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REMARKS ON THE SPACE Hp

S T A N L E Y S. W A L T E R S

1. Introduction. The space Hp is the collection of all single-valued complex

functions f which are regular on the interior of the unit circle in the complex plane,

and for which

< c o .

In [6] it was shown that Hp, 0 < p < 1, is a linear topological space in which

the metric is || f — g \\p, where we define

1 / p

It was moreover shown that (Hp)* , the conjugate of Hp, has sufficiently many ele-

ments (linear functionals on Hp) so as to distinguish elements in Hp, in the sense

that if / f 0 is in Hp, then there is a > £ (ffP)* such that γ(f) f 0 .

In the present paper it will be shown that if y is in (Hp)* , 0 < p < 1, then

there exists a unique function G which is regular in the open unit circle, contin-

uous on the closed circle,1 and such that

γ(f) = lim - f0

2η

r=i 2π \ p

for every f in Hp. It is further shown that the following is true of G :

Received November 29, 1950.

The author is indebted to Professor Angus E. Taylor for his valuable assistance in
the preparation of this paper.

x The author wishes to acknowledge the fact that the referee suggested the plausibility
that G is continuous on the closed unit circle.

Pacific J. Math. 1 (1951), 455-471.

455



456 STANLEY S. WALTERS

(a) if 0 < p < \/n9 n = 2,3, , then Id11"1 G(z)] /dzn~ι is continuous on

the closure of the unit circle;

(b) if 0 < p < l/2n, n — 1,2, , then G(eι ) has a continuous nth deriva-

tive with respect to t; and

(c) if 0 < p < 1/2, ίAe/z ίλe power series for G converges absolutely on the

boundary of the unit circle.

It is moreover shown that if G is regular on the open unit circle and is such

that

lim — fon f(peiθ)G(-e-iθ)dθ ,
r = l 277 \p I

< P < 1 ,

exists for every f in Hp, then the functional so defined is in (Hp)*. Thus (Hp)* is

equivalent to a subspace of the functions which are regular on the open unit circle

and continuous on the closed unit circle when 0 < p < 1 and indeed, as p tends

toward zero, the spaces (H?)* are equivalent to subspaces of spaces whose mem-

bers have far stronger properties than merely the property of being continuous on

the closure of the unit circle.

A generalization of a theorem by Khintchine and Ostrowski [ 1, p. 157] , which

is a sort of generalization of Vitali's theorem, will also be presented; namely, it

will be shown that a bounded sequence in Hp, 0 < p < oo 9whose boundary values

converge on a set of positive measure, converges uniformly on all compact subsets

of the unit circle. Khintchine and Ostrowski proved this theorem in the case that

the sequence consists of uniformly bounded elements.

It is worth remarking that under the present "norm" || || , Hp, 0 < p < 1, is

definitely not a normed linear space, this being due to the complete failure of

Minkowski's inequality for index smaller than unity. As a result, it is conjectured

by the author that Hp , 0 < p < 1, is not a normed linear space at all (and hence

contains no bounded convex neighborhood). If this conjecture is true, then Hp, 0 <

p < 1, offers an interesting example of a linear topological space which is not lo-

cally convex (since Hp is clearly locally bounded) and whose conjugate space has

sufficiently many members so as to distinguish the elements in Hp*

2. Representation of linear functionals on Hp, 0 < p < 1. In this section we

shall suppose always that 0 < p < 1. We let Δ be the set of all z such that

I z I < 1, and 21 the class of all single-valued complex functions which are regular
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on Δ. We shall first make some definitions and prove several lemmas before proving

the representation theorem.

For many of the topoiogical terms used in the ensuing, see [3J By a complete

linear topoiogical space, we shall mean a space in which fn ~ fm —* 0 implies

limn-(X) fn exists in the space. Locally bounded linear topoiogical space and

normed linear space will be abbreviated LBLTS and NLS respectively. By F*,

where F is a linear topoiogical space, we shall mean the conjugate of F, that is,

the space of linear functionals on F.

If F is a LBLTS, it is easy to show that F* is a complete NLS (Banach space)

in which

II7II = sup | y ( / ) | ,
feϋ

where y ζ_ F*, and U is a fixed bounded neighborhood of the origin. Moreover, the

topology so introduced into F* is independent of U. With respect to Hp, we let JJ

be the unit sphere, so that

II7II = S U P lr(/) l

It is then simple to prove the following theorem, merely by modeling the proof

exactly after that given in the theory of NLS's.

LEMMA 1. If F is a complete LBLTS, and Γ is a subset of F* having the prop-

erty that9 for each fixed f in F, y(f) is bounded as y varies over Γ, then Γ is a

bounded set.

