
Pacific Journal of
Mathematics

A PARTIAL DIFFERENTIAL EQUATION ARISING IN
CONFORMAL MAPPING

PAUL R. GARABEDIAN

Vol. 1, No. 4 1951



A PARTIAL DIFFERENTIAL EQUATION
ARISING IN CONFORMAL MAPPING

P. R. GARABEDIAN

1. Introduction, During the past few years considerable attention has been giv-

en to the role played by kernel functions in conformal mapping, potential theory,

and the theory of linear partial differential equations of elliptic type. The interest

in this study has originated from the unifying influence which the concept of a ker-

nel function introduces in these theories, and from the simple relationships dis-

covered between the various kernels and the classical Green's and Neumann's

functions [3*5,8,13] Much of the older theory has been given a new interpreta-

tion, and a new light has been shed upon the study of canonical conformal maps,

the Dirichlet problem, and the fundamental existence theorems [9,10,12]. The

methods and results, which received their original impetus from investigations of

functions of several complex variables [ l ] , have been surprisingly simple and

basic.

The present paper is devoted to the study of several kernel functions which a-

rise in conformal mapping and in mathematical physics, and to the investigation of

some eigenvalue problems related to these kernels. We show that the kernel func-

tion associated with the norm

ff\Φ{z)\2

 P{z)dxdy
D

of analytic functions φ(z) of the complex variable z in a plane domain D can be

expressed in terms of the Green's function of the partial differential equation

OZ

where

I

3 l 3

~T T s 2 = °>
z) OZ

3z ~ 2 \ 3 x + l ^ j ' z~

Received September 30, 1950.
Pacific J. Math 1 (1951), 485-524.

485
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Here p(z) is a positive weight function. Such weighted norms arise in the theory

of orthogonal polynomials and the study of problems in interpolation and approxi-

mation [l5,16] . A similar discussion of the kernel for the norm

ffoa(zV p(z)dxdy

of real harmonic functions u(z) in D is carried out.

These kernels are found to be related, in the case p = 1, to the eigenfunctions

of the extremal problem

\ ff^z)2dxdy\

Pr I / , 1 2 = maximum, w{z) analyt ic i n / ) ,
Jj \w{z)\Jdxdy

introduced by Friedrichs [7] . This eigenvalue problem is shown to be equivalent

to two other eigenvalue problems of a quite different character.

Underlying the manipulations is the idea that minimum problems for multiple in-

tegrals with differential equations as side conditions, such as those mentioned

above, correspond always to boundary value problems of a very simple nature in

the theory of partial differential equations. Proofs are carried out in such a way as

to yield the existence of the solutions of the related boundary value problems.1

An application of the theoretical material is made to the case where D is an el-

lipse. In particular, it is found that the Green's function of a convex clamped plate

need not be of one sign.

2. The partial differential equation. Let p{z) be a positive continuously dif-

ferentiable function of x and y in a region containing the plane domain D of finite

connectivity and its boundary C. We shall suppose that C consists of n simple

closed curves Cli *,Cn which have continuous curvature. We define Ω to be the

class of functions φ(z) which are analytic in D and have a finite norm

ff \φ(z)\2p(z)dσ , dσ = dxdy .

It is not hard to show [ l ] that there exists in Ω a complete orthonormal system

\ΦΛz)\,

1 For quite similar existence proofs, cf. the works [19, 20, 21] of G. Fichera, at the end
of the table of references, to which the author's attention has recently been drawn.
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rr [o,
JJ Φv(z)Φμ(z)p{z)dσ = Svμ =

and that every function φ(z) £1 Ω has an expansion

Φ(z) = Σ avΦv{z) , av = ffΦ(z)Φv(z) p.(z)dσ ,

which converges uniformly in each closed subdomain of D.

We define the kernel function K(z91) of the class Ω by the formula

(2) K(z, t) = Σ Φv(z) ΦΛt) .

Clearly, K{z9t) is analytic in z and t, and

(3) Φ(z) = ff K(z, t)φ{t) p(t) dσ ,
D

The reproducing property (3) characterizes K(z, t) completely, and therefore the

kernel function is independent of the orthonormal system \φy{z)\. From (3) and

the Schwarz inequality

I Φ W I 2 = I XT K φ p d σ 2 < f f \ K ( z , t ) \ 2 p d σ f S \ φ \ 2 p d cσ

= K{z,z) IS I Φ(t) I2 p(t)dσ ,
D

we deduce an important extremal property of the function

Indeed, f{z) yields the minimum of the norm (1) amongst all functions ςέ£Ω with

φ(t) = 1. The minimum value of the norm is K(t, t)"1.

Our main objective is to determine the analytic function K{z, t) from consider-

ations which are independent of orthonormal systems or reproducing and minimum
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properties, and are based rather upon a Dirichlet boundary value problem. We shall

proceed in such a manner that we obtain simultaneously the desired formula for the

kernel function and the existence of a solution of the pertinent boundary value

problem.

We suppose that w is a point in the exterior B of D. We set

Φi)
z — w

in the integral equation (3), and we obtain

D z — w t — w

Now for w ζlD, we find, by Poisson's equation,

= - TT p(w)K(t,w) .

Cut since K(tf w) is analytic in w9 this yields for I(wf t) the complex second order

partial differential equation

( 5 ) rr r ^ i(w, t) = o , » e D .
diϋ p \w) ow

Since /(M;, t) satisfies this partial differential equation, or, rather, system of two

partial differential equations, of elliptic type in D, and since the explicit formula

(4) holds in By we are led to attempt to prove that l{w91) is continuous across C

and therefore solves the boundary value problem suggested by (4).

We proceed to prove the continuity of I(ιv71) at a point wQ£.C. Since C has

continuous curvature, there is a circle Γ lying in D and tangent to C at w0 . We de-

note by w a point of Γ on the normal to C through wQ , and we denote by w the in-

verse of w in the circle Γ. We first show that

(6) U{w,w*) = ffK(t,z)
Γ

1 1
dσ

= ffh(t, z) — log dσ = 0 .
p dz z — w*



A PARTIAL DIFFERENTIAL EQUATION ARISING IN CONFORMAL MAPPING 4 8 9

Indeed, the linear fractional transformation

z — wς —

carries Γ into a circle y centered at the origin in the ζ-plane, and in terms of the

new variable ζ, the function lι(w,w*) has the form

- ffK(t, z(ζ)j7Ϊ0~ log ζda(ζ)

Ύ

By expanding K{t, z(ζ)) z '(ζ) in a Taylor's series of powers of ζ in 7 and using po-

lar coordinates and the orthogonality of the sine and cosine functions, we find

readily that the latter integral vanishes.

