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1. Introduction. The main result (Theorem 1) proved in this paper arose in

connection with investigations on the structure of rings of operators. Because of

its possible independent interest, it is being published separately.

The proof of Theorem 1 is closely modeled on the discussion in Chapter I

of [3] . The connection can be briefly explained as follows. Let N be a factor of

type l i t ; then in addition to the usual topologies on /V, we have the metric defined

by [ [^ l ] ] 2 = T(A*A), T being the trace on N. Now it is a fact that in any

bounded subset of N, the [[ ]]-metric coincides with the strong topology—this is

the substance of Lemma 13.2 of [3] . In the light of this observation, it can be

seen that Theorem 1 is essentially a generalization (to arbitrary rings of operators)

of the ideas in Chapter I of [3] .

Before stating Theorem 1, we collect some definitions for the reader's con-

venience. Let R be the algebra of all bounded operators on a Hubert space // (of

any dimension). In R we have a natural norm and *-operation. A typical neighbor-

hood of 0 for the strong topology in R is given by specifying e > 0, ξ 1, ,

ζn C H, and taking the set of all A in R with | |>4^ j | | < e; for the weak topol-

ogy we specify further vectors Tjί9 , T)n £ // and take the set of all A with

I {A ξi, Ύ)ι)\ < e. By a *-algebra of operators we mean a self-adjoint subalgebra

of/?, that is, one containing A whenever it contains A; unless explicitly stated,

it is not assumed to be closed in any particular topology. For convex subsets of

R, and in particular for subalgebras, strong and weak closure coincide [2,Th 5]

An operator A is self-adjoint if A* — A, normal if A A —A A, unitary if A A*

— A A — the identity operator /.

2. The main result. We shall establish the following result.

THEOREM 1. Let M, N be *-algebras of operators on Hubert space, M C N9

and suppose M is strongly dense in /V. Then the unit sphere of M is strongly dense

in the unit sphere of N.
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We shall break up the early part of the proof into a sequence of lemmas.

Lemma 1 is well known and is included only for completeness.

LEMMA 1. In the unit sphere of R> multiplication is strongly continuous, joint-

ly in its variables; and any polynomial in n variables is strongly continuous,

jointly in its arguments.

Proof* It is easy to see that multiplication is strongly continuous separately

in its variables, even in all of R. Consequently [ l , p.49] we need only check

the continuity of AB at A — B — 0. Since \\A\\ < 1, this is a consequence of

\ \ A B ξ \ \ < \\A\\ \ \ B ξ \ \ < \ \ B ξ \ \ .

Since addition and scalar multiplication are continuous (in all of R), the con-

tinuity of polynomials follows.

The precaution taken in the next lemma, in defining the mapping on the pair

{A,A ), is necessary since A —> A is not strongly continuous.

LEMMA 2. Let f(z) be a continuous complex-valued function, defined for

\z\ < 1. Then the mapping (A, A*) —> f(A) is strongly continuous on the

normal operators of the unit sphere of R,

Proof. We are given a normal operator Ao with 11 >4oil S 1> a positive e ,

and vectors ξ( in // (i = 1, , n). We have to show that by taking A, A* to be

normal with norm < 1, and in suitable strong neighborhoods of AQ, AQ, we can

achieve

ω l | [ / u ) - / U o > ] £ . - l l < e .

By the Weierstrass approximation theorem, there exists a polynomial g in two

variables such that

(2) |g(z,z*) " f(z)\ < e / 3 ,

for \z\ < 1, z* denoting the conjugate complex of z. By elementary properties of

the functional calculus for normal operators, we deduce from (2):

(3) \\giAtA*)-fU)\\ < e / 3 ,

(4) \\g(Λo,A*)-f<Ao)\\ < e/3.

By Lemma 1, if we take A, A* in appropriate neighborhoods of AQ, A%, we have



A THEOREM ON RINGS OF OPERATORS 2 2 9

(5) \\[gU,Λ*)- g(AΰtAt)]ξi\\ < e/3.

By combining (3), (4), and (5) we obtain (1).

The next lemma follows from Lemma 2 as soon as it is admitted that * is

strongly continuous on unitary operators. This can, for example, be deduced from

two known facts: (a) the strong and weak topologies coincide on the set of unitary

operators, and (b) * is weakly continuous.

LEMMA 3. Let f be a continuous complex-valued function defined on the

circumference of the unit circle. Then the mapping U —> f(U) is strongly con-

tinuous on the set of unitary operators.

The Cayley transform is the mapping A —> (A — i)(A + i) 1 ; it is defined

for any self-adjoint operator and sends it into a unitary operator.

LEMMA 4. The Cayley transform is strongly continuous on the set of all self-

adjoint operators.

Proof. We have the identity

(6) 04 - i)(A + iΓι - U o - i)(A0 + iΓι = 2i(A + i)'1 (A - AQ)(A0 + i)~ι .

When A is self-adjoint, we have | | (A + i)~ ι | | < 1. In order to make the left side

of (6) small on a vector ξ, it therefore suffices to make A — Ao small on the

vector 04 0 + i) ι ξ.

We shall prove a stronger form of Lemma 5 below (Corollary to Theorem 2).

LEMMA 5. Let h be a real-valued function defined on the real line, and sup-

pose that h is continuous and vanishes at infinity. Then the mapping A —* h(A)

is strongly continuous on the set of all self-adjoint operators.

Proof. Define

f{z) = h[-i(z + 1)U ~ 1 Γ 1 ] for \z\ = 1 , z φ\%

=^0 for z = 1.

