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1. Introduction* Let / be a Jordan algebra over a field Φ of characteristic

neither 2 nor 3. Let a —» Sa be a (general) representation of /. If Ot is an alge-

braic element of /, then S^ is an algebraic element. The object of this paper is to

determine the polynomial identity* satisfied by S α . The polynomial obtained de-

pends only on the minimal polynomial of α and the characteristic of Φ It is the

minimal polynomial of S α if the associative algebra U generated by the Sa is the

universal associative algebra of / and if / is generated by (X.

2. Preliminaries* A (nonassociative) commutative algebra / over a field Φ is

called a Jordan algebra if

(1) (a2b)a = a2(ba)

holds for all α, b £ /. In this paper it will be assumed that the characteristic of

Φ is neither 2 nor 3.

It is well known that the Jordan algebra / is power associative;** that is,the

subalgebra generated by any single element a is associative. An immediate conse-

quence is that if f(x) is a polynomial with no constant term then f(a) is uniquely

defined.

Let Ra be the multiplicative mapping in /, a —> xa = ax9 determined by the

element α. From (1) it can be shown that we have

[fiα«δc~] + [RbRac] + [RcRab] = 0
and

RaRiRc + RcRbRa + R(ac)b = RaRbc

for all α, b, c £ /, where [AB] denotes AB — BA. Since the characteristic of

Φ is not 3, either of these relations and the commutative law imply (1). Let
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•This problem was proposed by N. Jacobson.

**See, for example, Albert [ l ] .
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a —* S α be a linear mapping of / into an associative algebra U such that for all

α, b9 c C / we have

(2) [SaSbe] + [SbSvc] + [ScSab] = 0

and

(3) SaSbSc + ScSbSa + θ ( α c ) 6 = θ α 56 c + SbSac + ScSab .

Such a mapping is called a representation.

It has been shown* that there exists a representation a —> Sa of / into an

associative algebra V such that (a) U is generated by the elements Sa and (b) if
a > Ta is an arbitrary representation of / then Sa —> Ta defines a homo-

morphism of {/. In this case the algebra V is called the universal associative alge-

bra of /.

We shall now suppose that a —> Sa is an arbitrary representation of /, and (X

a fixed element of/. Let s(r) = Sar,A = s( l) , B = s(2). If we put a = b = c = α

in (2), we get ^ δ = BA. If we put α = b = α , c = αΓ~ 2 , r > 3, then (3) becomes

(4) s(r) =2As(r - l ) + s ( r - 2) B - Λ 2 s ( r - 2) - s ( r - 2 ) A2 .

We now see that.A and 5 generate a commutative subalgebra ί/α containing 5(r) for

all r . By the commutativity of ί/α, (4) becomes

(5) s ( r ) = 2 Λ s ( r - l ) + ( β ~ 2 Λ 2 ) s ( r - 2 ) .

We now adjoin to the commutative associative algebra £/α an element C commuting

with the elements of ί/α such that C 2 = B - 4 2 . We have the following result.

LEMMA 1. For all positive integers r, we have

s(r) = (l/2)(A +C) r + (1/2)(A - C y .

Proof. If r = 1, then

(1/2)(A+C)r

*For a general discussion of the theory of representations of a Jordan algebra and a
proof of the existence of the universal associative algebra, see Jacobson [2]
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If r = 2, then

(l/2)(A+C)r + (1/2)(>1-C) r = 4 2 + C 2 = s ( 2 ) .

Now suppose that r > 3 and that Lemma 1 holds for r — 1 and r — 2. By direct

substitution it follows that A + C and 4̂ — C are roots of

x2 = 2A* + β - 2A2 ,

and therefore of

xr = 2Axr-1+ (B - 2A2) xr'-2 .r =

Hence,

U + C)r = 2A(A + C)r"ι+ {B - 2A2)(A + C) r"2

and

(A -• C) r = 2A (A - C ) Γ - χ + (β - 2A2 ) (A - C)Γ~ 2 .

Adding and dividing by 2, we have the desired result:

(1/2)(4 + C)r + (1/2)(A-C)r =2As(r - l) + (B ~2A2) s(r - 2) = «(r) .

An immediate consequence of Lemma 1 is that if g(x) is an arbitrary polynomial

with no constant term, then

(6) S g ( α ) = (1/2) g(A +C) + (1/2) g(A - C) .

Now suppose further that GC is an algebraic element of / and that f(x) is a

polynomial with no constant term, such that /(a) = 0. Then by (6) we have

(7) 0 = 2 S / ( α ) = /(A + C) + /(A - C) ,

0 = 2Sα/(α) = (A + C) f(A + C) + (A - C) f(A - C) .

The next step is to eliminate C from the system (7). To do this we need some

additional tools.