We have, by (6),

I{w, t) - ! > * , t) - JJ
D [z — w){z ~ w*)

ffK(t, z)(w~w*) p{z)dσ

D-T (2 - w)(z - w*)

ffKJt' zϊ(w ^ ) C U ) PW) dσ

{z — w){z ~~ w*)

The integrand of/' is dominated in D — Γ by an expression

A\K(t,z)

\z - wo\

since \ z ~ wo\ / \ z — w \ and \ιυ — w* \ /\z — w;* | are bounded there. This es-

timate of the integrand of / ' is integrable over D — Γ by the Schvvarz inequality

f < dσ

D-T\z"wo\ I D~γ D_v \z-wo\
2

where the last integral converges because of the deletion of the circle Γ from D.

Furthermore, the integrand in /" is dominated by anintegrable expression B \ K(t,z) | ,
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since p(z) satisfies a Lipschitz condition

\p{z) ~ p{w) I < B ' \ z ~ w\ .

Thus we can apply the Lebesgue convergence theorem to the integrals / ' and /" to
obtain

(7) ρ{z) dσ= 0 .

Since we see from (4) that I(w91) is uniformly continuous for w ζ, B, it is possible

to conclude from the special continuity condition (7), in which w and w* are in-

verse points in Γ, that l{w,t) is, in fact, continuous across C with no restriction.

With these calculations;at hand, we set

ef + \ Γ f £ ( t , z)p{z)dσ 1

S{w,t) =JJ
Z *"" W W — t

and from (4) and the continuity of I(w, t) we find

lim S(w9 t) = 0 , w£D ,

while by (5)

_3 1_ _3_

^w p (w) 'dw

Hence S(ιυ,t) is the solution of the elliptic partial differential equation (5) in D

which has zero boundary values and has a simple pole at w — t £L D. We have now

a new characterization of the kernel function K(w91) in terms of the equation (5),

for Poisson's equation yields the representation

(8) Ί { ^ ) = — ] — *s(w> 0
τrp(w) dUJ

ΓSote that since K(w,t) is given in terms of a first derivative of S(w, t), the second

order partial differential equation (5) for S becomes the Cauchy-Riemann differ-

ential equations for the analytic function K(w,t).

We denote by G{w,t) the Green's function in D of the equation

3 1 3 , x

(9) ^ — -η-T — u(w) = 0
on p(w) a
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adjoint to (5). That is, G{w, t) satisfies (9) in D except at the point w — t, where

it has a singularity

G{w, t) = p(t) log - r + continuous terms,
\w — t\

and Q{w,t) vanishes for wζLC. Since p{w) is real, the conjugate u(w) of a solution

u(w) of (9) is a solution of the adjoint equation (5), and conversely. Hence we ob-

tain, comparing singularities and boundary values,

G(ω, t)

and therefore, finally,

, t)
(10) K(w, t ) = -

πp(w) p(t)

It is natural to consider, in addition to K(w91)9 various other analytic functions

in D defined by minimum problems for the norm (1) and closely connected with the

kernel function as given by (10). Let β be a simple closed curve in D and let

Ωβ consist of all functions φ C Ω possessing in D indefinite integrals which are

single-valued except for the one period

Φ,Φ{z)dz = 1,
β

taken over all paths β' homologous to β in D. We denote by Wβ(z) the function in

Cίβ which minimizes (1). Hence

ff Ίη&)φ{z)p(z)dσ = 0

for every function φ C Ω with a single-valued indefinite integral in D. We define

the generalized harmonic measure cύβ(z) by the formula

αi) "βM = Sf Wβ i p(ydσ

 f WCD ,
D Z — W

and we find by application of Poisson's equation and continuity considerations,

as in the preceding, that ωβ{w) satisfies the elliptic equation(9) and has constant

boundary values on each component of C.
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It becomes clear, then, that our procedure is sufficient for a complete discus-

sion of minimum problems in the norm (1), and we turn to the study of the system

of elliptic equations (9).

3 The energy integral. Let u(z) and v(z) be any pair of suitably differentiable

functions in D + C. Then Green's theorem yields the basic identities

(Y 3 1 'dy

n Bz p 3z

r n 1 σ u oy \ Γ u oy
JJ — ~- — dσ = p - ~ — dz ,

D p όz oz 2i c p όz

1 3u ί v l / » t > 3 u
f- — — dσ = — φ -— dz .
D p όz όz 2ι c p όzD oz p dz

Thus it is clear that (9) is the Euler equation of the integral

(12) 1

vω
2 1 1

^ σ ~ T ff'Z ^( α * + b y ) 2 + (αy "" bx)
2 } dσ , u = α + t6,

4 ^ p

and (5) and (9) are adjoint partial differential equations. If u(z) is a solution of (9),

and v(z) is a solution of (5), in a region bounded by curves (X, we obtain the

formula

(13)
Φ p B;

-dz +-
p 'd

dz = 0 .

Setting u(z) — G(z,t) and v(z) — G(z,w) and applying (13), we have the symmetry

rule

(14)
G{w, t) = G(t, v>) .

Thus the Green's function G{w,t) of (9) is, as a function of t, the Green's function

of (5). Finally, we have the Green's formula

1 u{z) -dG(w, z)
u(w) = — - φ — — — — dz

771 •£ p(z) 3z

for the solution of the Dirichlet boundary value problem for (9). Since G{w,z) = 0,

z £ C , this formula can be written

u{w) =
1

277

α(z) , z)
s >
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where s represents the arc length and v the inner normal of C, with a similar formu-

la for the solution of (5).

The general solution u{w) of the elliptic partial differential equation (9) can be

obtained directly using the evident connection with the Cauchy-Riemann differen-

tial equations. We find

u(w) = JJ
D Z — W

where f{z) and g(w) are arbitrary analytic functions. Note that

p{w)

and note that the expression

cc p ( χ } d σ

cc
2ττ JJ (z - t)(z-w)

is a basic fundamental solution of (9). Each solution of (5) is the complex conju-

gate of a solution of (9), and thus we have, for the general solution v{w) of (5),

rr h{z)p(z)dσ
v{w) = JJ

where h(z) and j{w) are analytic. Therefore we find for the scalar product between

u(w) and v(w) in terms of the energy integral (12) the representation

/»/• 1 <3 a o v pp

JJ — ^~ TZ dσ = π2 JJ f{w)h{w) pdσ
D p Ow Όw D

as the scalar product of the functions f9 h £ Ω. Thus the norm (1) and the energy

integral (12) are equivalent,

(15)
D P

= πiffp(z)\f(z)\idσ.

The classical approach to the equation (9) through the Dirichlet principle would

consist in seeking a function u(vυ) minimizing (12) in a class of differentiable func-

tions with prescribed boundary values. Our attack is based rather upon extremal

problems for (1) in the class Ω , and contrasts with the older method in that we
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operate, in a sense, entirely within the family of solutions of (9). Note that the

formulation in terms of (1) imposes on p(z) only the conditions of positiveness

and continuity, except in the neighborhood of C, where a Lipschitz or Holder con-

dition is necessary for the continuity proof (7).