Then f is continuous on the circumference of the unit circle. Moreover,

h(A) = f[(A - i)U + i ) " 1 ] .

The mapping A —* h(A) is thus the composite of two maps: the Cayley transform,



2 3 0 IRVING KAPLANSKY

and the mapping on unitary operators given by /. By Lemmas 4 and 3, these latter

two maps are strongly continuous. Hence so is A —» h(A).

Proof of Theorem 1. There is clearly no loss of generality in assuming M and

N to be uniformly closed, for the unit sphere of M is even uniformly dense in the

unit sphere of its uniform closure.

Let us write Z for the set of self-adjoint elements in M, and Zγ for the unit

sphere of Z. Let B be a given self-adjoint element in N, | | B | | < 1. By hypothe-

sis, B is in the strong closure of M. We shall argue in two successive steps that

B is actually in the strong closure of Z\ We begin by remarking that B is in the

weak closure of M, since the latter coincides with the strong closure of M Now *

is weakly continuous, and hence so is the mapping A —> (A + A*)/2 This

mapping leaves B fixed, and sends M onto Z; hence B is in the weak closure of

Z. Since Z is convex, this coincides with the strong closure of Z.

Let h(t) be any real-valued function of the real, variable t which is continuous

and vanishes at infinity, satisfies | h (t) \ < 1 for all t, and satisfies h(t) —t

for I ί I < 1. We have that h(B) — B. Also h can be meaningfully applied within Z,

since we have assumed M to be uniformly closed, and in fact h(Z) — Zχ> By

Lemma 5, the mapping A —* h (A) is strongly continuous on self-adjoint oper-

ators. Hence B is in the strong closure of Z ι .

This accomplishes our objective as far as self-adjoint operators are concerned.

To make the transition to an arbitrary operator, we adopt the device of passing to

a matrix algebra.1 Let N2 be the algebra of two-by-two matrices over N. In a

natural way, TV 2 is again a uniformly closed *-algebra of operators on a suitable

Hubert space (compare §2.4 of [3] )• It contains in a natural way M2, the two-by-

two matrix algebra over M. The strong topology on N2 is simply the Cartesian

product of the strong topology for the four replicas of N; thus M2 is again strongly

dense in N2 Now let C be any operator in N, \\C\\ < 1. We form

D -

and we note that D £ /V2> 0 * ~ D9 WOW < 1. Let U be any proposed strong

neighborhood of D. By what we have proved above, there ex i s t s in U a self-adjoint

element F ,

1 1 am indebted to P. R. Halmos for this device, which considerably shortened ray
original proof of Theorem 1.
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with F G M29 | | F II < 1. By suitable choice of U we can make H lie in a given

strong neighborhood of C. Also | | F | | < 1 implies \\H\\ < 1. This proves that C

lies in the strong closure of the unit sphere of M, and concludes the proof of

Theorem 1.

3 Remarks, (a) Since strong and weak closure coincide for convex sets, we

can, in the statement of Theorem 1, replace "strongly" by "weakly" at will.

(b) From Theorem 1 we can deduce that portion of [2, Th.8] that asserts

that a *-algebra of operators is strongly closed if its unit sphere is strongly

closed; but it does not appear to be possible to reverse the reasoning.

(c) As Dixmier has remarked [2, p. 399], Theorem 1 fails if M is merely

assumed to be a subspace (instead of a *-subalgebra).

4. Another result. In concluding the paper we shall return to Lemma 5 and

show that the hypothesis can be weakened to the assumption that h is bounded

and continuous. It should be noted that we cannot drop the word "bounded," since

for example it is known that the mapping A —> A is not strongly continuous.

Actually we shall prove a still more general result, which may be regarded

as a generalization of Lemma 4.2.1 of [3]

THEOREM 2. Let hit) be a bounded real-valued Baire function of the real

variable tf and Ao a self-adjoint operator. Let S be the spectrum of AOf and T the

closure of the set of points at which h is discontinuous; suppose S and T are

disjoint. Then the mapping on self-adjoint operators, defined by A —> h(A)9 is

continuous at A = Ao.

Proof. We may suppose that

(7) |A(ί) | < 1

for all t. Given 6 > 0, and vectors ξ^% we have to show that for A in a suitable

strong neighborhood of Ao , we have

(8) \\ίh(A)-h(A0)]ξi\\ <e.

Choose a function k (t) which satisfies: (a) k is continuous and vanishes at in-

finity, (b) k(t) = 1 for t in S9 (c) k(t) = 0 for t in an open set containing Γ. Define
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p — hkf q — 1 ~~ k ~f" hk* Then p = q = A on S, and so

(9)

Also p and ςr — 1 are continuous and vanish at infinity. Hence Lemma 5 is appli-

cable, and for a certain strong neighborhood of Ao we have

(10) II [p(A)-p(A0)]ξi || <e/4, || [q(A) - q(A0)] ξt \\ < e/2 .

The following is an identity:

(11) h = (l-h)p + hq.

From (9) and (11) we get

(12) h{A) ~h(A0)= [1 - A M ) ] [ P U ) - p U o ) ]

From (7), (10), and (12), we deduce (8), as desired.

If in particular h is continuous, then Γis void and we get a simplified corollary.

COROLLARY. Let h(t) be a continuous bounded real-valued function of the

real variable t. Then the mapping A —> h(A) is strongly continuous on the set

of all self-adjoint operators.
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