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L. Introduction. Generalized Dedekind sums sp (A, k), defined by

kot uo (ke Eltu hp  [hp
1 W= LB (._)= Ep .__[__]
( ) Sp( ) Z_ & 14 2 ‘_A: A P JA k
p=1 B=1

were introduced by the author [1]. The integers A and % are assumed relatively
prime, By (x) is the p-th Bernoulli function, Bp (x) the p-th Bernoulli polynomial
(for definitions see [1;(2.11), (2.12)]), and [«] is the greatest integer < x. For
even values of the integer p the sums (1) are trivial (see [1;(4.13)]) and we
assume in what follows that p is odd. These sums enjoy a reciprocity law, name-
ly;

(p + 1) (hEP sp (h,k) + khP sp (k,h))
@ Pl P+t
=pBpsyt 2 ( s )(_1)3 Bs Bpsas-s B KPT170.
s =0

The B’s being Bernoulli numbers*. An arithmetic proof of (2) is given in [1] by a
method closely related to a general summation technique recently developed by
Mordell [5]. When p =1, the sums

k-1
~ po[hp hu] 1
) B = 3 Z(T- - [2£]- 2)

=1
are known as Dedekind sums and are usually denoted by s (4, k). Aside from be-
ing of interest from an arithmetical standpoint, these sums also occur in the
asymptotic theory of partitions and have been studied in a large number of papers,
for example [11,[3], [5], [6], (7], (8], [9], [10], and [11].

In this paper we establish a connection between the sums (1) and certain
finite sums involving Hurwitz zeta functions which makes it possible to give a

short analytic proof of (2).

* When p > 1, the factor (=1)° may be suppressed in the summand in (2) because the
terms corresponding to odd values of s vanish.
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2. The Hurwitz zeta function and Dedekind sums. The Hurwitz zeta function
((s,a) is defined for R(s)>1 and @ # 0, -1, =2, «» - , by the series

[,

l(s,)= 3 (n+a)s

n=o
and its relation to Sp (h,k) is given in the following theorem.
THEOREM 1. For odd p> 1 we have
. o kol am u
4) sp(hk) =i p! @mik)P Y cot — (p, ——),
p=1

while for p =1 we have the two equivalent expressions

k-1

1 h
(5) sthi)= o % cot =¥ cot "k—“
L=1
and
k-1 ,
-1 mhuy U/ (pn/k)
6 h k) = — t—
(©) sthak) = o % El T T (u/h

Formula (5) is due to Rademacher [8], who derived it from the Fourier series
expansion of (3). We will give here a purely arithmetic proof of (5) based on
finite rather than infinite Fourier series. Secondly, we establish the equivalence
of (5) and (6) and then prove (4). Finally, we indicate how (5) and (6) can be
thought of as limiting cases of (4).

Proof of (5): The function B, (x) is given by

x — [x] - 1/2 if x # integer,

E =
(%) [ 0 otherwise.
Therefore, by formula (2.5) of [10] we may write

(7 s(hyky= Y By(u/k) By(hu/k).
p mod &

From Eisenstein’s finite Fourier series expansion [4; p.318] we have
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— 1
(8) By (hu/k) = - Z_k

Using (8) in each factor of the summand in (7), we obtain

k-1 k-1 8% TA 2ap(\ - vk)

1
9) s(hk)= — Z z cot — cot — z cos
8k =1 wv=1 k k w mod k k

-~ COS

2auA+ vh)
k

because of the identity 2 sin x sin y = cos(x — y) — cos(x + y). Since we have

2rpu(Atvh) [ls ifAx vh = 0 (mod k),
cos — "

pmod k 0 otherwise,

for each fixed v only one value of A gives a nonzero contribution to each sum in
the second member of (9), namely A = v& (mod %) in the first sum and A = - vh

(mod k) in the second. Therefore we have

k-1 k-1
1 h 1 —-nh
s(h,k) = g Z cotzk—li cot "kv alry z cot%cot nk Y

v=1 v =1

?

and this is the same as (5).

Proof that (5) and (6) are equivalent: The relation [2; p. 163]

T (n/k)

g gmn
o logk - Tt ZE
T (u/ky 77 BF T
(10)
! 27np 2w n
+ ) cos log [2 -2 cos ,
n< k/2 k k

where y is Fuler’s constant and the prime indicates that when k is even the last
term is to be multiplied by 1/2, is due to Gauss. Multiplying both sides of (10)
by cot (zhu/k) and summing on u shows the equivalence of (5) and (6) upon

observing that we have
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k-1
(11) 2 fw=0

p=1

whenever f is an odd function of y which is also periodic mod k.

