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1. Introduction. Lt T denote the method of summability corresponding to the
real matrix (ay,, k), for the moment arbitrary, by means of which a sequence {sitis

said to be summable-T to s if each of the series in

1.1) th = 2 an, k Sk (n=123, *=+),
k=1

is convergent and if ¢, — s.

We shall be concerned here exclusively with the class X of all sequences x =
{ oz} where the o are 0 or 1 with infinitely many 1’s. A biunique mapping of the
class X into the real interval ¥} = (0 < y < 1) is obtained by defining y as the
dyadic fraction 0.0t G, Gz * * * corresponding to x = (O, %y, A3, * * ), and con-
versely. This enables us to employ the phrase, “almost all sequences of 0’s and
1’s,” by which is meant a subset of X for which the corresponding subset of ) has
[.ebesgue measure one.

A classical result of Borel [2] may be interpreted as asserting that almost
all sequences of 0’s and 1’s are summable=(C,1), Cesaro of order one, to the
value 1/2. If the corresponding statement is true for the method 7' defined by (1.1)
we shall say that T has the Borel property, or more briefly, that T € (BP).

A study of the Borel property for regular methods T was undertaken recently
by the author [5]. In the present paper we dispense with the assumption of regu-
larity, and in 92 we investigate the consequences of assuming merely that T €
{BP). Two independent necessary conditions, (2.2) and (2.5), are obtained.

In $3 it is shown by means of an cxample due essentially to Erdis that these
conditions are not sufficient in order that T € (B8P) even if condition (2.10) is
added. By virtue of a lemma of Khintchine we are able to state in Theorem (3.5) a
new sufficient condition considerably weaker than that given in Theorem (2.14) of

[5].For comparison the latter result is repeated here in Theorem(3.3). In Theorem
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400 J. D. HILL

(3.11) we deal with a conjecture of Erdos and prove incidentally that in general
the Borel property does not depend on the rate at which 2f= a3 ) approaches
zero.

At the present time it appears unlikely that the Borel property can be charac-
terized in any reasonably simple manner, at least if no restrictions are imposed on
the matrix (a, ) at the outset. This aspect of the problem remains to be con-

sidered.
2. Necessary conditions. e shall establish the following result.

(2.1) THEOREM. In order that T€ (BP) the following conditions are necessary:

(o)
(2.2) z ap,; converges for each n and tends tol as n — ©;
2.3) A = Y ask < © for each n;
k=1
(2.4) lim apk = 0 for each k;
n->o
(2.5) lim A, =0,
n->o

Proof. f T € (BP), there exists a subset 9™ of ¥ =(0 < < 1) of measure
& Y Y

one such that

[¢9)

Z Qn, k(ﬂk(y

is defined for each n and each y = 0.0ty %3+ + € ¥ and such that¢,(y)
— 1/2. Since 9 is of measure one it contains a subset $** of measure one
such that if y € 9™ then also 1 — y € 9**. Choosing any such y we may
write y = 0.0l Gy Oty * ** and 1 —y = 0.5, 5,85 * * *, where oy + 55 =1 for all
k. Then (2.2) follows from the fact that

x©

Q
Z k+zank/3k—zan,k~

k=1 k=1

To verify (2.3) we introduce the Rademacher functions Ry, (y) defined for each
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fr and each y = 0.0t Gy tly e v ¥ as 1 — 20, (y). Then
(2.6) tn (¥) Z an b Gk ( = 2 ank — o 2 ankRely),
k= 2 k=1 2 k=1

must exist almost everywhere in ¥} for each n. In view of (2.2) the necessity of
(2.3) follows from a well-known result of Kolmogoroff {6, p. 126].

