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1. Introduction. In this paper we are concerned with the solutions, for large

values of the complex parameter λ, of the ordinary differential equation,

(1) w"(s) -[λ2σ(s) +r(λ,s)]w{s) = 0 .

The variable s ranges over a region in the complex plane in which σ (s)pos-

sesses a factor (s ~~ s o )~ 2 , where s 0 is some fixed point of the region. The

asymptotic representations of the solutions of an equation formally identical with

(1), but in which cr(s) contains a factor (s ~~ so)^9 V > ~"2, have been con-

sidered by Langer [3]

If equation (1) is considered over a region of the complex s-plane in which

σ(s) and τ ( λ , s) are bounded, with σ(s) bounded from zero, then it is possible

to find a pair of asymptotic forms made up of elementary functions, each of these

forms representing a solution over the entire region. If, however, σ(s) becomes

zero in the region under consideration, the asymptotic representations are compli-

cated by the appearance of the Stokes' phenomenon. This necessitates abrupt but

determinate changes in the asymptotic forms, if only elementary functions are

used, as certain boundaries are crossed in the s- and λ-planes. The asymptotic

representations of the solutions of (1) in this case have been considered by

Langer [ l ] among others, and he has shown the Stokes' phenomenon to be quanti-

tatively dependent upon the order of the zero of σ~(s). In a later paper [3] > the

theory was extended to include the cases where σ~(s) contains a factor (s ~~ s 0 ) v ,

V > —2, and τ ( λ , s) has a pole of first or second order at s 0 . He showed that

the Stokes' phenomenon is engendered by and depends upon an infinity in either

of the two coefficients in (1).
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338 E. D. CASHWELL

It is proposed to consider in this paper solutions of equation (1) in a region

which contains as the only singularity of σ{s) a pole of second order at a point

s0 , and in which σ{s) is bounded from zero while r ( λ , s) has a pole of first or

second order at s 0 . Among the functions satisfying an equation of this type we may

cite the Bessel functions and certain of the confluent hypergeometric functions.

Although the theory developed by Langer is not applicable to the case present-

ly considered, it is nevertheless found that the broad outlines of the general

methods used in the papers mentioned still apply. A differential equation is found

which possesses all the essential qualities of (1), and which can be solved ex-

plicitly. The solutions of this equation are shown to give asymptotic represen-

tations of the solutions of the given equation over definable subregions of the

domain in which the coefficients in (1) have the properties assumed above.

In order to arrive at the asymptotic solutions of the given equation, it is found

necessary to subdivide the region of large values of λ into a finite number of

subregions. For λ in each of these subregions, and for all admitted values of s ,

two independent asymptotic solutions are derived. Although asymptotic forms of

similar structure are derivable for all subregions, the solutions which maintain

these forms in the different regions are in general different functions.

2. Hypotheses and normal form of the differential equation. The equation (1)

is here considered with the parameter λ ranging over any region of the complex

plane in which | λ | is unbounded. The variable s also is complex, and ranges

over a bounded, simply connected domain Rs containing a point s0 at which σ(s)

has a pole of second order. Then in some neighborhood of s 0 , cr{s) is of the form

( \σ(s) =

where ψ(s) is a single-valued, analytic function bounded from zero. The constants

in the product λ2 i//(s), which appears in the first coefficient of (1), are adjusted

so that φ(s0) = 1. Expanding ψ(s) about the point s 0 , we have

φ(s) = 1 + a1(s - s 0 ) + α 2 (s - s 0 ) 2

We assume the conditions a), b), and c) which follow in this section to be

satisfied collectively by the coefficients of the differential equation, the domain

Rs , and the range of values of the parameter λ. The first two of these conditions

are :
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a) φ(s) is a single-valued, analytic function bounded from zero.

b) The coefficient τ ( λ , s) has the form

4 R
τ(λ,s) = —j + — + d(λ, s) ,

[s — so) s — s0

where Aγ and Bγ are constants, and C^λ, 5) is an analytic function of s , uni-

formly bounded with respect to λ . (This condition is precisely the same imposed

on r (λ, s) by Langer in [33.)

