations.

Notice that // U K, for example, is a subset of L, and is usually neither the
supremum of the elements in the subsets H and Knor the point set union of H andK.

D E F I N I T I O N 2. A subset P of L is a *-ideal if P * L c P.

For any fixed a € L, the set a * L is a *-ideal; it is called the principal
%-ideal generated by α.

THEOREM 10. An element % of L is in the principal %-ideal A generated by a

if and only if a % x ~ x.

The sufficiency is evident. To prove necessity, we note that ϊϊ x β A, then
x — a * y; by Theorem 5 it follows that a * x — a * (a * γ) = x.

D E F I N I T I O N 3. A subset H of L is interυally closed iί x e H, y e H, and
x 5 z £ 7 imply z e //. The interval closure of a set G is the smallest intervally
closed subset containing G.

It is easily seen that the interval closure of any set is the collection of ele-

ments which lie between two elements of the set.



DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED 37

D E F I N I T I O N 4. A subset R of L is special if it is

(a) a *- ideal,
(b) a sublattice, and
(c) intervally closed.

THEOREM 11. Each principal %-ideal is also a special subset.

Proof. Let A be the principal *-ideal generated by α, and let x, γ be any two
elements of A. Then a * (x U y) = (α * x) U (α * y) = x U y, and % U y 6 4, by
Theorem 10. Similarly x Γ) y € A, and A is a sublattice of L.

If %, y are any two elements of A, and x < z < y, we must show that z is in /I.
Since A contains a Γ\ x and α U y, there is no loss in generality in supposing that
x 5: β < 7 Set α * (α U 2:) = α. We prove first that u — α U z. Since α * y = y
and α < u < y, Theorem 6 shows that w ̂  y ~ y, so that

(2) (α U 2) Π (u * y) = (α U z) Π y = a U z.

By Theorem 5, u % (a U z) — u. From the definition of it and Theorem 1, we have
u < a U z, so that

(3) [(α U z ) n J * [ ( α U z ) n y ] = w * ( α U z ) = M.

But, from the distributive law, the left-hand members of equations (2) and (3) are
equal, and u ~ a U z

We now proceed with the proof that z e A Set

v = z Π (α * z) = z * (α.ΓΊ z) .

Then, by Theorem 1, a Π z < v < 2, and

a U 1; = α U [z * (α Π z)] = (α U z) * [α U (α Π z)] = (α U z) * α = M = a U 2.

But now

i; = (α Π z) U v = (α U v) Π (z U v) = (σ U z) Π (z U v) = (α U z) Π z = z.

That is, z Π (α ̂  2) — z, whence z < α * z . Similarly, z > a ^ z . Thus z — α ̂  z
and, by Theorem 10, z 6 A .

THEOREM 12. // P is any %-ideal, the interval closure of the sublattice

generated by P is a special subset of L.

Proof. Let Q be the sublattice generated by P, and let Q be the interval
closure of Q. Then evidently Q is intervally closed.

Q is a sublattice because if x9 γ € () , there exist elements uί9 u29 vl9 v2 of Q
such that uγ< x < vu u2 < y <L V 2 Then u\ U u2 < x U y < «ι U v2 and, since (?
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is ajattice, x U y 6 Q. Similarly x Π y 6 Q, so that Q is a sublattice of L.
Q is a *-ideah Since * distributes over U, Π, Q is a *-ideal, and Theorem 2

then shows that Q is a *-ideal. This completes the proof.

REMARK. It is evident that any special subset containing P must contain Q.
Thus Theorem 12 gives a construction for the smallest special subset containing
(generated by) a given *-ideal.

T H E O R E M 13. If R9 S are special subsets of L, then R * S, R U S, R Π S
are special subsets of L.

Proof. That each of the sets R * S, β U S , Λ Π S is a *-ideal is a simple
consequence of the distributive laws and Definition 1.

To see that R * S is a special subset, note that R X S is contained in both /ϋ
and S, since both are ^-ideals; but clearly R % S contains the point-set inter-
section of R and S since X is idempotent Thus R % S is this intersection, which
is easily seen to be a special subset of L.

i? US is intervally closed because, if rι U s t < x < r 2 U s 2 , then

r ι Π r2 < x Π r2 < r2

and, since R is a special subset, x Γ\ r2 € R. Similarly, x Π s2 € S. But then

(x Π r2) U ( % ί l s 2 ) = x ί l (r2 U s2) = x

lies in /? U S, and i£ U S is intervally closed.
/ί U S is a sublattice of L because, if rL U si9 r2 U s2 are any two elements of

fiUS, clearly (rt U s j U (r2U s 2 ) = (r t U r2) U (s t U s2) lies in R U S. Also, since
Γi Π r2 < (rt U s j Π (r2 U s2) and s t Π s 2 < (rt U s j Π (r2 U s2), we have

(ri n r2) u (Sι n s2)< (Γ ι u Sl) n (r2 u s2)< (Γ ι u r2) u ( S ι u s2).

But the two extreme elements of this sequence of inequalities lie in R U S ; thus,
since R U S is intervally closed, the center element also lies in R U S. This com-
pletes the proof that R U S is a special subset; dually, i? Π S is a special subset.