Let us study a special case of the theory developed so far. Let μ(z) be a

function analytic in D + C, and set

p(z) = \μ(z)\2

The general solution of (9) can now be written

u(w) = μ(w)U(w)

where U(w) is complex and harmonic. Indeed,

JL ι A π t/M = — — *uM = — ^ = o
'dw \μ{w)\2 'dw ~ ̂ w μ(w) ϊw μ(w) 'dw'dw

Note in passing thaj: for μ(z) — z the system of two second order equations (9)

can be reduced to the one fourth order elasticity equation, which has a general

solution uχ(z) of the form

U l ( z ) - R \ z U ( z ) \

If g(w9t) denotes the Green's function of the Laplace equation in D, we obtain

(16) G(w, t) = μ(w)μ(t)g(w, t) .

Thus by (10) the kernel function K(w, t) is given by

(!7) K(w,t)= , , N

2 , v i o T T IMΦ) g{w9 t)]
π\μ(w)μ(t) \ owόt

9 3 2 tι(w. t) k(w. t)

πμ{w)μ{t) 'dwdt μMμ{t)

where k{w,t) is the kernel function of (1) with p = 1. This result has a simple

meaning when μ(w) is the derivative of a conformal mapping ζ — M{w) of the do-

main D ,

ίί = M'(w) = M»)
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Here (17) merely expresses the conformal invariance of the kernel function k(w9t)

as a differential

K(wf t)dM(w)clM(t) = k(w, t) dwdt ,

since the weight p(w) = |yu(tt;)|2 is the Jacobian of the mapping ζ = M(w).

It is of interest to remark at this point that the differential equation (9) exhi-

bits a certain invariance under conformal mappings ζ — M(w) Take, again, an

arbitrary weight function p(w) and assume that it behaves as an absolute invariant

under the transformation ζ — M(w). In the ζ-plane we have

θζ «'(»)3» Bζ #'(») B» '

and therefore

_3_ _1_ _̂ _ _ 1 _9_ 2_ _i <L _ 1 3 _1_ _d_
^ ζ P ^ ζ ft/'fiϋ) 35; p M' (w) 3u> iM'fu;)!2 ^ϋ; p ~dw

Since this operator changes only by the multiplicative factor | M' (w) \ "2 when we

transform from the w-plane to the ζ-plane, the invariance of the class of solu-

tions of (9) under conformal mapping follows. Clearly, the kernel function K(w,t)

with scalar weight p varies as a differential in both arguments.

In closing this section, we call attention to the fact that the Neumann's func-

tion of (9) plays no role in the study of the kernel function with a general weight

function p(z), although when p(z) is constant on C the problem of determining

solutions of (9) in D with prescribed normal derivatives on C has significance.

4. Expansion of Green's function. We turn our attention to the expansion of

the Green's function of (9) in terms of an orthonormal system \φy{z)\ complete in

Ω. We obtain a construction of G{w9t) in terms of the kernel function K(w,t) which

is also a proof of the existence of G{w,t). Our expansion formula will yield a

number of the more important properties of the Green's function, and the con-

struction will not refer explicitly to behavior on the boundary C of D.

Our procedure is essentially an integration of (10). We consider the integral

f t) = — ff
2π D {z ~w)(ζ ~ t)

By the orthogonality of the sine and cosine functions, it is clear that we can
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replace the factors ( F — M J ) " 1 and (ζ — ί)" 1 in the integrand by the bounded ex-

pressions

Jand

in circles about z — w and ζ = ί, respectively, without altering the value of the

integral. The new functions which we define in this manner are square integrable

over D, and therefore we can expand K{z, ζ) in its series form (2) and integrate

term by term at will. In particular, we find for w £ B, t £ D :

= r Sf
2 π D

dcr(ζ)

CfΦΛz) P(ί)dσ(ζ)

ί-t

Now for fixed £ £ Z), one can show that the integral J(w,t) is a continuous

function of w across C in a manner essentially identical with that which led to

the continuity relation (7). Hence

(18) λ Ί( f] - _ L rr p(0MO
lim J{w, t) - JJ - _λ

JJ - _ /
277 /) ( ζ - 2 j ( ζ - 0

Recalling the nature of a fundamental solution of (9), we now see that the Green's

function G(w, t) can be defined by the formula

G[w, t) =—JJ Jy -— -Γ - J(w, t) .

Indeed, this expression satisfies (9) by Poisson's equation, and has zero boundary

values by (18). We set

D
7 1 3 :
(z ~ w)

and we note that bv(w) is a particular solution of (9) in D. Thus (19) can be re-

written

•i 00
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and we have an expansion of the Green's function in terms of a symmetric geomet-

ric integral and a kernel function. We emphasize that the series of Fourier coeffi-

cients on the right converges uniformly in each closed subdomain of D because of

the square integrability of the modified functions involved. It is interesting in this

connection that the Green's function represents according to (20) the difference

between an improper geometrical integral and the development for this integral in

terms of Fourier coefficients.

A first remark about formula (20) is that (10) follows from it by mere differen-

tiation. The expression (20) is also significant in that it displays the positive

definite character of the regular part of the Green's function, J(w,t). Since J{w,t)

is expressed as a kernel function,

1 °°
j(w, t) = — y bJw)bJt)

2π ~χ

 vK J vK J '

many interesting inequalities are quite simply obtained. These are consequences

of the positive nature of quantities of the type

λ | 2 J(w} w) + \μj(wy t) + λμj(t, w) + | μ\2 j ( t , t)

= — Σ I λ b v ( W ) + μbv{t)\2 > 0 .
v-1

These inequalities have more or less the strength of the classical distortion theo-

rem for schlicht functions. In fact, by substituting p{z) Ξ 1 and making suitable

choice of the points w and t and the domain D, one can obtain by this procedure

Koebe's original results. We note, finally, that formulas like (20) which represent

the Green's function in terms of a geometrical integral and a kernel function are

easily obtained in many further classes of functions; for example, such a formula

can be obtained for the Green's function of the Laplace equation in three dimen-

sions. These remarks tie in closely with previous work on inequalities and geomet-

rical integrals [6,14] .

