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1. Introduction. To a given series 2= u, we consider the transform

n .
sin vVt
(1.1) A, = z Uy , where t, V0 as n— © ,
v=1 Vin

It was shown in a previous paper [5, Section 4, Theorem 3] that the transform
(1.1) is regular if and only if

(1.2) nt, =0(1), asn—®

We shall now consider the transform (1.1) in relation to Cesdro means. In a forth-
coming paper Cornelius Lanczos has found independently that the transform (1.1)
is very useful in summing Fourier series and derived series, and gave some very
interesting examples; he takes t, = 71/n. Of our results we quote here the follow-
ing theorem:

THEOREM 1. In order that the transform (1.1) includes (C,1) summability, it
is necessary and sufficient that

(1.3) nt, =pm+ &,, no,=0(1), p a positive integer.

We also discuss other triangular transforms which may be generated by “trun-
cation” of well-known summation processes, such as Riemann summability. The
transform A, and the transform D, (Section 5) are special cases of the general
transform

Y= 2 uy @ (VP,) ,
v=0
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where @(P) is a function of the n-dimensional point Plxy, %, ***, %,), and
B, — 0. This transform and many special cases of it were discussed by
W. Rogosinski [4]; in particular, the special case a, = 0 of our Theorem 4 is
included in his result on page 96. The general approach is essentially the same

as in the present paper.

2. Proof of Theorem 1. If we write

i s = sh | sin Vi, _sin (V+1) tn
- Vip (v +l) th

=A,,

n
z uvzsn:
v=1

sinvtp, 2sin (v +1) tn  sin (v +2) t, _ 2

=A%,
Vi, (v +1) ta (v +2) ta
then
n-l sin nt
A, = Z SVAV""sn'——E'
v=1 nip
n2 sin nt
[ n
= Z sy 0% + sp-1 Dp-1 + (sp — s,,..l) _—,
v=1 nty
or
n-2 . .
sin (n—1) ¢ 2 sin nt
(2.1 An =Y sy + sp—y ( ) tn - 1
v=1 (n - ].) tn ntn
sin nt
+ sp -
ntp

Now (C. 1) summability of 2 ¥=1 un to s means that
(2.2) nlsp — s, asn — ©,
If s, =1, then 4, = sin t,/t, — 1.

In order that (2.2) imply 4, — s, it is necessary and sufficient [in view of
(2.1)] that
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i t sin (n —1) ¢
@) sinnts oy, ezt
n tn
n-2
(2.4) Z v{A€|=O(1), as n—®© ,
v=1

The first condition of (2.3) [in view of (1.2)] is equivalent to

sin nt, = O(tn) = O(l/n) ;
hence

ntp, = pm+d,, nd, =0(1).
The second condition of (2.3) now reduces to

cos ntp sin t, = O(tn) ,

or

cos Op sin t, =0(n71),

which is satisfied. Finally

sin Vt

f cos Vx dx = Rf w'dx;
hence

(2.5) ta A2 =R j(;tn A2 oivE gy = Rjo‘tn etV (1 — ¢1%)? dyx |
and

(2.6) tn| 0] < ft" [1—e'*|? dx = 4f (sin x/2)2

th 2 3
< jo’"x dx <t .

It follows that

n-2 n
> v <t Y v <n?ti=0Q), as n— @ ,

v=1 v=1
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This proves Theorem 1.

We can show by an example that the transform 4, may be more powerful than
(C,1). In 1.3) let p = 1, na, = —7/2; the series 2%9=, (=1)*71n (that is,
u, = (—1)"n) is not summable (C, 1), but summable (C, 2) to 1/4. Now

n
tndn = (—1)*"! sin v t,
v=1

_sin tp, — (=1)* [sin nt, +sin (n + 1) t,]
ll -i-eit|2 ’

where nt, = 77—77/2n. Hence,as n — ®,

An ~1/4 +0(1) .
An even more striking example is up, = (1)1 2.

3. Summation by harmonic polynomials. We get a more powerful method if we
introduce the harmonic polynomial

n

(3.1) ha(o,t) = 3wy p? 0
v=1 v
and the corresponding transform
n , Ssin Vi,

3.2) anzuupnm; pn—1, t, V0,

v=1 Vin
or

By = t7'hn(0n, tn) .
Let

n
— -1
Sﬁ = Z Sv?’nk-v ’

v=0

where
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k= (k+1) -+ (k+n)  nt

n

n! Tk +1)
we also write
k .
Akvy = Z (_1)7’ (ﬁ) Vu+pr
r=1
and
ok = Sﬁ
ok

Now (C, k) summability of the sequence {s,} tos is defined by

lim O',f =3,
n-ow

We quote the following elementary theorem [cf. 6, Theorem 1], which is included
in a more general result of Mazur [1, Theorem X] :

LEMMA 1. Let k be a given positive integer, and let
n
Tn=z an,‘l/sVr n:O)L21 .
y=En