The equation (1) can always be put in a more convenient form by simple

changes of the dependent and independent variables.

Letting (cf. [3; p. 399])

z 1/2

4

we obtain the equation (1) in the form

where

P = 2λ A=4A + -
4 '

z) =Bι + — d ( λ , s) ,

φ ( ) 1 + + 1 ( z ) #
4 16

The equation (3) is called the normal form of (1), and is the one we shall consider

in the following discussion. It is to be observed that if the constants ax and j3t ,

appearing in the expressions for φ(s) and τ ( λ , s ) respectively, vanish, then

equation (l) can be put in normal form (3) by simply translating the origin and

changing notation.

Since φ{s) does not vanish in the domain Rs , φ2(z) = t//(z2/4 + s0) does

not vanish in the corresponding domain Rz in the z-plane. Consider the domain Rs
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lying on a two-sheeted Riemann surface with branch point at s 0 . Then the trans-

formation 5 — s0 — z2/4 is one-to-one between the bounded, simply-connected

domain Rs and the corresponding domain Rz. Denoting by φ{z) the square root of

φ2(z) which takes the value one when z = 0, we obtain

Φ(z) =
> 2 ^

(4) Φ(z)=l+z2φ1(z) ,

where φ x (z) is an analytic function of z in Rz. We are now ready to make the

third of our hypotheses :

c) The function ze ι ' is schlicht, where

Since the function ze ι^z' has a nonvanishing derivative at z — 0, it is schlir.fit

in some neighborhood of this point. The hypothesis c) in effect restricts the

z-domain under consideration (and hence Rs) to be one in which this property main-

tains.

3. The "related" differential equation. Throughout the considerations which

follow, the quantities (p2 + 1/4 + A)ί/2 and [φ(z)]i/2 enter frequently.lt serves

for notational simplification to denote the former of these by μ , that determi-

nation of the root being chosen for which — π/2 < arg μ < π/2 when p = O.We

determine [φ(z)]ι/2 by the condition [φ(Q)]ι/* = 1.

In the case where equation (1) is considered over a region in which o~(s) is

bounded from zero, the asymptotic forms of a pair of solutions can be found, the

leading terms of which are (cf. [2] , p.55θ] ).

This suggests that, in order to find an approximating equation to equation (3), we

consider the functions

(5) y ( z )

where, because of the relative complexity of our equation, it is found necessary
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to the following developments to replace the parameter p by μ . A direct calcu-

lation shows that

< 6> /<*) - P J y{z)=ω{z) y{z) ,

w here

.1
+

V " " v " 4z 2 4z 2 2 z φ ( 2 ) 2 φ ( z ) ' 4

the quantity Φ(z) in the last term being defined by the relation φ2(z) = 1 +

The differential equation (6) appears at first glance to have the same form as

equation (3). However, since the denominator of each of the first three terms in

the expression for ω(z) vanishes at the origin, it is necessary to consider this

coefficient further. Grouping the first two terms and replacing φ2(z) by its ex-

pression immediately above, and substituting in the third term from (4) for φ(z),

we can write (7) in the form

(8) Π *2Φ(z) , z(2φ1(z) + zφ'^z)) lφ"(z) 3 | > ω l 2

W) ω(z) = — + — — + - . , + AΦ(Z).

4z2 2zφ(z) 2 φ(z) ^lΦ(z) J v '
Since φ{0) ψ- 0, it follows from (8) that if co{0) is defined appropriately, then

co(z) is analytic throughout Rz .

In virtue of the analyticity of co{z) over Rz , the differential equation (6) pos-

sesses all of the essential qualities of (3). Following Langer's terminology, we

refer to the equation (6) as the "related" equation. The formulas (5) give ex-

plicitly a pair of independent solutions of this equation.

4. Solutions of the related equation. For convenience, let us define ξ by the

formula

(9) ξ = μ [ l o g z + Φ ^ z ) ] .