To establish (2.4) let & be fixed and denote by @T and 2‘2* the subsets of @*
(defined above) of measure 2% which lie, respectively, in the intervals 0 <y
< Z"k and 2k < y < 275*1 It is evident that there exist subsets D% of 9
'Tind 25% of £, of measure 27%, such that if y € 91" then y + -k €
Ior such a value of y we have y = 0.00 * + « 004, 0p4,° * (k+1 zeros)and y
+27F =000+ 20104, Up+y * +* (k zeros). Consequently, ¢, (y + 27F) — £,(y)
Zap — Dasn —

The proof of the necessity of (2.5) is more involved. Since (2.3) implies the
convergence almost everywhere in ¥ of the series Z;?:lan’k[{k(y) for each n, it

follows from Igoroff’s theorem that there exists for each n a subset [, of ¥ of

measure |[,| > 1 — 27""1, and an index ¢,(n), increasing to infinity with n,
such that
- 1
(2.7 Z an b Be(y) | <= forall m >¢y(n) and all y € I,
k=m+1 n

Setting | = 19,1, and using € to denote the complement of £ with respect to

g) , we have

1
eI < Z |G1, | <5

n=1

Consequently we have || > 1/2, and (2.7) holds in /. We need also the fact that

(2.3) insures for each n the existence of an index ¢ (n) > ¢, (n) for which
. 1
(2.8) 2 by <—.
k>¢(n) "

Now it follows from (2.2), (2.3), and (2.6) that 7" will have the 3orel property if

and only if 7,(y) = Zi= a,,; Rk (y) approaches zero almost everywhere in ¥ as
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n —> ®, Writing 7, (y) in the form

@(n)
z an, k Rk(y) + Z an,k Ry (y>
k=1 k>p(n)

and using (2.7), we see that T € (BP) implies the approach to zero almost every-
where in ] of

dn)

Un(y) = Z an,kRk(y)°

k=1

Let £ be a subset of ] with |E| > 0 on which o, (y) approaches zero uniformly,
and let

d(n)

%n,m (y) = z an,kRk(y) .

k=m

We can now follow an argument due to Kolmogoroff (for the details see [6, pp.127-
128] or [4]) and arrive at the inequality

1 <i>(n)
(2.9) fE o u(y)dy > Y El Y ank,
k=u

for a certain fixed i and all n sufficiently large. From (2.4) it follows that
m—1
On,u(y) =on(y) = 2 ankRe(y)
k=1

tends to zero uniformly in £ together with oy, (y). Then (2.9) yields

@)
> arr =o(1)

k=p

asn — ©, Finally from (2.4) and (2.8) we conclude that

=1 P(n)

A=Y alr + Y aie + XY anp =o(l)
k=1 k=n k>p(n)
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asn —> ®©, This completes the proof of Theorem (2.1).

It will be noticed incidentally that conditions (2.2) and (2.4) are among the
familiar Silverman-Toeplitz conditions for the regularity of T. The remaining con-

dition for regularity, namely,

[vo)

(2.10) Y ane| =0(1) (n — ),
k=1

is not necessary in order that T have the Borel property. This is shown by the

example of the following matrix which appears in [1]:

11 11
T2 3 45
1 L
2 2 3 4 s
1 11 1 1
3 33 4 5
11 1 (1) (-1)""t
nn o onontl nt2

This matrix violates condition (2.10) but satisfies the sufficient conditions of
Theorem (3.3) below. It has been proved in [1], however, that T is necessarily

regular if it evaluates to 1/2 all sequences of 0’s and 1’s which are summable-

(C, 1) to 1/2.

3. Sufficient conditions, We first raise the obvious question of whether the
conditions (2.2) and (2.5), which imply (2.3) and (2.4), are sufficient in order that
T € (BP). Before showing that the answer is in the negative, even with the
addition of (2.10), we make a few preliminary remarks. Using the notations of §2,
and appealing to the Riesz-Fisher theorem, we are led at once to the Parseval
relation [! 72 (y)dy = A,. The condition 4, — 0 is therefore equivalent to the

convergence of {¢n§ to zero in the space L2, and this assures the existence of
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a sequence of indices {n;} such that Tny) — O almost everywhere in ). In
other words, if (2.2) and (2.5) are satisfied, the matrix (an,k) contains a row-
submatrix (ani’k) defining a method T* (not weaker than T) having the Borel
property; this fact was obtained in [5] with the aid of (2.10). We proceed now to
the construction of an example which shows that in the absence of further con-
ditions nothing more can be said.

We need the following result due to Borel [3, pp.37-47]. The form stated here
is less general than the original, in that the groups of consecutive ¢’s are not

permitted to overlap, but it is sufficient for our purposes.

