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1. Introduction. Every automorphism of an additive loop1 L maps 0 upon 0. The

autoπjorphism group A (L) of L will be called transitive if A (L) is transitive on the

nonzero elements of L. It is readily deduced from work of L. J. Paige [4] and

1'. ί . iiateman [3] that, for every cardinal number n, there exists a loop L of

cardinal number n with a transitive automorphism group. We shall demonstrate that

(aside from the obvious exceptions) such a loop L must be simple, that is, its only

normal subloops must be 0 and /,, if it satisfies the following ascending chain

dition :

(C) If ΛΊ C Λo C /V3 C is an ascending chain of normal subloops of

the loop Jj, there exists an integer i such that Λ'j = Y + i

2. Theorem. We shall establish the following result.

THEOREM!. An additive loop L which satisfies (C) and has a transitive

automorphism group is either (i) a simple loop or (ii) a finite abelian p-group of

type (p, />, , p).

Proof. For each nonzero a of L, denote by M (a) the smallest normal subloop

of L which contains α.

(1) The subloop M (a) has a transitive automorphism group and is a minimal

normal subloop of L. If b φ 0 is in M(a), then there exists θ £ A(L) such that

afi — b. Since θ maps normal subloops upon normal subloops, we have M (a) θ =

.1/(6). Since b £ ,l/(α), it follows that M (b) C M(a). If φ = θ~\ then M (a) =

M(b)φ C \!(a)φ, and, by induction, M (a) C M(a)φ C M(a)φ2 C . In

view of (C), we have M(a)φι — M (a) φι ι for some integer i. Since φ is an auto-

morphism of /,, it follows that M {a) = M {a) φ ~ι = M (a) θ = M (b). Hence θ induces

an automorphism of M{a). This is enough to prove (1).

1 Headers unfamiliar with loop theory will get the sense of the paper if they read group
in place of loop. The necessary loop theory will be found in Baer [ l ,2] .
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(2) // N is a normal subloop of L, then N Π Mia) = 0 or Mia). This follows

from the minimality of M(a)

(3) The loop L is a direct sum of a finite number r of isomorphic simple sub-

loops Mi; that is, L — Mi Φ M2 Φ Φ Mr. If a9 b are nonzero elements of L,

there exists θ C A(L) such that aθ = b. Then M(a) θ = M(b), showing that all

the minimal normal subloops M (a) are isomorphic. If a ι is an arbitrary nonzero

element of L, define Mι = Mia{). Now suppose that M{ — M(α/) has been defined,

for i = 1, 2, , s, such that the (normal) subloop ;YS generated by the M( is the

direct sum Ns — M\ Φ ΘMS. Write ί = s + 1. If there exists a nonzero element

at oί L which is not in Ns , define Mt = M{at). Then y\s Π Mt — 0, by (2), and

hence Nt — Ns t&Mt — Mi θ Φ/Wj. In view of (C), the strictly increasing chain

Λ'V C Λ2 C must be finite. Therefore L — Nr for some integer r. If M ' is a

normal subloop of M\ , then M' is normal in L, by virtue of the direct decompo-

sition. Hence, by (1), each Mi is simple. This proves (3).

The center Z (L) of a loop L is a characteristic subloop and an abelian group.

In view of (1), either ZiMd = 0 or ZiMϊ) = Mf. Hence, by (3), either ( i ; ) Z{L) = 0

or (ii ') L is a direct sum of isomorphic simple abelian groups. Since a simple

abelian group is cyclic of prime order p, (ii ;) implies (ii) of Theorem 1. (Con-

versely, every finite abelian p-group of type {p,p, ,p) satisfies the hypotheses

of the theorem.) In the case (i')» assume r > 1 in (3). Since Z (L) — 0, the decom-

position (3) is unique. However, the nonzero element c — ax + α 2 is in Mγ Φ M2

but not in any of the Mi. Yet the proof of (3) shows that M (c) could be chosen as

the first factor in the direct decomposition of L, a contradiction. Therefore r — 1,

and we have (i). This completes the proof of Theorem 1.

As the following (trivial) theorem shows, simple loops need not have transitive

automorphism groups:

THEOREM 2. A finite simple group G ψ 0 with a transitive automorphism

group is necessarily cyclic of prime order.

Proof. Every nonzero element of G has the same order p, necessarily prime.

Thus G is a p-group, Z (G) ^ 0 , Z(G) = G, and G is cyclic of order p.

3 Remarks. The author does not know whether finiteness is necessary for

the conclusion of Theorem 2.
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ίlie following is the nonabelian loop L of lowest order with a transitive auto-

morphism group; it is readily verified that A (L) is the (alternating) group of order

12 generated by (Γ2)(34) and (123):
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