With this, the functions (5) which solve the related equation (6) may be written

do) yi(0 = 7Γ-
1/2 V2

The related equation (6) has a regular singular point at z — 0, with exponents
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1/2 ± μ . For a fixed value of the parameter μ, it is seen that, in a neighborhood

of the origin, the formulas (10) are of the form

(11) y,(z) = z ^ ^ O ( l ) , y2{z) = z ^ O d ) ,

where 0(1) stands as usual for a bounded function of z .

From the formulas (11) it is seen that, if R(/x) > 0, then γχ(z) approaches

zero as z approaches zero. The function jγ{z) is in fact singled out as that so-

lution of equation (6) which vanishes at z = 0 to a higher order than any other.

At z = 0, y2(z) on the other hand vanishes or becomes infinite according as

K. (μ)is less than or greater than 1/2.

If R(μ ) < 0, the behaviors of y^z) and 72(2) in t n is respect are reversed.

5. The transformation ξ — μ [ log z + $i(z)] . Consider the transformation

(12) ζ = zeφi<z> .

Since the function on the right of the equality sign is schlicht by hypothesis, the

domain Rz is mapped conformally onto a corresponding domain which contains the

origin in the ζ -plane.

Further, let w be defined by the relation

(13) w = log ζ .

If the ζ-dbmain is cut along the axis of negative real numbers, it is mapped in a

one-to-one manner by the transformation (13) onto a semi-infinite strip of width

2π( —ΊT < &(w) < 77") parallel to the real axis in the u -plane.

Omitting the intermediate transformation (13), we see that the relation

<1 4) w = log z + Φ i ( z )

may be applied directly to the domain Rz . In order that (14) be a one-to-one trans-

formation, the choice above of the strip in the w -plane imposes upon Rz a cut,

the image of the upper edge of the strip, from z = 0 to a point on the boundary.

Let rw denote the following subregion of the region in the u -plane : the semi-

infinite, rectangular strip bounded on the right by the line H(w) = K, subject of

course to the restriction that the right boundary of rw lie in the fundamental region

in the tc-plane. The image in the z-plane of rw is denoted by r 2 .

The transformation (9) maps the region rw conformally onto a region r^ in the

^-plane. It is evident that the region r^ is obtained from rw by a magnification

with the factor | μ \ coupled with a rotation about the origin through an angle
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arg μ.

6. Gamma curves. In the region rw, denote the lower right corner by wί and

the upper right corner by w2 . In order to avoid unnecessary duplications, let us

for the moment denote either of these points by Wj . Through every point W of rw

there passes a broken line consisting of that part of the horizontal line, &{w) —

cSl(lF), contained in rw, together with that portion of the bounding segment,

R(M;) = K , connecting this line to the point Wj . The images in rz of this set of

curves in rw are referred to as the F-curves corresponding to w; . Thus two sets

of curves, corresponding to the two values of / ( / = 1,2), are defined in rz .

In rz , the Γ -curves of either set are uniformly bounded in length. For by direct

calculation we have

From (14) it follows that

dz = — — dw .
φ{z)

Ow-Φι(z)

and hence that

\dz\ < M \ew\ ' \dv\ ,

where U is the least upper bound of

i n « z .

As the variable point w traces out a horizontal line in rw, &(w) is constant,

and with rj = R (w) we have

\dz\ < Meη\dη\ .

Also, along the portion of the line R(ιc) ~ K bounding rw on the right, let &{w) —

K. Then we have

\dz\ < MeK\dκ\ .

From the way in which the Γ-curves were defined, it follows that, if Γ denotes
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any one of these curves of either set, then

/ \dz\ $ M L l eVdV+MeKfπ <iκ = M e K { l + 2 τ τ ) .
Γ

Since the term on the extreme right is independent of the particular Γ-curve

chosen, the Γ-curves are uniformly bounded in length.