In order that lim T, exist, whenever the sequence {sptis (C,k)summable to s,
it is necessary and sufficient that:

n
3.3) 2 ‘)/,f lAkan,v l =0(1), any =0 for v>n;
V=0
(3.4) lim 75 Aan,y = 0, exists, v=012 -+~
n—o
n
(3.5) lim ¥ a,, = f exists.
n=o v=0

We then have lim 7, = Bs + 2%, a (ocF —s). Since then the transform Ty,
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is convergence preserving we must have (3.5) and:

}‘}.l‘g Qn,v exists, =0,1,2 ¢,

hence (3.4) and (3.5) hold, so that the conditions of Lemma 1 reduce to (3.3). In
the case of the transform B, we have

sin ntp
Qu,n = Pn —T,
nt,
in vt in (v +1) t .
- St L S
Vi, (v +1) ta
hence
any — 0, as n—®©,
To satisfy (3.3) we must have
1 t
(3.6) nkop SR = 0(1),
nty
-, sin (n —41) th
(3.7) kop1 =0(1),
n Ion (n __ 1) tn ( )
E n-k sin (n—'k) tn —o(1
pn (n _ k) tn ( ) ’
and
nk-1 kIt sin vit,
(3.8) > ourattr ——T =0(1).
v=1 n
Assume first that £, = 0; then our conditions become:
(3.9) o 031,
ntn
and
n-1 . .
n vt sin (v +1) t
(3.10) T oy |t s G D
By Vi, (v +1) t,
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We now prove the lemma:

LEmMma 2. If

1 —pn
1=pn

(3.11) PR =0(1), tp =0(1), as th V0, pp—1,

then By is a regular transform.

Clearly (3.9) holds, and we need only to show that (3.10) also holds.
If p, > 1, thenpy <pp, v=0,1,***,n —1; if on the other hand P, < 1,
then p/ < 1. Hence, in either case,

max pp =0(1), as n— ®,
o<v<n
We have
" sin vt sin (w+1)t 1 sinvt sin (v +1) ¢
p” —p <Y P -
y=q v v +1 V=1 v v+1
sin W +1)t]|

’

n
+(1-p) X
=1 v+1

the second term is O(¢), and

in Vt ] v+1)t
sin _ sin ( ) — ft [cos Vx — cos ('l/ + l)x] dx = 0(t2) ,
v v+1 0

so that

sinvt_sin (v+1) ¢
v v+1

n
2 o
V=l

Thus (3.10) is satisfied and LLemma 2 holds.

Note that the condition p; = O(1) is equivalent to n(p, —1) <c, a positive
constant (see [S,p. 73]); furthermore, if n¢, = O(1), then clearly the second con-
dition of (3.11) holds.

Next let & = 1; we shall prove the theorem:
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TueoreM 2. If (3.11) kolds, and if
(3.12) oR sin nt, =0(t,), n— ®,
then B, includes (C,1).
The conditions (3.6)—(3.8) now become :
Pr sin nt, =0(ty),

Pn sin (n - 1) th = O(tn) )

and

n=2
(3.13) > v |Apy ———| =0(t,), as n—> @,
v=1

Clearly, we need only to show that (3.13) is satisfied. Now

sin vVt

A? p¥ y =A2p”£t cos vx dx = RA? j(;t VetV dx

=R/O‘t pveivx(l_zpeix +/O2e2ix) dx

ZR-/o‘t ,o”ei”(l ___peix)z dx .
Hence

sinvt

AZIOV

<p¥ jo't 11— pe™|? dx <p"t{(1 —p)? +pt?};
it follows from (3.11) that

sin Vitp,

A2 pg

n
v
V=1 n

< {1 =pa)? + put?} z Vol =0(1) .

This proves (3.13) and Theorem 2.

4, Comparison of B, and (C, %), & > 2. We wish to prove the following theo-

rem:
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THEOREM 3. Suppose that (3.11) holds and that
(4.1) n*"10% sin nt, =0(tn),
(4.2) nE 1o cos nt, = 0(1), o — 1, ta VO,
then B, includes (C, k) summability.

Now (3.6) holds because of (4.1), and then (3.7) follows from (4.2). It remains
to prove (3.8). We have

Ak+1pv _s_in_ﬁ___Akﬂpv ‘/(;f cos vx dx = NHIR ‘/(;t p”ei”" dx
— Rjo'tp”ei”(l __peix)kﬂ dx ;
hence
(4.3) 'Ak+1pv sin vt < o fot |1 —pei® |k gy

S AR (O TS R

ZO(thf(l'—,O)k“ + tk+1§) .

:0(

n n
=0 ((1 —pa) Y vkp:) +0 (t,’f“ )3 v"pz) :
v=1 v=1

It follows that

sin Vitp

(4.4) Y ok

v=1

A

Vip

Here the first term is O(1) by Lemma 2 of [6]; finally

n n k+1
' Y vkt =0 (1, 3 p’;) =0(1).

v=1
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This proves Theorem 3,

An interesting special case is t, = 7/n; the conditions now reduce to the

single condition
nk"1p% =0(1).