The expansion (20) is new even in the simple case p(z) = l . L e t us apply it to

the calculation of G(w, t) in the circular ring r < \ z | < 1 with p(z) = 1. Here the

set of functions bv(w) for (20) is found by Green's theorem to be

( ~~2 \1/2

~ ) log
log r /
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where we take v — 2τι -f 1, rc > 0, and v — — 2n, n < —2. Thus we obtain, for

the Green's function g(w, t) of the Laplace equation in the circular ring r < | z < 1,

(21) «(., t) = £
r < 1 z | < 1 ( 2 — w j ( 2 - ί ) l o g r

r 2 n

- T —

n- -co, π^O

In closing this section,we note that for p(z) = 1, G(w,t) — g(w9t) is real, and

therefore, from (20) and (10),

2 32g _ 1 ^ d 6 v 3 6V 1 /y* cίσ
k(t, w) = — - 2^ "TIT "^ "" 2 A/ / / - _ - \ / Z ΰ ^ *

Hence, in this case, the kernel function has an interpretation in terms of the dif-

ference between the Cauchy principal value of an improper integral and the devel-

opment of the integral in terms of Fourier coefficients.

5 An eigenvalue problem. We consider once more the kernel function K(w, t)

associated with a general weight function p(z), and we study for a moment the in-

tegral equation

Φ(t) = λ SS K(t, z) φ{z)dσ .
D

Let \ v be an eigenvalue and let φv{z) be the corresponding eigenfunction of this

equation,

ΦΛt) = K ff K{t,z)φv(z)dσ .

The scalar product of φv with any function φξ^ζl is given by the interesting for-

mula

JJ ΦΛt)Φ(t)p(t)dσ - λv ff[ffK(z, t)φ(t)p(t)dσ]φv(z)d
D D D

f ()p()]φv()dσ
D D

= ^vSS Φv{z)φ{z)dσ .
D

In particular, for w ζi B we have
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= 0 .
ff Φv{t) ίp(t) — λv]dσ

t — w

Thus, by the usual argument of continuity across C, the function

„ / N rr Φv(t)ίp(t) - \v]dσ

ϊv{w) =-JJ z = , w£D,
D t — w

has boundary values 0 on C, while in D it satisfies the partial differential equa-

tion

3 1 ^ , x
Γ ~ Fv{w) = 0 .Kir

ό w p[w) ~" ^v

Thus the eigenfunctions of this non-linear eigenvalue problem in elliptic partial

differential equations are connected with the eigenfunctions of the above integral

equation,

p{w) — λv

— — 77 C

In the case of the circular ring r < \ z \ < 1 with weight functionp — pi \ z ])

which depends only upon | z \ , the powers of z form a complete system of doubly

orthogonal eigenfunctions of the type just described. Supposing that the φv{z) are

normalized in the metric (1), we find

t t) -

v- 1

whereas for the kernel function k(w91) with weight function 1, we have [2]

v- l

However, the extremal problems

)\2p(z)dσ

D

λ = = maximum

7Jβ \Φ\z) V dσ
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and

ffD\Φ{z)\*p{z)dσ

λ = >v» • . , v . Λ

 = m i n i m u m

need not have solutions in Ω, as can be seen, for example, by taking p{z) — z | 2 .

Thus there is a difficulty, in general, in showing the existence of a complete sys-

tem of eigenfunctions.

Note, in passing, that if we have two weight functions p{z) andρ*(z) in the do-

main D, the corresponding kernel functions K(ιv, t) and K (w, t) satisfy the integral

equation

K*(w,t) =K(v,,t) ~ f/K(w,z)K*(z,t)[p*(z)-p(z)]dσ .
D

Setting

hK(w, t) = K*(w, t) - K(w, t) ,

Hz) = p*(z) - p(z) = O(e) ,

we can write this as

8K(w, t) = - JfK{w} z)K{z, t) hp(z)dσ + θ(e 2) ,
D

a relation which is connected with the classical Hadamard variational formula

[ l l ] for certain classes of variations hp{z) of our weight function.

We take p(z) = 1, and we turn now to a somewhat different eigenvalue problem

for which it is known that a complete orthonormal system of eigenfunctions \pv(z)

C Ω exists. The work of Friedrichs [7] gives us, indeed, a complete orthonormal

system \φv(z)\ satisfying

(22) μv ffψv(z)φ(ι)dσ = ffφv{z)φ{z)dσ , φ £ Ω ,
D D

with decreasing eigenvalues

μ i = 1 > μ2 > μ3 > ••• > 0

which are obtained from the extremal problem

I ffΦ(z)2dσ I
D

= maximum.
ff\Φiz)\2dσ

0
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We shall study (22) by the methods of this paper and shall associate with the

eigenvalues μ v of (22) a new eigenvalue problem for a related partial differential

equation.

From (22) we have

J = f f l μ v φ v ( z ) - ψv{z)\ —?— = 0 , w C B .
D l Z ~~ W

Thus, as usual, we define

(23) Uv(w) = ff\μv~ψM) -φv(z)\ — , WCD,
D ι J Z — w

and we show that Uv(w) has boundary values zero on C by proving that the integral

/ is continuous across C. Let Γ be a circle in D tangent to C at wθ9 let w be a

point in Γ on the normal to C through w0 , and let w;* be the inverse of w in Γ.It

suffices to show that

A άσ = °
This is true for the portion of the integral taken over I) — Γ by the square integra-

bility of z — w0 "1 there, as can be seen by comparison with the discussion in

§2. For the integral over F , we see, again from §2, that the contribution from the

term μ V\}JV{Z) vanishes, and also that

//̂ Wf-J —\da = 0.
p I Z ~ W Z — W* J

We have thus from the Gauss mean value theorem

/ x , . , {w - w*) dσf 1 1 1
ff ΦΛz)\ -\dσ =

JJ

V I 2 — W Z — W* J W){Z ~ W*

(lϋ ~ W*) 7TΎ]2

where z0 is the center and 7] the radius of Γ. Thus it remains only to show that

lim ψv(w)(w — w*) = 0 .

Let y(u ) be the largest circle in D centered at w, and let the radius of y{w) be

6 . Then M; — w;* = O(β) because of the smoothness of C; and the mean value
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theorem yields, for some M > 0,

\φv(w)2 ( * - » * ) a | -

< M jj \ φ Λ z ) 2 \ d σ .
y(w)

The last integral tends to zero as w —>wo and 6 —>Q, since ψv(z) is square in-̂

tegrable, and hence our continuity proof is complete.

We now derive a partial differential equation of the second order for the func-

tion Uv(w), which vanishes on C. By Poisson's equation we have

Taking conjugates, we find

-f 7T\pv{w)

and therefore

(24)

By the Cauchy-Riemann equations for \pv{w) we obtain

(25)

>W Ow

= 0 .

Hence the functions JJv{ιv) are the eigenfunctions and the μvare the eigenvalues

for the eigenvalue problem

w'd i
= 0

with U = 0 on C.

For V > 1 the eigenfunctions \pv(w) are obtained from the Uv(w) by means of

formula (24). Green's theorem can then be applied to yield (22). Therefore (22) and

(25) are quite equivalent eigenvalue problems. Friedrichs' principal result, the

strong inequality μ2 < μ\ — 1, has now a new significance, particularly since
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(24) cannot be solved for the first (constant) eigenfunction ψχ{w).