We remind ourselves that Hp is locally bounded, and is moreover complete by

[ 6 ] . We make the following definitions, where f and g are any elements in 21:

(i) Ύn(f)=f{nHθ)/N I , n=0, 1. . . . ,

(»> Twf: Twf{z) = f{wz) , »CA, zCΔ ,

(iϋ) un : un(z) ~ z" , z (Γ Δ , n = 0, 1, ,

CD

(iv) B(/, g ; z ) = Σ Ύu(f) Ύn(g) z" , z C Δ .

It is easily verified that
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Bif.g z) = ~ Jo f{zιe

iθ)g{z2e-iθ)dθ ,
Z7T

where zx z2

 = z9 and zx and z2 are in Δ. The proof is made by expansion of the

integrand above in a Taylor series about the origin and then term-by-term integration.

In particular,

Bif. g r) =
ΔΉ

r < p < 1 .

LEMMA 2. /// is in Hp

9 then Twf is in Hp

9 and moreover

00

Twf = Σ Ύn(f)v" un.

Proof. Let g = Σ™=0 yn{f)wn un . We first show that this series converges.

Note that | | u J | = 1 , and

pn

The last inequality appears in [6, Theorem 6] . Thus

Ύn(f)wnun < Σ
n=l

whence Σ^_o γn (/) wn un converges, by the completeness of Hp. Then, noting

[6, Theorem 8] , which tells us that a convergent sequence in Hp converges point-

wise to its limit, we have

βOO = Σ Ύn(f)vnun(z) = Σ Ύn{f)Mn

n = 0

But Twf(z ) = Σ%=oγn{f )i^z )U This completes the proof.

We note that it was obvious that Tw{ was in Hp in the first place, merely from

the definition of Hp; but the form for Twf, which was obtained above,will be
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needed later.

THEOREM 1. If G Q W such that l im Γ = 1 B(f, G; r) =γ{f)(that is, we as-

sume that this limit exists) for all f in Hp, then y is in (//p)*. Conversely, if y

is in (Hp)*, then there exists a unique G in 21 such that y(f) — l im r = ι B{f, G r)

for all f in Hp.

Proof. To prove the first part of our theorem, let yr(f) = B(f, G; r). Clearly

yr{f) is distributive in /. Suppose \\f\\ = 1 and r < p < 1. Then

pn

Thus, yr(f) is bounded in / for ]|/|| = 1, r being fixed. It is then clear that yr is in

(flp)*. Since l im r = 1 yr(f) exists, it follows that yr(f) is continuous on 0 < r < 1

for each fixed / in Hp. Thus \yr(f)} is bounded for 0 < r < 1. As a result of

Lemma 1, we may conclude that \ \\yr\\ } is bounded for 0 < r < 1 that is, there

exists an M such that | |yΓ | | < M for 0 < r < l .Let | |/| | = 1. Then | yr(f) | < M,

whence \y(f) \ < M. Thus y is necessarily in (Hp)* since it is bounded on the

unit sphere in Hp.

We now prove the second part of Theorem 1. We note that if l im Γ = 1 5(/ , G r) —

y(f) for some G and all /, then

y{un) = lim B{un , G; r) = lim yn{c) rn = yn{G)
r = l r = l

that is, yn(G) = γ(wΛ) for all n, or merely G(z) = Σ ^ = o y{un) zn. We note that

Σ^=o yU Λ ) zn converges, for \y{un) \ < \\y\\ \\un \\ = | |y | | . Let us now verify

that G, as defined, has the desired property. We see that

B(f, G r) = X γn{f) y{un) rn = γ Σ Ύn(f)rnun

B u t \\Trf-. 0; see [5] for this result; note that
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where f(eιθ) is the boundary function for f(z). Thus γ(Trf) —> γ(f), or B(f,G; r)

—> y(/) Our proof is thus complete.

THEOREM 2. ΓΛe function G in Theorem 1 is continuous on the closure o/Δ.

Proof. We first verify that ft(z) = (1 - zeιt)~ι is in Hp for every real t. It

suffices to show that f0 is inHp. We see that

| 1 - r β i ^ | - 2 = [ ( 1 _ reiθ)(l - r e " ^ ) ] " ^ ( l - 2r cos θ + r 2 ) " 1 ,

whence

I 1 - r e ^ | - p = (1 - 2r cos θ + r2)~P/2 .

From the character of (1 ~~ 2r cos 0-1- r 2 ) , we see that it suffices to show that

Ĵ  (l "" 2r cos 77 + r 2 ) " " ^ 2 dθ is bounded in r , where 8 is any positive number.

