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1. Introduction. Let A9 B9 be sets of nonnegative integers. We define

A + β = {a + b]a € Af b € B ' By A°9 B
Ό

9 we shall denote the union of

A9 B9 and the number 0, by A(n) the number of positive α's that do not ex-

ceed n. We further put

g.l.b. = α ,
n

g.l b.

If 1,2, , k - 1 G 4, A ζf 4, we further put

(4) g.l b. = cXi .
π ^ n + 1

The real number α is called the density of A9 OLi the modified density9 and α

the asymptotic density of A. Densities of A9 B9 C9 will be denoted by the

corresponding Greek letters α, β, γ, .

Besicovitch [ l ] introduced (X*, and Erdos [2] OLχ.

The author [3] proved: //C = °̂ + B for B 3 1 and A0 + β° otherwise,

then for all n ^ C we have

(5) C(n) > α * n + β ( n ) .

It was also shown [3I that in (5), (X* cannot be replaced by (X.
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It is the purpose of the present note to improve (5) to the relation

(6) C(n) >0Lιn +B(n) .

The proof of (6) requires only a modification of the proof of (5), but will be

given in full to make the present note self-sufficient.

The inequality (6) immediately yields

(7) 7 > α ! + /3

if C has infinitely many gaps.

Now (7) is sometimes better and sometimes not as good as ErdόV [2j ine-

quality

(8) y > α + β/2

for the case 0ί > β, B 3 1, C = A0 + J3°. (To establish (8) it is really suf-

ficient to assume that there is at least one b° such that b° 4- 1 C B ) However

(7) holds also for C = A0 + B if B 3 1, and for C - A0 + B° without any restriction

o n β .

2. Proof. We shall now give a proof of (6) for the case C — A0 + B, δ 3 1,

and then shall indicate the changes which have to be made if nothing is assumed

about B but if C = A0 + B° . By α, b, c, * # we shall denote unspecified

integers in A9 B9 C, .

Let τ%ι < n2 < be all the gaps in C. Put nr — n, n — n t = d^ for i < r.

If there is one e £[ B such that

(9) a + e + cίi = Πj ,

form all numbers e + dt for which

(10) α + e + d t = n 5 , ί < r , s < r .

Let Γ be the set of indices occurring in (10). Put B = \e + rfs5 se^.

It is not difficult to prove the following propositions.

PROPOSITION 1. The intersection β f l δ * is empty.

PROPOSITION 2. Γλe integer n is not of the form a + e + ds for any s.

Since (10) also implies

(10') α + e + ds = nt ,
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it follows that β* contains as many numbers as there are gaps in C which precede

n and which are not gaps in A + B U fi*. Hence we have the following result.

P R O P O S I T I O N 3. If B U B* = Bί9 A + Bt = Ci9 then

( I D Ct(n) -C(n) = B i ( π ) - f i ( π ) .

Thus we have proved the following lemma.

LEMMA. If there is at least one equation of the form a + b + c?, = ΠJ9 then

there exists a B\ 3 B such that C± = A + Bx does not contain n9 and such that

(12) d ( n ) ~C(n) = B i ( π ) - β ( n ) > 0 .

Now let C = A0 + β, B 3 l Clearly, n t > 1. The numbers smaller than n\

are either in B9 or of the form n^ ~" α, or of neither of these two sorts. Also

Tii ft β, since C 3 β. Hence we have

(13) Cta) = m - 1 >Λ(ni - 1 ) +β(m) .

Since δ 3 1, we must have ΛI —1 €j! /4, (Λ! ~ 1) >&. Thus, we obtain

(14) C(ni) >

We proceed by induction and assume (6) proved, when n is the /th gap, / < r.

We distinguish two cases.

Case 1: dΓ-i < n^ . Then

C 3 n i - cfΓ-i = α + 6

We now apply the lemma. Let n be the /th gap in Cχ Then j < r9 and we have, by

induction,

(15) d(n) >0Lιn

and, by the lemma,

U6) C r(n) ~C(n) = B

Subtracting (16) from (15), we obtain (6).

Case 2: c/r—]. > n p Now

n — nΓ-i — l >
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Hence we have

A(n - nr-x - 1) > CLχ(n - n r - i )

The numbers between nr-γ and n are either of the form n ~~ α, or in B9 or of

neither of these two sorts. But n ££ B hence,

(17) n - n r - ! - 1 > A(n - nr-x - l) +B(n) - β ( n r - i )

> OL^n - nr-t) + β ( n ) - β ( n r - 1 ) .

By induction we have

(18) C(n r-X) = n Γ -i - (r - l ) > Ot^r-i +J5(n r- 1) .

Adding (17) and (18), we obtain (6).

From the proof it is evident that we may obtain the even stronger inequality

( 6 ' ) C(n) > B(n) min

To establish (6) for C = A0 + B° without the restriction B 3 1, we first

remark that in (13) the term A{nχ — 1) can be replaced by A(τiι). The cases to be

distinguished are dr-ι < n t and dΓ-χ > n\ . The proof of Case 1 is then word by

word the same when we replace B by B° and Bι by B J . In Case 2 we have

n — nr~ι ~ 1 > Πi > k ,

so that /4(τι — Λr-i ~1) > αt(w — flr-i); ^ e remainder of the argument remains

unchanged. For C = i4° + S° , we can obtain the even stronger inequality

(6") C(n) > B{n) mm

which again implies the even stronger result

C(n) > max

(n) -h + min
Πi<n
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To establish (7), it is sufficient to show that for any set S we have

S(m) S(n)

m n

if m > n9 n €£ S, S(m) — S(n) — m ~~ n. However, this can easily be verified.

Thus if S has infinitely many gaps, then

- . . . -5 (« ) . S(n)
cr = lim m i = lim m i .

m n$S n

It thus appears that in (7) we may replace β by

Bin) -
lim inf - ^ > β .

n$C n

If C = A0 + B° , we may of course write

Ύ >max (α! + 3 , OC
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