One sees, in general, from the results obtained so far, then, how problems in

the study of analytic functions of class Ω in a domain D lead naturally to the dis-

cussion of systems of two partial differential equations of the second order, such

as (9) and (25). We remark, in closing, that the solutions U(w) of (25) always sat-

isfy, in particular, the single fourth order elasticity equation

B4 U[w)
J = 0 .w2

6 Extensions, It is quite clear that the method which has led us here to re-

sults such as (10), (20), and (25) has wide applications to the study of the exist-

ence and representation of solutions of linear partial differential equations of

elliptic type. Equations which can be discussed in this manner, such as the

equation

Uxx + Uyy +P(x, y)u = 0 , P < 0 ,

need have no connection with analytic functions. However, we shall consider in

this section one more case which is drawn from the theory of harmonic functions.

We introduce the class Λ of real-valued harmonic functions u{z) in I) with a

finite integral

(26) ffu(z)2p(z)dσ,

where p(z) is once more a positive weight function with, say, continuous second

derivatives in a region including D + C. By the Gauss mean value theorem and the

Schwarz inequality there is a positive function A{z) in D such that

| u ( z o ) | < A(z0) \ffu{z)2 p{z)dσ ) , z0CD.
x D }

H e n c e t h e r e e x i s t s in Λ a c o m p l e t e o r t h o n o r m a l s y s t e m \uv{z)\,

ff uv{z) uΛz) pdσ — hnV ,

the kernel function

00

M{z, t) = Σ «v(z)«v(0
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converges and is in Λ , and we have the reproducing property

α(t) =JfM{t,z)u(z)pdσ ,
D

In particular, for wζ^B, the exterior of 1), we obtain

log
\t — w\ D

ijence with wζiβ, ζζI.D we find

1 1

Γ ~ ff Λί(t, z) log : p d σ = 0 .
— w\ z — w\

ffD

 log ΰ ^ Γ l o s ΰ^ϊi p(t)dσ(t)

0
D D

or, more directly,

Z — 2/M

(28)

where

ffD

 l o § jTZ^i l og jTΓ^y

Vv{v>) =ffu(z) log p{z)dσ{z),
μ ~ v\

wCB ,

= 0 ,

G D ,

= 1 , 2 , 3 , •••,

are the Fourier coefficients of the function — log \z — w \ for wζiB9 and also for

. The statement is, then, that the integral

1

t — w\
log

1

| t - ζ |
pdσ

is represented faithfully by its development in terms of Fourier coefficients with

respect to the orthonormal system \uv] when wζiB, because in this case the first

factor "~log I ί — w \ in the integrand belongs to the class Λ, and the second fac-

tor ""log 11 — ζ I is square integrable.

When both ζ and w are in D, we set

(29) H(w, ζ) =-ff log -^— log
π D \t - w t -

p d σ - -



A PARTIAL DIFFERENTIAL EQUATION ARISING IN CONFORMAL MAPPING 505

and we proceed to show that H(w, ζ) is the Green's function of the fourth order

elliptic partial differential equation

(30) Δ — Δ h = 0 , Δ = 4
P

Indeed, from the square integrability of ""log | z ~~ w | and Schwarz's inequal-

ity, together with BesseΓs inequality

00

Σ < SS log pdσ < oo

it is apparent that the kernel series

Σ

is continuous across C, and therefore by comparison with (28) we find

lim H(w, ζ) = 0 ,
w + C

It is more difficult, however, to verify the requirement

CD,

for the derivative of H with respect to the inner normal v of C. We shall prove this

condition by showing that the gradient
r

1*JL = J. JT^L2 — = - JJ log
> W 77 n Z — W I U — εl , = , v i g p{z)dσ

tends to zero as w —> C.

By comparison with (28), we see that it is sufficient to show that

l im = 0 ,

where K(z) represents the terms previously in brackets, and where w and w* lie on

the normal to C through a point w0 and are inverse points in a circle Γ in D
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tangent to C at w0. Since

1 1~ =o(Γ!-),
— w z — w* V I z "" WQ\ /WQ\

- 0(1) *er

and since these dominants are square integrable over D — Γ and Γ, respectively,

we see, as in previous continuity proofs, that the Lebesgue theorem applies to the

part of our integral extended over D — F and that it applies to the part extended

over Γ with p(z) replaced by p(z) ~ p{w). Thus the only difficulty is to prove

(31) limjffΊ —\v(z)dσ = 0.
" t ί Z -~ W* )

Now in the circle Γ, V{z) has a harmonic conjugate F*(z) which is also square

integrable, and hence the analytic function

W(z) = V(z) + ιV*(z)

is square integrable over F . By (6) we have

If \— —\'wϊz~)άσ= 0,
JJγ i z — w z — w* J

and also

ff\— — 1 W(w)dσ(z) = 0.
Γ I z — w z — w* J

Therefore

(z 0 — w;) ( z 0 ~ w*)
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by the Gauss mean value theorem, where z0 is the center and T) the radius of F .

Letting y{w) be the largest circle in Γ centered at z = w, we obtain for some

,1/ > 0, again by the mean value theorem,

|φ) a (»-w )Ί < M ff\W(z)\2dσ ,
γ(w)

and since W(z) is square integrable, the last integral tends to zero as w—> w0.

This completes the proof of (31).

Thus we have, on C,

(32) « ( . , ζ) = ^ ^ = 0 .

By application of Poisson's equation and term by term differentiation, we verify

immediately that H{w> ζ) satisfies (30), and it is furthermore clear that the inte-

gral in formula (29) is a fundamental solution of (30). Hence H(w, ζ) is, indeed,

the Green's function of (30). We now obtain by differentiation of (29) and two ap-

plications of Poisson's equation the formula

< 3 3 ) " < • • ζ ) - - ^

expressing the kernel function in terms of the Green's function. The usual deduc-

tions as to the positive definite nature [ l l ] of H{w9 Q follow from (29) and (33).

The significance of the norm (26) for the equation (30) is apparent from the form

d
D P

of the Euler integral of (30) and the form

= ff UΛZ) P (^) log -j " dσ + u2{w)
\Z — \

f j
D \Z — W\

of the general solution of (30), expressed in terms of two arbitrary harmonic func-

tions. We have, thus,

ff{ί\h)2-dσ = 4τ72 ff u\pdσ .
DP D

It is interesting that we obtain the existence of the Green's function H(w, ζ) using

a norm which depends on only half the number of arbitrary functions involved in
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the general solution of (30). Also, the connection between extremal functions for

the norm (26) and solutions of (30) with simple boundary behavior can be explained

by use of the Green's identity

jQ - qάp}dσ + Φ\P^ - 9 ^ Jd* = 0,

in which we can take, for example, p£Λ and q a solution of (30).