We note that the following is true for 0 < θ < 8 (where S is some sufficiently

small positive number) and for all r such that 1/2 < r < 1 :

/ θ2 θ4 \ I θ2

θ + r 2 > 1 - 2 r ί l + — ) + r 2 = ( l - 2 r + r 2 ) + r θ 2 ί l -

Thus, (1 - 2r cos (9 + r 2 )"P / 2 < 4P/2 Θ'P. Since 5"P is integrable on [θ, §] ,

our statement is proved.

We remind ourselves that we are trying to show that G is continuous on the as-

sumption that

Ύ{f) = lim ~ ϊ0

2π f{Pe
ίθ)G{-e-iθ)dθ , r < p < 1 ,

r = i 2 π p

exists for each / in Hp Let yτ be defined as in the proof of Theorem 1. Then
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yΛft) = i !r T Φ ^ ' G{- e'iθ)dθ

_ J _ Γ2τr \ P

2ττ J o 1 -

_ J _ Γ277 \P

= G{reU) , r<p< 1.

Ί'he last equality is true by virtue of Cauchy's integral formula. We then have

shown that G{reι ) — 7V(/ί) Consequently, since limΓ_1 yr{ft) exists byhypothe-

sis, lirn r = 1 G(reι ) exists for all t, and in fact

Ύ(ft) = G(eιt) ,

where we define G{eιt) to be the boundary function lim r = 1 G{reιt).

We now show t h a t l i m ^ ^ ft ~ ft in the topology of H?» Now, for any g in H?,

letting g(eι )be its boundary function, we know that

It is easily verified tfiat (see, for example, [4, Theorem 7, p. 29])

lim f2" | g ( e ι ( θ + t ) ) - B(e^θ+to))\P # = 0 .

Clearly (t{eίθ) = (1 - ei{θn)T\ whence ^(e^) = fo(ei{P+t)). Thus limt=tjt =

/t„ , in the topology of //**.
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Now, by Theorem 1, y is continuous, whence lim t = toy(ft) ~ y(/ί0 ) 5 Λ e n c e

lim ί = ί ( ) G{eιt) = G{eιt°). We have now shown that G(eιt) is continuous.

We remember that, in the course of proving Theorem 1, we showed that \yr\ is

bounded in r as a subset of (Hp)*. Obviously \ft\ is a bounded subset of Hp, all

of the elements having the same norm. Thus yr{ft) is bounded in both r and t.

In other words, G(reιt) is bounded in r and t, or equivalently G is uniformly bound-

ed on Δ. We then know that

G ( r e i*) =1- S^ G(eif) Pr(θ-t)d0,
2τr

where Pr(θ) is the Poisson kernel. But, since G(e^)i8 continuous, the right side

above is necessarily a continuous function on the closed unit circle. Our proof is

now complete.

It will now be shown that even more can be said of G when 0 < p < 1/2.

THEOREM 3. 7/0 < p < 1/2, then G{eιt) satisfies the Lipschitz condition

of order one.

Proof. It suffices to show that

ll/t+Λ - / t i l = Wfh - /oi l < A I 1 - e i h I

for some fixed constant A . We have

- eHθ+h) - eiθ

- eih

( 2 7 7 ) ^

The proof will then be complete after we have shown that

dθ

l/P)

dθ

is bounded for all sufficiently small h. It is evident that

= 4 ( l - c o s e ) [ l - c o s ( 0
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and hence

\(l-eιθ)(l-ei{θ+h)\P =

We now must show that

f0

2π (1 - cos Θ)'P/2 (1 - cos (θ +h))-P"dθ

is bounded in h for all sufficiently small h. We note that the following is true for

all sufficiently small θ and h :

θ2

1 - cos (θ + h ) >

Thus we have

( 1 - cos

for all sufficiently small θ and h .Since Θ~2P is integrable on the interval [0,277"] ,

it is then rather easy to show that

J Γ (1 ~ cos b)-P/2 [1 - cos(θ + h )]~P/2 dθ

is bounded in h for all sufficiently small h.

We now have the rather interesting result:

C O R O L L A R Y . IfO < p < 1/2, then Σ ^ = ϋ j γn(G) \ < ™ .

Proof. Since G(eιt) is of bounded variation, it follows that G(z) is a power

series of bounded variation according to [7, § 7 . 5 ] . Hence the conclusion is

obtained by [?, (i),p. 158] .

We shall now show that even more may be said of G when 0 < p < 1/2.

THEOREM 4. If 0 < p < 1/2, then (d/dz)G(z) is continuous on the closure of
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Δ, and moreover (d/dt)G(eιt) is continuous on [θ,2π] .