7 Solutions of the original equation. We have exhibited the related equation

(5) which possesses all of the essential features of the equation (3), and which

admits the independent solutions y\(z), y2(z) given by (10). This, as we now pro-

ceed to show, enables us to write two formal solutions of (3). The latter equation

can obviously be written in the form

as) u(z) = h(p , z) u(z) ,

where

< 1 6 > HP,*) = X(p,z)-ω(z),

a function bounded uniformly with respect to p and analytic in z over the region

rz . Regarding (15) as an inhomogeneous differential equation, we see that the re-

duced equation coincides with (6). Thus, using a standard procedure in differ-

ential equations, we can describe a pair of independent solutions of (15) by the

relations

(17) uj{z) = yj{z)-^fz[yί

(j = 1 . 2 ) .

Here W is the Wronskian of yι{z) and y2(z), direct calculation yielding W = ~~2μ,

while z0 is any fixed point in rz . To each solution of the equation (6), (17) re-

lates a solution of the equation (3).

With the definitions1

(18) yj(*)=z-1/2e~+tyj(z), Uj (z) = z'^e^u} (z) ,

1 It is convenient to use the double sign to indicate the combination of two formulas
into one. The upper sign is to be associated with j = 1, and the lower sign with j = 2.
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a n d wi th C d e n o t i n g t h e p a t h of i n t e g r a t i o n in r z , t h e e q u a t i o n (17) t a k e s t h e form

(19) UJ(Z)=YJ(Z)+J- {κ}(p,z,zι)UJ(z1)dz1 ,

w h e r e the k e r n e l of t h i s i n t e g r a l e q u a t i o n , d e n o t e d h e r e by Kj(p, z , 2 L ) , h a s

t h e fo l lowing de f in i t ion :

(20) Kjip.z.zJ

ξ i is defined as the image of Zγ under the transformation (9).

Carrying out the process of iteration on (19), we arrive at the formal ex-

pression

(21) Uj(z) =Yj(z) + Σ Y}n)(z),
n = l

with

(22) j , ( n + i ) ( 2 ) = _ L ^ Kj(p,z,z1)Yfn)(*i)dz1 ,

We shall now show that for arg μ in a suitably restricted range, it is possible

to choose z0 for j — 1,2 so that when \μ\ is sufficiently large, the series (21)

converges uniformly and hence represents an actual solution of equation (3). In

accordance with this, the μ-plane will be subdivided into its four quadrants, and

the asymptotic forms of the solutions derived in each quadrant. This particular

choice of the subdivision of the μ-plane is in part due to the configuration of rz ,

and in part due to the reversal of the behaviors of yι(z) and y2(z) as the imaginary

axis in the μ -plane is crossed.

Case 1, 0 < arg μ < π/2. First Solution. In (17) let us choose as the path

of integration a curve belonging to the set of F -curves corresponding to Wγ , with

zQ — 0. It is to be noted that upon any curve of this set, the quantity R (ξ) in-

creases monotonically with the arc length.

Referring to the equations (10), we observe that

(23) | r j ( * ) | < M .
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where ill is a suitable large constant. This results from the fact that φ(z) is analy-

tic in rz and bounded from zero.

Consider the relation

fyjn+l

(24) \Y[n)(z)\ < " j^p ( n = 0 , 1 , 2 , •••)•

This, in view of (23), is evidently satisfied for n — 0. It can be shown in the

following manner that the validity of this relation for any n implies it for n + 1,

so that by induction the relation is established for all n.

According to (22), with F denoting the Γ-curve which forms the path of inte-

gration, we have

Mn+1

(25> U ί n + I ) ω ι / i ί o i
Now let us consider the kernel Kχ(p, z 9 z ί) , which is defined by the formula

(20). From (16), the function δ (p, z) is analytic over rz and hence bounded.

The relations (2o) guarantee the boundedness of y\ and Y2 . Furthermore, since

R(ξ — cfi) > 0 on the path of integration, the exponential term is bounded. It

follows that the integral on the right of (25) is bounded, and we have

(26) | r i ( B + 1 ) ( * ) l <

In this it is clear that A is independent of n Hence if we choose M at least as

large as /V , then we have

(27)
+ 1

This completes the induction.