We point out that for p(z) = 1, equation (30) is merely the equation of an elas-

tic plate. Thus our method leads to a new [17,18] discussion of the existence

and representation of the solutions of boundary value problems in elasticity. This

case has an interesting connection with Friedrichs* eigenfunctions [\pv(z)}9 dis-

cussed in §5. Indeed, setting

Ψv{z) = uv(z) + ίvp(z) ,

we obtain, from (22),

ff luvuμ + Vy Vμ + ίllvVμ— iuμVv}dσ = hμv ,

ff \uvuμ — vvvμ + iuv Vμ + iu μvv\ dσ = μv £>μ v .
D

Thus for a simply connected domain D, in which each harmonic function u(z) has

a single-valued conjugate v(z), the system of functions

_ , 1 v^z) > v = 2 , 3 , ••• ,

form a complete orthonormal system in Λ. Therefore, with p(z) = 1, we have

(34) M(z, t) = 2 Σ u Λ z U Λ t ) + 2 f ^{z)vM f

v==1 1 + μv v^2 1 μv

while
oo
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Hence the orthonormal eigenfunctions \ψv{z)\ and the corresponding eigenvalues

μ v provide a link between the analytic functions of class Ω and the harmonic

functions of class Λ which arise in elasticity.

In particular, for the interior of an ellipse the φv{z) are the Chebyshev poly-

nomials of second kind [7] and the Green's function H{z9t) has an explicit rep-

resentation (29). Suppose, in fact, that /) is the ellipse

that

cosh σ

cosh- 1 z)

sinh ( c o s h " 1 z) '

+ sinh σ
< 1,

Pl

2 '
Pv

/ 2v \*

~Usinh2vσ/ '

Then we obtain the formula of Erde'lyi and Zaremba:

H{z, t) = — JfjΓ log r log dσ
π D

4P2 ,

\t — w\

rr v:zχ Pl

2 + pj Λ/ l o 8
β

l o g

z — a)

f s i n h ( v c o s h ϊ z ) |
.

I s i n h ( cosh J 2) Jsinh ( cosh^1 z)

cosh"1z)

• Λ u-i
sinh (cosh z)

)

- ^ Σ ^ \jf log - ^
U-w\ sinh

dσ

fsinh (^cosh 2)
-~—

ΓΓ 1 1 0 fsinh (^cosh 2)

Jj log — 3 -~—\
JD \t ~ ζ sinh (cosh"1 2) J

dσ

The integrals can be reduce^ by using Green's theorem.

This tie between the elasticity equation and the Laplace equation by means of

the Friedrichs eigenfunctions can be generalized to the case of multiply connected

domains. Here, however, we must restrict the class Λ to functions u(z) with

sdngle-valued conjugates v(z) and we must replace H{z,t) by a similar function
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which has merely constant boundary values on each component of C and zero nor-

mal derivatives.

Finally, the reader will notice that the case where p(z) = | μ{z) | 2 , the square

of the modulus of an analytic function μ(z), also has bearing on the elasticity

equation. Here, in fact, the general solution of the equation (30) is

where M'(z) — μ(z) and f(z), g(z) are analytic. Thus the conformal transformation

ζ = M(z) reduces (30) to the elasticity equation.

7. A numerical example. We add at this point a note concerning the nature of

the deflection of the clamped elliptical plate of § 6. It has been conjectured by

Hadamard [ l l ] that the Green's function H{z9t) of the elasticity equation in a

domain D is positive. This conjecture has the interpretation that when one places

a downward point load at t£.D upon an infinitesimally thin elastic plate clamped

at C9 the resulting deflection H(z,t) at zζlD is always directed downward, with

the load. Duffin has shown that H(z, t) can become negative when Ό is an infinite

strip, while Loewner and Szegδ have exhibited bounded regions for which the con-

jecture is untrue, although these regions are not convex. The statement is true for

a circle.

We discuss here an ellipse for which the Green's function can take negative

values, and we thus obtain a counterexample even for the case of bounded convex

plates, where the conjecture of Hadamard appears to be most plausible. Our pro-

cedure provides an illustration of the adaptability of the method of orthogonal

functions to computational problems.

Our first remark is that if H(z91) is nonnegative in a domain D9 then the fourth

derivative

, t)
' Z> t € C f

must also be nonnegative, where n{z) and n(t) represent the inner normals at z and

t on C This result follows immediately from a consideration of the Taylor's series

for H(w9 ζ) about w = z9 ζ — ί. By the boundary conditions imposed upon H(z9t),

the second derivatives of H(z9t) with respect to the arc lengths s(z) and s(t) at z9

vanish. Thus we obtain

' 0
^ — — = Δz Δ t fl(zf t) , z, tCC ,
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and therefore, by (33),

z , t C C

Thus we can show that Hadamard's conjecture is false by exhibiting points z and

ί on C for which the kernel function M(z91) is positive.

Let now D be the ellipse

+

cosh2 σ s inh 2 σ

of §6, and take for z, tζjC the vertices

z = cosh cr , t = — cosh cr .

Then, by §6,

../ \ _ ,. o 2 v* Py2 s ^ n ^ (^cosh" 1 ^) sinh {v
m\z , ί y — 1 lm z p i > —

x<coshσ v=\ P\ + Pv s i n h (cosh""1^) sinh (cosh"" x( —x)

lim 2 P l
<

2 \? /_ w+i (v s^n R2°") sinh2 w

r+σ , r<σ ^= J sinh 2vσ + v sinh 2σ sinh 2r

Thus it suffices to prove for some a > 0 that

(35) li» £ ( - D V + 1 V S i n h " r > 0 .
r r< = j sinh 2^cr -f ẑ  sinh 20"

We note that

ve2vr 1

and therefore we can replace (35) by

I I—»•<-tf" „! + i
l s i n h 2 v σ + ^ sinh 2σ J 4
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\\e set σ — log 2, and this becomes

„•?, ^ ' 2»" - 2 " 1 " + ^(2* - 2" 2 ) 4

an inequality which can be verified by direct calculation.

Briefly, the first ten terms of the series (36) are

- . 7 , .8, -.527103, .250811, -.099487, .035692, -.012050,

.003904, -.001227, .000377,

and we have

V /_ Y Zv-2v2~2v + v2(22 ~2~2) _1_ 1

V- 1
- 2~2V + v(2 - 2"2) 4 ~ 2000

Thus the Green's function H(z,t) of an ellipse whose major axis is not even twice

as long as its minor axis takes negative values when the arguments z and t are

sufficiently near the vertices.
Finally, keeping z = cosh σ , but setting t - i sinh σ , we have

2 ,
( 2 v - l ) ( s i π h 2 σ)

β i n h ( 4 v - 2 ) σ + ( 2 v - l ) s i n h 2 σ

sinh (2 v — l ) r cosh (2 v - l) r

sinh r cosh r

( 2 " ~ 1 ) s i n h 2 σ= 2P1» £ (-D" 1 (2"~1)sinh2σ )
v=1 l s i n h ( 4 ^ - 2)σ + (2 v - l) sinh 2σ J '

Therefore to obtain M(z,t) > 0 in this case, we take σ = (1/2) log 2 and prove the

elementary inequality

> 0 .