(3.1) LEvMMA (Borel). Let {h,} be a sequence of positive integers, and let
the positive integers {njg be such that nj2nj_y + >\]~_1(j =2,3,4,+ ). Then
in order that almost all dyadic fractions y = 0.0 G, U, * * ¢ have the property
that for infinitely many j, Ohn ; S followed by A; zeros, and for infinitely many j,

by >\]~ ones, it is necessary and sufficient that Zy=, 27 = w,

We can now construct the example of Erdos which was outlined in a letter to
the author. The details have been modified to render the matrix triangular but the
idea otherwise remains essentially as communicated. We use the notation a(n, k)
as alternative to a, i, and define a matrix as follows, wherein, as usual, [log m]

means the greatest integer in log m. Let
afm® +i—1), (m—1* +; —2)} = [log m]™*
for j = 1+1, i +2,+-, ¢ + [log m]; 1=1,2,¢°*, 2m+1; m=3,4,5,°°*;

and let a, ; = 0 otherwise. This matrix of nonnegative terms is evidently tri-

angular, regular, and such that (2.5) is satisfied. On the other hand we have

[log m]
(3.2) tn2eon ) = [log mn]™ 3w, (y) (n=3,4,5, *++),

V=1

and since 2 2—[105 m] — @ it follows from Lemma (3.1) that for almostall y =
0.0ty &y O3+ * there are infinitely many values of m for which « , is followed
by [logm] zeros, and also infinitely many m for which a , is followed by
[log m] ones. Hence we see from (3.2) that for almost all y the sequence .00}
contains both infinitely many zeros and infinitely many ones. Consequently the

matrix (a, ;) fails to have the Borel property.

The search for conditions which are necessary as well as sufficient has so
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far yielded no results. However, the sufficient conditions set forth in the following

theorems appear to be of interest.

(3.3) THEOREM. In order that T € (BP), the conditions (2.2) and
28]
(3.4) Y oAl <@ (for some q¢ >0),
n=1

are sufficient [5].

Proof. The proof of this theorem given in [5] remains valid under the present
weaker conditions. A new criterion involving, as we show later, a condition con-

siderably weaker than (3.4) is contained in the following theorem.

(3.5) THEOREM. In order that T € (BP) the conditions (2.2) and

e8]

3.6) Y exp(—8%24,) < (for each § >0),

n=1
are sufficient.
For the proof it is convenient to have the following lemma.!

(3.7) LEMMA. In order that a sequence {f,(y)} of measurable functions on ¥
converge to zero almost everywhere it is necessary and sufficient that given

6> 0and € > 0 there should exist an index v = v (e, 8) such that

@

I1 Ea(5)

n=v

(3.8) >1—€,

where I, (8) EEan(yH < 8%-

Proof of Lemma (3.7). Inasmuch as we make no use of the necessity we give
only the proof of the sufficiency. Let A (y) = lim, ,« .|, and set i = E{X (y)
> 08 Form=1,2,3,+++, wesetli, =& i)\(y) > 1/m?t so that

H= Y Hy.

m=1

1 Added in proof: see P. R. Halmos, \easure Theory, Van Nostrand, New York, 1950,
p. 91, Theorem A.
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It |H]| >0, contrary to the statement of the lemma, then there is an index u such

that ]H#I > 0.For§ =1/u and € = (1/2)|H#| the condition (3.8) becomes

@ 1 1
E.l=||>1—= |H,]
H (M 2 "

for an index v = v(u). Consequently

1
>—= |H, >0,
= bl

® 1
n=v ,U(

For any point

1
o

yOEH,u' HEn()

we have Alyy) > 1/u since v, € H,. On the other hand, since
e 1 &l
Yo nl —|»
n=v /J/

we have |f,(yo)| < 1/u for all n > v, and this yields A(y,) < 1/u. With this

contradiction the proof is complete

Proof of (3.5). Proceeding as we did in proving the necessity of (2.5), we
first determine an index ¢ (n), approaching infinity with n, and a set [ of positive

measure such that

1
(3.9) Z an,kRk(y) <—for all y€ I andn=1,2,3, *--.
k> (n) n

If we set

@(n)
— 2
B, = Z an k ,
k=1
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then it follows from (3.6) that

oo}

(3.10) Z exp(—52/2B,,) <@ (for each & >0),

n=1

since B, < A4,. Now

dn)
Tn(y) = Z an,kRk(y) + z an,kRk(y) Eon(y) +/On(y) ’
k=1 k>p(n)