In virtue of the relations (24), it is clear that the infinite series on the right

of equation (21) converges uniformly for values of μ satisfying the inequality

2 μ I > M . Furthermore, from (21) it follows that

for large values of μ . Substituting for }\(z) and Vγ(z) from (18), we can write
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this equation in the form

Replacing y{{z) by its expression as given in (10), we have

1/2
(28) ] U ( z ) J L1 2μ J '
where \μ is sufficiently large.

Case 1, 0 < arg μ < TJ/2 . Second Solution. To obtain a second solution of

(3) for this range of μ9 we choose as the curves of integration in (17) the same

set of Γ-curves used in obtaining the first solution, but we now take z 0 — zγ ,

the point on the boundary of rz which maps into w± under the transformation (lΊ ).

On any one of these Γ-curves, the quantity H(ξ) is monotone decreasing with

respect to the arc length.

Consider the relation

(29) \Y<n)(z)\< T

λvhere M is a suitably large constant. According to the equations (23), this re-

lation is satisfied for n — 0. We proceed to show by induction that it is true for

all n Assume the relation to be valid for n From (22), it follows that

The kernel A2(yθ, z , z ι) is given by the formula (20). Arguments entirely simi-

lar to those employed in showing the boundedness of Kχ(p, z , z x ) in the relation

(25) may be used here to establish the boundedness of K2(p9 z9 Zγ) in (30). In

fact, the only significant difference in this latter kernel is in the exponential

term, which is bounded since we have H(ξ — ξγ) < 0 along the path of inte-

gration, it follows that

vhere .Ύ is a constant independent of n ί3y choosing M at least as large as Λ;, we



3 4 8 E. D. CASHWELL

can write (31) in the form

(32)
n+1

The induction is complete.

As in the previous solution, the infinite series appearing on the right of (21)

converges iniformly for sufficiently large values of | μ \ . This enables us to re-

write (21), for such values of μ, in the form

U2(z)Y2(z)+

If Y2(z) and U2(z) are replaced by their equivalent expressions given in (17), we

obtain

2 ( ) y 2 ( z ) + z e .
2μ

Substituting from (10) for y2(z), we can write this equation as follows

for I μ I sufficiently large*

The equation (3), as was pointed out for the related differential equation, has

a regular singular point at z = 0, with exponents 1/2 ± μ. For large values of

μ satisfying the condition 0 < arg μ < ττ/2, the relations (28) and (33) give the

asymptotic forms of a pair of independent solutions of (3). It is easily seen from

(28) and (33), for a constant value of μ in this range, that in the neighborhood of

the origin we have

(34) ul(z)=0(zV2+'t)

Since R(μ) > 0, uj^z) is determined uniquely as that solution of the equation (3)

which vanishes at z — 0 to a higher order than any other. The solution u2(z)

either vanishes or becomes infinite at z = 0, according as R(μ) is less than or

greater than 1/2. It is evident that this behavior of u2{z) is assumed by any so-

lution independent of Uι(z).

Case 2, 77-/2 < arg μ < π. First Solution. For this range of arg μ, let us
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choose as the curves of integration in (17) the F-curves corresponding to w2, with
z o ~ Z2 ? t n e point on the boundary of rz which is the image of u>2 under the trans-

formation (14). Upon any one of these curves, the quantity H(ξ) increases mono-

tonically with the arc length.

Carrying out an induction argument exactly like that used in obtaining the first

solution of Case 1, we can establish the relation

(35) <
M,n + l

for all nonnegative integral values of n . Here M is a suitably determined constant.

The uniform convergence, for sufficiently large values of μ, of the series on the

right of (21) follows immediately, yielding the formula

U (z)=γ L) i ° ( 1 )

Just as in the previous case, this can be rewritten in the form

(36) U j ( z ) =

for I μ sufficiently large.