Proof. By Cauchy's integral formulas (where (d/dz)G(z) = G'{z)):

= Γ"/."[/«' (P'iβ) P«"] GI-.-'AJΘ, r <p < 1.
zπr \ p I

Thus G'(reιt) = (l/r)γΓ(ft

2 ut). We note that since 0 < p < 1/2, we have

/ί2 d ^ j whence /? uj C //^, since u t is bounded. Thus we show exactly as

in Theorem 2 that

G' (eιt) is continuous in ί,

G ' {z ) is uniformly bounded on Δ ,

G' {reU)= — $*ΉG'{eiθ)Pτ [θ -t)dθ,

where we define G'(eιt) to be the boundary value of G'(z). Let us now consider

- l e " i e 4 G ( e i θ ) \ P r ( θ - t ) d θ .
Γ277

Jo

We note that G( eι ) is absolutely continuous by virtue of Theorem 2, whence

(d/dθ)G(eι ) is integrable. We also note that

Gire") =± f0

2vG(eiθ)Pr(θ-t)dθ= £ Cn m e™* ,
n=0
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where

Cn = — f27TG(eiθ)e-ιnθ

277 -Ό

Moreover, it is not at all difficult to verify that the real and imaginary parts of

~~ ieι (d/dθ)G(eι )are conjugate, whence

n = 0

where

Integration

that is,

by

4.

parts

2π

readily

C2π
- l (

yields

dn = (n

d

~dθ

+ 1) Cn

F(reιt) =

and hence F(z) — G ' (z), i hus, we necessarily have

d_

dθ

iθ^almost everywhere. Since G '(e1^ ) is continuous, it follows that G(eι ) neces-

rative, and in fact

G(eιθ) = ι e ι θ G'(eiθ) .

sarily has a continuous derivative, and in fact

d

dθ

This completes the proof of the theorem.
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We sum up by presenting the following theorem, which is readily proved by in-

duction, the proof being modeled after that given for Theorem 4.

THEOREM 5. 7/0 < p < \/n9n = 2,3, , then (dn~ι/dzn'1) G(z) is contin-

uous on the closure o/Δ. Moreover, if 0 < p < l/2n, n — 1, 2, , then G(eι )

has a continuous nth derivative with respect to t.

3. Geaeralization of Vitali's Theorem. In this section we assume merely that

p is any positive real number. We here need the following:

LEMMA 3. If \fn\ is a bounded sequence in Hp, and i/limn = 00 fn(z) exists on

a set having at least one limit point in Δ, then lim^oo /^(z) exists uniformly on

all compact subsets o/Δ.

Proof. The proof is a simple consequence of the following inequalities:

I f \ z ) I *Si '/ j x y t when 0 < p < 1 ,

and

I fVl I ^ ! - | 2 | when 1 < p < « .

The first of the above inequalities appears in [6, Theorem 2] The second is easi-

ly obtained as follows. By Cauchy's integral formula,

r

2π pe

ιθ -

and hence, by Holder's inequality,

P - 1*1
whence

-U
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Λ/(r) =

0 < p < 1

1 < p < ω

it is then clear that \fn(z)\ < /V(r) ,]/ when \z\ < r < 1, where \\fn\\ < M

for all ft.We choose r so large that the set \ z \ < r includes a set having

a limit point in z | < r and such that lim^ = Oo /^(z) exists on this set. Then, by

V kali 's theorem, lim ^-oo fn{z) exists uniformly on all compact subsets of ] z | < r,

and hence on all compact subsets of Δ . This completes the proof.

THEOREM 6. Suppose \fn\ is a bounded sequence in I/P. Further, suppose

lim / 1 = c o fn{eι ) exists on a set of positive measure in the interval [ϋ, 2ττ\ . Then

l im n = oo fn(z) exists uniformly on all compact subsets o/Δ.

Proof. It suffices, by the preceding lemma, to show that lim n = oo fn(
z) exis ts

on some neighborhood of the origin. Thus, we shall show that this is the case

whenever \ z \ < 1/9. Let | zQ < 1/9, and suppose lim n-ω fn(zQ) does not exist.