3 Theory of elimination. Let Ω be the splitting field of f{x) over the field $ .

Let P = Φ[χ], Q = P[y], P' = Ω[x], <?' = P'[y] be polynomial rings in

one and two variables over Φ and Ω, respectively. Then P and P' are principal

ideal rings. If qx and g2

 a r e elements of Q, let (qi9 q2) be the ideal of Q generated

by qί and q2 , and let {̂ x, r̂2} be a generator of the P-ideal (ql9 q2) Π P. Simi-

larly, if ^ and q2 are elements of Q1 , let ((^i, ^2)) ^ e ^ e ideal of Q' generated
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by qι and q2 . Furthermore, let U<7i> <72> > denote a generator of the P ' - ideal

((<7i* #2)) Π P ' . We note that {qi9 q2] and {{qi9 q2}] are determined up to unit

factors. The unit factors are nonzero elements of Φ and Ω respectively.

We shal l establ ish the following lemma.

LEMMA 2. If qι and q2 are elements of Q, then {qχ9 q2] = liqi, #25 5 UP t o

a unit factor.

Proof Let ωi9 ω2 , # , ωm be a basis of Ω over Φ. Then P ' = Σω^ P and

(?' — Σ ω j ^ . Therefore

and

( ( q ! , q 2 ) ) Π P ' =Σωi((ql9q2) Π P) = ( ( g i , g 2 ) Π P) P # = { q i , g 2 } P ' .

It follows that foi, g2} = {{g l f ςτ2Π

Let r and s be distinct elements of P' , and let m and n be positive integers.

We shall determine {{{y - r ) m , (y - s)n]}.

LEMMA 3. Let S(m9n) be that positive integer satisfying

S(m, n) < m + n — 1 ,

and

\n - 1 = 0 i f S(m,n) < N < m + n - 2 ,

where I ..I is the binomial coefficient considered as an integer in Φ. Then we have

U ( y - r ) . (y - . ) " ! ! = ( - r ) 5 ( » ' " > .

Proof. We note that S(m9n) depends only on m, n9 and the characteristic p of

Φ . If p = 0, or if p > m + rc ~ 1, then S(m9n) = m + rc — 1. In any case,

(8) m + n - 1 > S (m, n ) > n .
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Replacing y by y + r, we may assume that r — 0, s f1 0. Formally, modulo ym

9

we have

μ=0

m-l

1 μ=0

n + μ - 1
n - 1

= Σ
v=n

- 1
n - 1

Therefore there exists a q £ Q' such that

(9) qy" + (y-s)"(-l) n £ ss(κ

It follows that

- s ) B Π | s s ( " ' B )

Put

. (y - s ) B Π | s

\ h a , (y ~ s Y \ \ = G ,

Then G and H are elements of P' . Furthermore, there exist qt and g2 \
n Q' such

that the y-degree of q2 is less than m and such that qιym + <72(y ~~ 5 ) Γ l ~ C.

Hence

(10) g i ^ y α + g 2 t f (y - « ) n = GH = s

s ( * π ) .

Subtracting (9) from (10) and comparing terms not divisible by y m , we obtain

S(m,n)

(11) q2H=(-l)n

Comparing coefficients of y* 5^' 7 1 ' """ in (11), we get

H
S(m,n) - I 1

n - 1 J
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which is a nonzero element of Φ. Therefore H is a unit element, and this es-

tablishes Lemma 3.

In the following we shall use l.c.m. (aΪ9 a2, * * * , an) for the least common

multiple of ax, α 2 , * * ' , an.

LEMMA 4. If ((qί9 q2)) Ξ> P' 9 then

Proof. P u t p t = {{qϊ9q3]} , p 2 = U ^ ^ Π , and p 3 = l.c.m. ( p ^ p 2) .

We note that((qlf q3)) DP' 2 (iqιq2* £3)) Π P ' , and therefore P l | {^1^2 > ̂ Π

Similarly, p 2 I U^i^2> ^3 I L and hence p 3 | U^i^2> ^ 3 ^ Now there exist D, £,

F, G, H, ΓinQ' such that

Therefore

Dqxq2 +

Hence there exist Kf L, M9 N in Q1 such that

Kqtq2 + Lq3 = p 3 g 2 and

Hence

(fflf + I/f)gig 2 + (fflV + I L ) g 3 = p 3 .

Therefore {{qιq29 qzlW Ps 9 a n ^ t n e proof of Lemma 4 is complete.

We shall now determine ID, El , where

0 = / ( * + y) + / ( * ~ y ) ,

E = (x + y) f{χ + y) + (x ~ y) f{χ ~ y) .

By Lemma 2, we have \D,E\ = U ^ . ^ H - Since

£ - (x - y)D = 2y/(χ + y) ,

we have

+ y ) \ } .
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Put

lif{χ+y),f(χ-y)tt =Δ.

Let n be the degree of /(#). Choose F(γ) and G(γ) in Q1 , with y-degree less than

n, such that

F(y) f(* + y) + G(y) f(χ - y) = Δ.

Then F(y) and G(y) are completely determined. Now

F(-y) fix ~ y) + G(-y) f(x + y) = Δ.

Therefore we have F( —y) = G(y), from which it follows that F(0) = G(0), or

( F ( y ) - G ( y ) ) / ( * + y) + Giy) D = Δ .