Indeed, the first ten terms of this series are
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-.333333, .727272, -.633413, .353811, -.154139, .058610,

- .020580, .006862, -.002204, .000688,

and

00

+ {2v - 1 ) ( 2 - 2" 1) ~ 1000 '

8. On Friedrichs* functions. Bergman and Schiffer [4] have introduced the

class 31! of biharmonic functions zf(z) + g(z) in D with a finite square integral

D

They construct from a complete orthonormal system \zfv{z) + gv(z)} in SI,

D

the kernel function

0

and prove that this kernel is given by

(37) Mf, A =

where H{z9i) is, again, the Green's function of the elasticity equation. We leave

to the reader the derivation of the inverse formula

1
H{z,t) = —

277277 D z ~ w t ~~ w

~~ Jϊ ff1^ " ^ N(v, ζ)rfσ(w
2ττ /) D z — w t — ς

which is based on considerations similar to those leading up to (20) and (29).

Likewise, we leave to the reader a discussion, to be modeled on § 2, of the kernel
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Np{z9t) of the norm

zf(z) + g ( 2 ) | 2 p{z)dσ

with weight p the kernel is given by the relation

NP(z, t) =-
2 *%{z, t)

rrp(z)p(t) 3z23ϊ 2

where Hp(z9t) is the Green's function of the equation

3 z 2 p B;

with energy integral

u = 0

dσ .

We show here how the kernel N(z,t) can be constructed in terms of Friedrichs'

eigenfunctions {ψ-μiz)}. In §5, we introduced the associated eigenfunctions

cίor

(23) Uv(w) = ff {μMz) - φv(z)} , wCD.
We have, by (22),

z - w

D ow o
= π2 μk μi ff ψk Φl dσ - π2 μx ff ψk ψι dσ

D D

- π2μk ff ψkψidσ + π 2

D

π 2 ff φk'φι dσ

But since Vk(z) = 0 for z £ C , we can apply Green's theorem to obtain

w ow 2) όw όw

and thus the system of biharmonic functions

1 'dUk (w)

Ϋλ 3 i ] • K Z , «5| * * f
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is orthogonal in the class 3DL Note that

with analytic F^iw), and

= 0
w 2

Furthermore, we have once more from Green's theorem

oΦ

Sf φ(w)dσ = ~ ffϋkiw)^ dσ = 0
D ow D o w

for each analytic function ς££Ω. Thus for simply connected regions D the func-

tions 'dUfc/'dw generate the subclass of biharmonic functions in 3Iί which are

orthogonal to the analytic functions of class Ω..

We now recognize that for a simply connected domain D the system

is complete and orthonormal in Sϊί. We have therefore

(38) N(z,t) = ΣΦk{z)Φk{t) +-T Σ
1 -dUk(z) 3ί/*(t)

_ , ( f) , i v - J

where k(z>t) is the kernel of the class Ω with weight function p(z) = 1. This can

also be written, according to (10) and (37),

2 VH(z, t) _ 2 B 2 g ( z . Q J _ " _ 1
! 77 B 2

2 3 7 2 7τ B Z 3 F τr 2 ^ l - ^ * 2 ^ z 3 t

Formula (39) can be integrated with respect to z and 7 in such a manner that each

term has zero boundary values on C, and thus

, t ) 1 Uk(z)Uk(t)
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We have here an interesting relation between the biharmonic eigenf unctions V k and

the Green's functions g and H of the Laplace and elasticity equations.

One consequence of (40) is found when we apply Schwarz's inequality to the

kernel series on the right, thus obtaining inequalities between g and // (cf. §4) .

The simplest inequality of this form,

r , λ 3 2 #(z, t) II
\g(z,t) v ' y > 0 ,

comes from setting z — t and yields an estimate of the logarithmic capacity in

terms of the biharmonic Green's function H(z,t). Furthermore, if we differentiate

(40) with respect to z and t, we find

M(z,t) =k(t,z) +JT Σ
77 k=2 1- μk όz όt

a formula equivalent to (34). Thus it is apparent that (40) is the most fundamental

formula of this type so far developed.

These relations are easily generalized to the case of multiply connected re-

gions D by introducing a modified biharmonic Green's function H(z9t) with zero

normal derivatives, but with boundary values which are merely constant on each

component of C. We are led to adjoin to our previous orthonormal system for 351 a

set of (orthonormalized) second derivatives 3 2 W/~dz2 of biharmonic functions

ίF(z)with zero normal derivatives and constant boundary values on each component

of C. For higher connectivity, the functions W play the role of generalized harmonic

measures.

We turn next to the discussion of our results when D is the ellipse

y
+ — ^ r - < l

cosh2 σ sinh 2 σ~

of §§6 and 7. In this case the φj^z) are given in terms of the Chebyshev poly-
nomials

by the relations

Φk(z) = — Ti(z) = Pk \ γ-, , Pk = ( - — —
k ζ ~ ζ \ 7Γ sinh 2kσ '
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From the general formula

Uk(z) = — πμkfψk(z)dz + πΊφk(z) + πFk(z) ,

with Ffciz) analytic but unknown, we verify that in the ellipse we have

sinh 2σ ^ z r

sinh 2 fe σ k

s i n h (2fe —2)σ r c o s h 2σ (

sinh 2kσ k k ~ 1 k~l

Indeed, this expression vanishes identically on the boundary C of the ellipse. We

have discovered, then, a new orthogonality property of the combination

_ 1 r , f N s i n h (2fe - 2 ) σ cosh 2 σ
~ , 3 Λ ( 2 ; . , o , Tk(z) - — — Tk-i{z)

k sinh 2 fe cr fe — 1

of Chebyshev polynomials in 3W. We now rewrite (40) here to obtain

(41) = β(*. *) - Σ
k sh sh 2σ ch (fe c h ' 1 ! )

sh 2 k σ

z . . . ch (fe ch z)

- ch2cr

shCch"^) s

ih((fe ~ l) ch""^) sh2cr 1 t)

sh (2fe - 2)σ

sh (ch""1 t)

sh 2feσ

ch (fe ch""1 t )

- ch 2σ

sh 2fe σ

sh ((fe - l ) c h Γ 1 ! )

sh (ch-i t)

We remark that differentiation of (41) with respect to t yields an explicit formu-

la for

9 B Λ H( A2 — Δ t/ί(z, t) =
dz
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Taking real and imaginary parts and integrating, respectively, with regard to x and

y, we can derive a formula for Δ t H{z,t). Once in possession of this quantity, we

can solve the boundary value problem for the elastic plate explicitly by means of

the Green's formula. For z = x real, we obtain

(42) t) = 4 log
t — x

t — ch σ

R sh 2σ

>-2k

(sh 2σchσ ~ 2x2 shcr) +
sh 2feσ + fe sh 2σ

ch ( 0 + 1) ch"1 x)
2k J VV ; y

_2k(k + 1 ) 2(k

, - 2 f c

2(fe-l)

j - k

2k

R R-1

sh (fc ch"1 t)

sh (ch"1 t)

ch ((fe - l ) ch""1 x)

(sh 2/eor + k sh

Λ - eσ .