1/2

1 +
0(1)

2μ

Case 2, Tϊ/2 < arg μ < 77. Second Solution. In order to find the asymptotic

form of a solution independent of uχ(z)9 we choose as the curves of integration in

(17) the Γ-curves corresponding to w2 9 with z0 — 0. Along any one of these

curves, H(ζ) is monotone decreasing with respect to the arc length.

in a manner which is formally identical with the argument used to establish

(29), we arrive at the analogous relation

for all values of n , where M is a suitably chosen constant.

The formula (21), the right hand side of which converges uniformly for large

values of μ in virtue of the preceding relation, yields the expression

U2{z) = Y2(z)
2μ
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By making the appropriate subst i tutions from (18) and (10), we obtain

(37) u2
(z) =

φ ( z )

1/2

,-ξ

27

for I μ I sufficiently large.

Since for values of μ in the second quadrant we have H(μ) < 0, the behavior

of uΛ(z) and ιι2(z) is quite different from the behavior of the solution having the

same asymptotic form in the first quadrant of μ values. In fact, uΊ{z) is now

singled out as the solution of (3) which vanishes at z — 0 to a higher order than

any other, whereas Uγ{z) either vanishes or becomes infinite according as R ( μ ) is

greater than or less than —1/2 . It is to be observed that although the asymptotic

forms oί the two independent solutions in the second quadrant are the same as

those found in the first quadrant, the solutions themselves are in general different.

Case 3, 77 < arg μ < 3ττ/2 • For arg μ in this range, the curves of integration

in the formula (17) are chosen as the Γ-curves corresponding to u^ .To find the

asymptotic expression for uχ{z) we take z0 = zι , whereas to find the asymptotic

form of u2(z) we choose z0 — 0. Omitting the calculations, which are by now fa-

miliar, we arrive at the forms:

(38) ux(z) =

(-r\ —

Γ

r-

2

6 ( z )

2

! > ( z )

1/2

1/2
_ ξ •

6

2μ

1 +
2μ

for I μ sufficiently large.

The behaviors of the two independent solutions in this quadrant of the μ -plane

are clearly similar to the behaviors of the corresponding solutions described in

Case 2. It will be observed from the choice of z0 that the solution u2(z) is the

same in the second and third quadrants, while u,γ(z) is in general quite different

in these two regions.

Case 4, 3 77/2 < arg μ < 277. For values of μ in this quadrant, the F-curves

corresponding to w2 are chosen as the curves of integration in the formula (17).

We take z 0 = 0 in deriving the expression for uγ{z), and z 0 = z2 in deriving the

expression for u2{z). Omitting the calculations, we arrive at the usual asymptotic
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forms

:(') = U(2)

OJ

1/2
0(1)

2μ

for \μ j sufficiently large.

The pair of solutions in the fourth quadrant of the μ-plane described by these

forms have the same characteristics as the corresponding pair found in Case 1,

and hence we omit the discussion of their behavior. It is to be noted in comparing

Cases 1 and 4 that the solution u^iz) is the same, whereas u2{z) in general is

different in the two quadrants considered.

We may now summarize the results of this investigation as follows:

THEOREM. For values of μ — [ p2 + 1/4 + A]ι/2 in a given quadrant of

the complex plane, (/ ~~ 1 ) ττ/2 < arg μ < j 77/2, / — 1,2,3,4, and for all z in

rz> the differential equation (3) admits of a pair of solutions Uj{z) , j — 1,2,

having the forms

1/2

1/2

1 +
0(1)
2μ J

1 +
oω
2μ J

= μ[log z
'"' LΦ(z)J

/or values of \μ sufficiently large.

The solution with the exponent 1/2 ~H μ. relative to the origin, denoted above

by uχ{z), is the same in the first and fourth quadrants of admissable μ values.

The solution, designated by u2iz), with the exponent 1/2 ~ μ relative to the

origin is the same in the second and third quadrants of the μ-plane. In each of

these cases, the second solution is in general different in the two regions men-

tioned.
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