If, in particular, n¥ p? = O(1) for all k, then B, includes all (C, k).
Observe that by Lemma 1 of [6] the condition nkp,’," = (O(1) is equivalent to

lim sup fn(opn—1) +k log n} < 4@,
Note also that (4.1) and (4.2) imply:
nk 1% =0(1) .

5. Truncated Riemann summability. The series 3= u, is called (R, k)

summable to s if the series

k
(5.1) uo + Z (sm nt) up = Ry (t)

converges in some interval 0 <¢ <t,, and if *
Rp(t)—> s, as t—0,

For £ = 1 it is sometimes called Lebesgue summability. The method (R, k) is
regular for £ > 2 and, in fact, it is more powerful than (C,k — 2); for &k = 2, it
was employed by Riemann in the theory of trigonometric series. We generate from

it by truncation the triangular series to sequence transform (u, = 0):
k . k
sin th sin Vt,, sin nt,
Z uy Z syl +tsp i
Vi, = Vi ntp

k is a positive integer. We assume k > 2; it is then easy to show that D, is a
regular transformation.
From Lemma 1 we find for (C, k) to be included in D, the conditions:

(5.2) thk (sin n '—Vt,,)k =0(1), for v =0,1, **+, k;
n=k=1 . k
(5.3) z vk | ARt sin Vin = O(l) , n—® ,
v=1 Vin
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It follows from (5.2) (see Section 2) that we must have
(5.4) ntp =pm+0,, no,=0(1), p a positive integer ;
now (5.2) reduces to

t, sin (o, —vt,) =0(1), v=0,1, ¢, k,

and this is satisfied in view of (5.4).
To show that now (5.3) also holds, we employ a lemma, due to Obreschkoff
[2,p. 443]:

LEMMA 3. We have

. k mn—k
AR sth) <Mt’; ’
vt v
where M is independent of t and v.
It now follows that
o k| ak+1 | Sin Vin k
3 ok o (S22 o) —o(), e
v=l \ n

This yields the following theorem:

THEOREM 4. If nt, = pm + O,, p a positive integer, nt, = O(1), then the
trans form

n sin vin \b
Z uy 2 = D,
v=1

Vi

includes (C, k) summability (k a positive integer).
6. A converse theorem. We shall establish the following result.

THEOREM 5. If

sin ntp, k

(6.1) lim inf =\>1/2,

nty,

then the transform Dy is equivalent to convergence.



302 OTTO SZASZ

It follows from (6.1) that lim sup nt, < 2“% ; hence (see Sections 1 and 5) the
transform D, is regular. We now wish to show that D, — s implies s, — s;
we follow a device used by R. Rado [3].

Assume first that s = 0, and that s, = 0(1); then

0 < lim sup |sp| =86 <@,
n—o

and we shall show that § = 0. To a given € > 0 choose n = n(e) so that s, | <
§ + € for v > n. Next choose m > n and such that |s,| > & — €. We have

. k n=1
sin mty
sm( ) =Dm—‘zstVr
v=1

mt

where

(sin Vt,,,)k (sin (v +1) t,,)k
Ay = — :

Vig (v+1) ty

hence, as mt, < T, we have

sin mty k n-1 Ly
|sml < le| + Z sydy| + Z sply
m v=1 v=n

. . k
<o(1) + (5 +¢) {(“:t’”’"‘)k —(“:t"'t') ] :

§—€< |spl <o)+ (6 +€) {I/A—1+0(1)}.

It follows that

But 1/}\ < 2, and € is arbitrarily small; hence & = 0.

We next assume s = 0 and lim sup|s,| = ®; choose € > 0 and w large.

Denote by m = m(c) the least m for which |s,| > w; then

w< |sp] <o(l) +wfl/A =1 +0(1)3.

But this is impossible for A > 1/2, small €, and large m. This proves our theorem
for s = 0. Finally, applying this result to the sequence {s; — s} and its transform

completes the proof of Theorem 5.

7. Application to Fourier series. Suppose that f(x) is a Lebesgue integrable



ON SOME TRIGONOMETRIC TRANSFORMS 303

function of period 277, and let

®

(7.1) f(x) ~ao/2 + Y (an cosnx + by, sinnx) = Zuy(x);

n=1

we may assume here a, = 0. Now (cf. [7,p. 271)

@©
1
F(x) = ,/;x f(t) dt =C + Z (ap sin nx — b, cos nx) — ,
n=1

n

where
[0 0]
1
C=3 —bp.
n=1 "

It is known [7,p. 55] that at every point x where F'(x) exists and is finite, the
series (6.1) is summable (C,r), r > 1, to the value F'(x).
It now follows from Theorem 3 for £ = 2 and ¢, = 77/n that if npj = O(1),then

" sin v7/n
v —_ FI .
vgl uv(x) Pn v/ (x)

Furthermore, Theorem 4 yields, for & = 2, that if

nt, = pm+ &, noa, = 0(1),

then

An analogous theorem holds for higher derivatives (cf. [7,p. 257]).
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