9 An inequality. We remark at this point that the application of Green's theo-

rem in § 8 leading to the orthogonality of the functions

(43)
77

was not rigorous,since we did not prove that these functions are square integrable

over D, We justify the formal manipulations here, thus proving (40) in all detail,

and we derive further an extremal property of the eigenfunctions w\p£ + F^' .

We assume, for the sake of simplicity, that D is simply connected, and we as-

sume that C is an analytic curve. We show first that to each square integrable

function ψ(z)ζ2Ω there corresponds an analytic function F(z) in D with

(44) SJ\Έφ'(z) +F'(z)\2dσ < A ff\φ(z)\2dσ ,
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where A is a constant independent of φ. This result is remarkable chiefly because

the function φ'(z) itself need not be square integrable.

Let z(t) be a conformal mapping of the unit circle E in the ί-plane upon D.

Then by the analyticity of C, z(t) is analytic in the closed unit circle and

00

z ( 0 = Σ <•*** , «» = O(P

m) , p < 1 .

In order to prove (44), it is evidently sufficient to show that there is a constant B

such that

dφ dF 2

ff
E

z(t) -f + —
κ ' dt dt

dσt < B ff I φ | 2 dσt .
E

By direct computation we obtain

/ /
E

k - m + 1

k + 1

.k-m. dσ =
7T m

{m +k + l)(k + I ) 2
> k >_ m ,

If

so that

t m t k \ 2 d σ =

ΦU) = Σ

v

m +k + 1

k=o

k <

then we obtain

k-m +1

k + 1
.k-m dσ

-ff
E

fe - I B + 1

fe + 1
dσ

Σ ΓT |2 -
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ίlence we make the definition

dt'
00 00

k - m + 1 Λ-π

so that dt/dt is clearly analytic in Zs, and we have

Sf
dψ dF

dt dt

Σ Σ s.τ
ίP = O R=0

Σ ^ k +1

00 00

Σ l
rn I Z J \a>m\

m=0 m-0

f" Σ bkt
k - Σ

k=0 k=Λ

• k - m + 1
k k + 1

dσ

00 00

Kl Σ »Ία»lj(jΓ
m=0 n-0

Thus (44) is proved.

We now choose F^ so that

ff\ z Φl (z)
D

= minimum

and we obtain

ff\Ίψ'k + F'fφdσ = 0,

Hence, by the usual argument, the function

Vk(w) =-Jf +Fk'(z)} Γ
dσ

z — w

ΦCn

CD

has continuous boundary values 0 on C. But
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and therefore V^ Ξ Uk > since JJk ~~ Vk is harmonic in D and zero on C.

If pm(z) is a polynomial with

ff \Φk(z)-Pm(z)\2dσ < e ,
D

then by (44) there is an analytic function Pm'(z) such that

Sf W ( 0 +F:{z)--zp'S*)-KM)\2dσ<Ae-
D

By Green's theorem, we have, rigorously,

^ z ~—λ" ~ \~— rr^Uί ί

and, as 6 — > 0 , we obtain the desired relation

D B z ^ z" D B z "d z

It is now evident that the functions ψ2(
z) a n d F2(z) solve the extremal problem

mm ff \ z ψ ' ( z ) + F ' ( z ) \ 2 d σ
, x F D
v45) \ •=. jψ—• • — = minimum ,

JJD \ψ(z) I 2 dσ

among all pairs φ G Ω and F with

ffφdσ = jrψiφdσ = 0 .
D D

For if
00

then
00

λ =
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Thus we see that the φ^ are the eigenf unctions and the

are the eigenvalues for the eigenvalue problem (45). Therefore (45) is dual to

Friedrichs' original eigenvalue problem, and we have, corresponding to his basic

inequality

\ffφ2dσ I < μ2 ff \φ\2dσ , ff φdσ = 0, μ2 < 1 ,
D D D

the inequality

(46) λ 2 ff \ φ \ 2 d σ < f f \ z φ ' + F ' \ 2 d σ , f f φ d σ = 0, λ 2 > 0 ,
D D D

with the sharp estimates μ2 and \2 connected by the relation

(47)

While for

we should expect

λ2 = l-μ\

ff \φ\2dcr = 1, ffφdσ = 0 ,
D D

ff \ z φ ' + b ' \ 2 d σ

to be positive, the inequality (46) states that there is a positive uniform lower

bound \ 2 f°Γ this integral which depends only upon the geometry of the domain D.

In summary, we have shown all the following eigenvalue problems to be related.

(a) μ =

\ffφ2da

ff \Φ\2d
D

— max. , with dφ/d J ~ 0 in D

+μ

-μ

ff u2dσ
J^D

ff v2 dσ
JJD

= max., with ux = vy , vx = — uy in D

(c) ,2 —

ff
D

ff
D

o

Q

I
c

m

z

«

z

2

2

dσ

dσ

= min., with 3 2 m/'dz 2 - 0 in D



A PARTIAL DIFFERENTIAL EQUATION ARISING IN CONFORMAL MAPPING 523

(d)

/ /
D 31

dσ

dσ

max. , with U — 0 on C

(e)

j 2
= 0 , with ίi Ξ 0 on C ,

The eigenfunctions ι/% of (a) are obviously [7] connected with the eigenfunctions

u/c, v/c of (b) by the relation φ^ — u^ -f i i ^ . Problem (c) is merely a restatement

of (45), and (d) is the Euler problem immediately associated with (e) by the Dirichlet

principle. We have, in fact

If
3 £4

d σ = = π2μk(μk

2-l) ,

dσ =π*ff\μkψk-ψk\
2dσ = π 2(l - μ k

2 ) .

Thus one of our leading results is the relation between the extremal problems (a)

and (c) with differential side conditions and the extremal problem (d) with a bound-

ary condition. The free boundary problems (a) and (c) naturally replace the clas-

sical problem (d) in our present discussion of the existence of solutions of (e).
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