where p,(y) — 0 for all y € I, by (3.9). Let [* D | denote the entire subset
of ¥ on which p,{y) — 0, so that ]l*\ >0, If 0.ty tpye o+ isany
point of ¥, it is clear from the definition of o, (y) that every point of the form
0.81 By =+ + Bp Upay Upag * + * is likewise in I*. Hence [* is a homogeneous set
of positive measure, and therefore of measure one (see [9] and [4]). Since p, (y)
— 0 almost everywhere, we complete the proof by showing that (3.10) implies
that 0,(y) — 0 almost everywhere. For this purpose let £,(5) = E {|oy, (y)|
< 8t for § > 0. By a lemma of Khintchine [7] we have

| €L, (8) | <M exp(—562/2B,)
for n = 1,2,3, « + +, where ¥ is an absolute constant. l.et § > 0 and € > 0 be
given. Then from (3.10) there exists an index v = v (¢, 8) such that

®
MY exp(—08%2B,) <ce.
n=v

Consequently

8

>1= 2 [67,()] >1—e.

n=v

It now follows from Lemma (3.7) that o,(y) — 0 almost everywhere.

As a partial consequence of Theorem (3.5) we are able to decide a conjecture
of Erdos (made in a letter to the author)to the effect that (2.2) and 4, logn = o(1)

are necessary and sufficient in order that T € (BP).

(3.11) THEOREM. [n order that T have the Borel property, the conditions (2.2)
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and

(3.12) Ap log n = o(l) (n — oo)

are sufficient; but neither (3.12) nor (3.6) is necessary.

Proof. To prove the sufficiency it is enough to show that (3.12) implies (3.6).
For this purpose, let § > 0 be given and fix € > 0 so that §%/2¢ > 1. By (3.12)
there exists an index n, such that 4, < ¢/(logn) for all n > ny. Then

exp(—8%24,) < n~8%2¢

for n > no with 82/2¢ > 1, and (3.6) follows.

To complete the proof we show somewhat more, namely, that no condition of
the form Apy(n) = 0(1), with Y (n) — ®, is necessary. Consequently the Borel
property can not be characterized in terms of the rate at which A, approaches
zero. For let 0 < 8(n) < 1, O(n) — 0, with O(n) arbitrary otherwise. Let x,,
= [1 - 8(w)]/[1 + 6()], so that B(n) = 1 — x,)/(1 + x,), 0 <x, <1, and
x, — 1. Since the Abel method has the Borel property [5], the same is true of
the “discrete” Abel method defined by the matrix

an,k =(l—xn)x§-l (k,n=1,2,3, ...)‘

For this matrix we find that
oo}
Ay = Z agx,k :(9(") ’
k=1

where &(n) may tend to zero in any preassigned manner. Thus, for example, if

_log log(n +2)

o) log(n + 2)

’

we have A, logn — ®, Finally, if we take &(n) as 1/loglog(n + p), forp

sufficiently large, the series in (3.6) diverges for every & > 0.

We now wish to show, as mentioned earlier, that condition (3.4) of Theorem
(3.3) implies condition (3.6) of Theorem (3.5), but not conversely. If (3.4) holds

for some g > 0, we have

0<zp=24,/62 >0
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for each & > 0. Since

exp(—=1/z,) = o(z9) or exp(—5%24,) = O(A?l)

as n ~—> €, it follows that (3.6) is satisfied. On the other hand, for the loga-

rithmic method of regular Riesz means defined by
ank = 1/k log(n +1) for k =1,2, «*+,n; n=1,2,3, +++,
we have
A, = 7%/6 log?n.

Hence for every g > 0 the series in (3.4) diverges, but 4, logn = o(1), so that
(3.6) holds by the proof of Theorem (3.11).

As a simple application of Theorem (3.11), we call attention to the existence
of a regular method having the Borel property and which is weaker than (€, &) for
every o > 0. It suffices to consider the harmonic method /'y of regular Norlund

means defined by
ank = 1/(n—k+1) log(n + 1) for k=1,2, *++,n;n=1,2,3, -,
It is known [8] that N C (C,«) for all ¢t > 0, and we have here again

A, = 7%/6 log®n .
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