Therefore U θ , y / U + y)}} | Δ . It is clear that Δ | {{D,yf(x + y)\}. Thus we

have

{ D , E \ = { { D . y f i x + y ) ] ] = Δ .

We must now determine

Let/( ie) = Π(Λ; - 0Li)ni, where the 0ίt are distinct elements ofΩ . Then

/(* + y) = Π(* + y - cci)"' , fix - y) = Uix - y - α; )"; .

If qι and q2 are two relatively prime factors of f{x + y), or of f(x "~y), then

((^rt, ^r2)) — P' Therefore we can apply Lemmas 3 and 4 to obtain

(12) \D,E] = Uf(χ+y), f(χ-y)}} = l.cm. (2χ - a* - aj)
s^'nJ).

4. The equation for Sα . We shall establish the following result.

THEOREM. Let α be an algebraic element of J satisfying the equation

/(cc) = 0, where f(x) is a polynomial with no constant term. Let

fix) = Π ( * - C ί i ) Π i .
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where the 0L( are distinct elements of the splitting field Ω of f(x). Put

φ(x) = l .c.m.(* - (l/2)<Xi- (l/2)αy) 5 ( l | i "J> .

Then φiSa) = 0. Furthermore, if the algebra U generated by the Sa, a £ /, is

the universal associative algebra of J9 if fix) is the minimal polynomial of CL9and

if J is generated by Ct, then φix) is the minimal polynomial satisfied by S<χ.

Proof. As before, we let P = *>ix] 9 Q ~ P[y] be polynomial rings over $ in

one and two variables respectively, and put

D = / ( * + y) + f(χ ~ y)

and

E = (x + y) f{x + y) + (x - y) f{x - y) .

From (7) and (12) it follows that \jj{Sa) = 0. We must now show that φ(x) is the

minimal polynomial of Sα under the three given conditions. If we let (/(%)) be the

principal ideal of P generated by fix), then / is isomorphic to the quotient ring

P/ifix)) under the natural mapping g(θί) —» gix) + ifix))> Let V be the quotient

ring Q/iD,E)* We now consider the linear mapping

(13) g ( x ) _ * Γ g W = (l/2)g(* + y) + ( l/2)g(* -y) + (D,E)

of P into V. By the commutativity of V we have, for all g9 h9 j C P9

(14) [TgThj] + [ThTgj ] + [TjTgh] = 0 ,

since each of the three terms vanishes. Furthermore, by direct substitution we have

(15) 2TgThTj + Tghj = TgTh] + ThTgJ + TjTgh .

We now determine the kernel K of the mapping (13). By definition, gix) G ί if

and only if gix + y) + gix — y) C (D9E). Now

yf(x + y) = (1/2) £ - (1/2) (* - y) D C (D,E)

and

y/(* - y ) = (1/2)(x + y)D - (1/2) £ € (D,E) .

Let gr(%) be an arbitrary element of P. Then, for suitable hix9y) C (?> w e have
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+y) /(* + y) +g(*-y) /(* -y) = ?(*)£ +M*.y) y/(χ +y)

Therefore q(x)fix) C K for all q(x), and thus K 5 (/(*))• Suppose gθt) £ K9

gix) €£ (/(#)). We may suppose that the degree of gix) is less than n, the degree

of fix). Then gix -f y) + g(% — y) = hj) -\- h2E for suitable Ax and A2 in (?.

Since the degree of D is n and that of £ is n + 1, it follows that hγ — h2 — 0.

Therefore g(% + y) + gix ~~ y) is identically 0. This implies that gix) is identi-

cally zero, a contradiction; hence we have K = ifix)). It follows that

g(α)—> Γg(;t) = (l/2)g(x +y) + (l/2)g(x -y ) + (A*)

defines a single-valued linear mapping of / into V\ Furthermore, (14) and (15)

imply that this mapping is a representation, and from (12) it follows that Tx, the

image of OC, has \pix) — {D9 E] as its minimal polynomial. Now since U is the

universal associative algebra of /, the mapping Sg(oς) —> ̂ g(x) defines a homo-

morphism * of U into V. It follows that φix) is the minimal polynomial of S α . This

completes the proof.

We conclude by mentioning two simple consequences of the main theorem.

If /(*) =• xn , then ψix) = χs(n>n\ Now (8) yields S(n,n) < In - 1, and we

have the following result.

C O R O L L A R Y 1. // α71 = 0, then S&n~ι = 0.

Similarly, we obtain the following result.

C O R O L L A R Y 2. Let fi<x) = 0, where

Then A(Scχ) = 0, where

A(x)= Π (χ-(l/2)βμ-(l/2)βv).

18 In fact it can easily be shown that this mapping is an isomorphism of U onto V,
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Proof. Suppose

where the α, are distinct. Now by (8),

S(rii, Πj ) < Πi + Πj: — 1 <

and

A(χ) = Π ( χ - α i ) n ^ + l V 2 Π (* ~ ;
i j>i

Therefore \p{x) | Λ(Λ ) , and the second corollary follows.
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