DEFINITION 5. £ = [Λ, S, Γ, •} is the collection of all special subsets

of L with the three operations U, Π, * .

THEOREM 14. The set <C with the operations U, Π is α distributive lattice

and * has properties PI-PS.

Proof. Theorem 13 shows that £ is closed under the operations U, Π, * . To
show that £ is a distributive lattice, we prove
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1 . l i ϋ R = R , R Γ ) R = R ,
2 . RUS = SΌR, R Π S = S Π R,
3. (R U 5) U T = R U (5 U T\ (R Γ) S) Π T = R Π (S Π Γ),
4. /? U (# Π S) = /?,
5. Λ u(s n n = (β us) n (R U n.

Numbers 1,2, and 3 are evident. To prove 4, we note that clearly

R U(/ί ΠS) 3 Λ;

we show that Λ U (R Π S) d R. If % = rt U (r2 Π s) is any element of R (J (R Π S),
then ^ < Λ; < Γj U r2, and x € R,

To prove 5, we note that clearly (R U S) Π (Λ U Γ) D R U (S Π Γ); we show
that (R U S) Π (R U 71) C R U (S Π Γ). If * = (Γl U 5) n (r2 U t) is any element of
( A U S ) n ( Λ U Γ), then (rt Π r 2 ) u M ί ) < x < (rL U r2) U M ί ) , and

x e R U(S Π Γ ) .

The proofs that the operation * has properties P1-P4 are similar to those just
given and will be omitted. For PS, the lattice L itself is a special subset of L
and acts as the identity element for the operation ^ in <C

THEOREM 15. The correspondence x —*• the principals-ideal generated by
x is an isomorphism of L onto a sublattice of <C which identifies the operations
% in L and the sublattice of £1

Proof, By Theorem 10, if x, y generate the same principal ^-ideal, then
y = x*y = y*x = x, so that the above correspondence is one-to-one β

To prove that this correspondence is an isomorphism, let

χ-> X = x* L, y~>Y = y * L then * U y - > ( * U y ) * L = Z .

Clearly Z c X U Y. Conversely, Ίi w = (x * u) U (y * v) is any element of X U Y,
then (x U y) * (u Π v) < w < (x U y) * U U v), and M; € Z. The proofs for Π, *
are similar, and will be omitted.

Theorems 9,14, and 15 give immediately our main result:

THEOREM 16. // L is any distributive lattice with an operation * having
properties P1-P4, then L is isomorphic to a sublattice of the direct union of two
distributive lattices A, B9 each with an operation * having properties P1-P5;
and if (a,b), {c,d) are any two elements of A X B9 then

(a,b)*(c,d) = (aΓi c, b U.d).

THEOREM 17. // L is any distributive lattice with an operation * having
properties P1-P4, then L is isomorphic to a direct union in which the operation *
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is given by equation (1) if and only if each pair of elements of L is contained in

some principal ^-ideaL

Necessity. If L is a direct union with * given by equation (l), the two arbitrary

elements (α,ό), (c,d) are contained in the principal *-ideal generated by (α U c,

b Πrf).

Sufficiency. By Theorem 16, L may be considered a s a sublatt ice of a direct

union in which * is given by equation (1). Let (xi9yι) be any fixed element of Lf

and define A = \x \ U,y t ) e l \ , B=\y\ (xuy) e Li; then A X δ C L. In fact,

if G c ^ ) and (%1,y) are in the principal *-ideal generated by (a,b)9 then

and L contains

[U,yt) Π (α,6)] * [fe^yί U (α,fc)] - U,« * (α,y) = U,y)

Conversely, L CZ A X B, {or if (*,y) is any element of L, and (σ,6) generates a

principal *-ideal containing (x,y) and U p y ^ then L contains

[U,y) Π (α,W] U {Ui, y ι ) Π [U,y)* Uι,yi)Jl

= (χ,b) U ί'U^yi) Π (% Π χt, y U y t) | = U,y t) .

Similarly, (^,y) is in L, and (ρc9y) e A X B.

CAUTION. The decomposition of L will be trivial (one of A, B consisting of a

single element) if and only if * is identical with U o r Π .

5, The ordering equivalent to * . In any distributive lattice L with an opera-

tion * having properties P1-P4, we may define an auxiliary order relation by

making x >• y mean x * y = y. It is easily seen that this order relation has the

following properties:

0 1 . x > x;

02. x >- y, y > x imply x = y

03. % > y, y > z imply x >~ z
04. Any two elements %, y of L have a greatest lower bound (namely

* * y ) »
05. The operation of taking the greatest lower bound is distributive

with itself and with the two lattice operations in all possible ways.
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Conversely, if L is any distributive lattice (with no additional operation % de-

fined) with an auxiliary order relation having properties 01-05, then the operation

% defined in L by setting x % y equal to the greatest lower bound of x and y has

properties P1-P4. Moreover, the operation * will have property P5 if and only if

the order relation satisfies:

06. There is a greatest element e in L.

Our results may thus be restated as theorems concerning distributive lattices

with an auxiliary order relation.
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