Then we may find a positive number (X and subsequences Ifn^ 5 a n c^ Ifm^ I °̂  ifni

which have the property that |/r i/c(zo) ~ fm^zo^\ ^ & ^ 0 Γ a ^ ^ ^ e t n e n

^k ~ fnk ~ ^mk ' ^ ^ s c ^ e a r t n a t I*!k I i s a bounded sequence in Hp We then write
r!h ~ gk ' hk > by virtue of F. Riesz's decomposition theorem [5] , where g^ and

hk are such that

(i)

(ϋ)

(iϋ)

gk G lίp and g,c(z) ψ 0

Λz) < 1 onΔ and

for all z in Δ ,

= 1 almost everywhere,

Iffλ-ϋ —

We note that l^z) = Lg/ c(z)F / 2 is in i ϊ 2 , and in fact \lk\ is a bounded sequence

in //2. Since lim/czioo ίfn^1 ) ~" fm^elθ)^ ~ 0 on a set of positive measure, it

follows that liiϋ£ = oo lk(eiθ) — 0 on a set E of measure μ > 0. We next shal l show

that lim/c =oo Z&(z0) — 0, which will in turn imply that lim/c = Oo gk(zo) = 0> a n ( ^

hence imply lim ̂  = 00 %(z Q) — 0, a contradiction to qp^z 0 ) > (X for all A;.
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Let A > 0, and define

o n E

- 277)

where CE is the set [θ,2ττ] — E. There is no loss in supposing that μ < 77.

Define

uo{reiθ) =£f0

2" φ(t) Pr(θ - t) dt ,

where Pr(#) is the Poisson kernel. Then a0 is harmonic in Δ and limΓ = 1 uo(re ) =

φ(θ) a.e., by virtue of Fatou's theorem; see [7, § 3.442] . Let

u ( r β

i < ? ) = U o ( r β

i β ) - u o ( z o ) .

We note that

uo(reiθ) = — + V rn(an cos nθ + bn sin nθ) ,

where ioΛ> ^Λ I are the Fourier coefficients of φ(θ). Since uo(O) — 0, this being

due to the fact that J2π φ(t) dt — 0 and P0(θ — t) — 1, we then have αo equal to

zero, or

00

uo{reiθ) = 2 rn{an cos nθ + bn sin nθ) .

We note that | an \ < 2A/π as well as | bn \ < 2A/π, whence

i / , Λ x i 4i4 _» 4Λ r A A

U ( ι 9 ) | < Σ " < <77 77 1 - r 2τ7 ~ 2(2τ7-/x)

provided 0 < r < 1/9.

Let v(z) be the harmonic conjugate of u(z) which vanishes at z0 , and define

g(z) = e t t ( z ) + ί t ; ( z ) . Then g G ?I, and g U 0 ) = 1. Moreover, since \g(z)\ =

e u ( z ) , we have l im Γ = 1 |g(rel>61) | = e ^ ^ ^ ^ o ^ o ) . By Cauchy's integral formula
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we have

lk(zo) = — So"7 h(peiθ) g(peiθ) — g dθ , \ zo\ < p < 1 .
ίτϊ pe — z0

This is true since Z&(z0) = lk(z0) g(z0). We note that u(z) is bounded in Δ, and

hence so is g(z) Since

l i m fQ

27τ \ h ( p e i θ ) - l k ( e i θ ) \ 2 d θ = 0 ,
p=i

and since g(z) is bounded on Δ , it is then evident that

lim/0

27T I lk(peiθ) g(peίθ)\dθ =/ 0 * r | lk(eίθ) g(eiθ) | dθ .

Hence

277 1 — I Z0

Consequently

dθ .

2τ7 \ 1 — | z o |

\ ) f\lk{eiθ)\dθ .
α - μ0

Since

1 1 ' Ί ^ V 2

τr~ y i ̂ ( e l ) °^ — τr~ J 2 7 T I ^ ( e l ) I dθ <
2π CE 277 o

and s ince \lkl is a bounded subset of H2

9 we see that

f / \lk{eiθ)\ dθ
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is bounded with respect to k . Moreover

μ - 277 J ^ μ~ 277 /X — 277 77

z 0 I

μ— 2π 2(2τ7 — μ ) 2 ( μ -

By virtue of Schwarz's inequality, where ^ is an arbitrary measurable subset of

[θ,2ττ] , we have

f \ h ( e i θ ) \ d θ < [ m ( ξ ) } ^ [ f \ l k ( e i β ) \ d ή .

Hence, by a convergence theorem of Lebesque (see [2,p.l9θ] , we have

lim f \ l k { e i θ ) \ d θ = 0 ,

since

that

lk(elθ) ~ 0 on E. Now, for arbitrary € > 0, we choose A so large

and hence we obtain, from the foregoing,

1 —

Having so chosen A, choose K so large that k > K implies

<e/2

f\lk(eiθ)\dθ < 6/2.

Hence, k > K implies) l^{z0) | < e/2 + 6/2 = e . This completes the proof of

the theorem.
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