Proof of (4): Formula (4.11) of [1] gives a representation of sp (h, k) as an

infinite series which, with some simplification, can be written in the form

©

Sp(h,k) =1 P' (277i)—p Z n"P cot

n=1
n o0 (mod k)

nah

Writing n = gk + y, withg=10,1,2, «+»+» ,®, and p =1, 2, - -
obtain
k-1 @©
sp(hb)y =i p! 2ad)P ¥ 3 (gk + p)P cot
u=1 gq=o0
k-1 mhy
=i p! @mik)P Y cot P ¢ (pyu/b),
K=1

mh

, k-1, we

w

where we must assume p > 1 in order to insure that the series involved should

be absolutely convergent and the rearrangements valid. This proves (4). We can-

not hope for a proof of (4) along the lines of our proof of (5) because of the non-

elementary nature of £ (s,a).

If in (4) we replace p ! by I'(p + 1) and let p be a complex variable which

tends to 1, then we can show that the two expressions for s (4,%) in (5) and (6)

occur naturally as limiting cases of the right member of (4). We first observe

that, although the function {(s,a) has a pole at s =1, the sum

k-1 b
(12) T eot T £ (s,u/h)
m=1

is regular at s = 1. This is easily seen by using the expansion

1 I'(a)
é(sva)" s - 1 - F(a) +O(S "1)

(as s — 1)

obtained from Whittaker and Watson [12; p. 271], substituting in (12) and using

(11) to obtain
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k-1 ) k-1 hu T(u/k)
mhp mhy [

lim > cot {(s,u/k)== ¥ cot — ——rn,
s—1 p=1 k p=1 k F(u/k)

which shows that the right member of (4) tends to the right member of (6) as
p—1.

The connection between (5) and (4) can be obtained by using Hurwitz’s

functional equation in the form given by Rademacher [6; (1.24)], namely:

k 7S 27l p
C(s,p/k) = 2T (1 = s) @ak)*™ Y |cos > sin

A=1 k
s 27 A
+sin12-—cos 7;‘#) 4(1—8,7),

this being valid for s = 1,1 < p < k. Multiplying by cot (7k u/k), summing on
p and using (11) leads to

k-1

h
3 cot ¢ (s,u/k)
p=1 k
(13)
k-1
h 27
=2I"(Q - $)(2nk)° 7! cos ”—; > cot 28 sin ”k £ ¢ @ = s,\/h).

N p =1

Since { (0,@) = 1/2 — a, when s tends to 1 the right member of (13) approaches
the value

k-1 k-
1 h A 1
— z cot””sin2"#—_i
2k A=1 p=1 k k 2 k
k-1 k-1
-1 h 27\
= — Z cotﬂ# Z)\sm"”
2k u=1 k A=

because of (11). Noticing that the last sum on X is the imaginary part of the sum

k-1
2

. ; k' k
A e2mM/E gy (e2min/k _ 1) = - —é—L cot (7u/k) = Pk

A=1
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we see that the right member of (4) also tends to the right member of (5) when

p—o1.

3. Proof of the reciprocity law. We can now give a proof of the reciprocity
law (2) using complex integration. This proof is of additional interest in that
we use properties of £ (s, a) for fixed s and variable a. We will need the follow-

ing facts about £ (s, a):
(14) {(s,a) = {(s,a+1) +a”%,

15) C(s,a+1) =C(s) —s L(s+1)a+ 0(a?) as a—0,

(16) for O < R (a) < M, (M fixed), { (s,a) tends uniformly to 0 as I (a)—
+ ©, (The uniformity is with respect to % (a)).

Equation (14) follows at once from the definition of { (s,a) and (15) is merely
the beginning of the Taylor series for {(s,a + 1) near a = 0. Here { (s) =
¢ (s,1) is Riemann’s zeta function. Relation (16) can be readily obtained, for
example, by applying the Riemann-Lebesgue theorem to the integral representa-
tion [2; p. 266]:

(ST et ER(a)

[ (s) £ (s,a) =f7 eit S(a) gy,

1-e*
valid for ® (s) > 1 and ® (a) > 0. This gives (16) for 0 < R (a) < M and (14)
proves it for 0 < & (a) < M.

Because of (4), the reciprocity formula (2) can now be put into the following

form:

THEOREM 2. For odd p > 1 we have

+1)! ks h h-1 k
ipr b, > cot"k”g(p,u/k) +k Y cot ﬂhVL:(p,V/h)
©Qni)P u=1 v=1
17)
P¥L p 41
=P Bysy + Y (Ps )BS Byyy-s hS KPHLTS.
s =0

Proof. We apply Cauchy’s residue theorem to the function

f(2) = cot wz cot (whz/k) {(p,z2/k),



THEOREMS ON GENERALIZED DEDEKIND SUMS 7

Integrating in the positive sense around a contour C consisting of a rectangle
whose vertices are the points + iT, k + iT, with small semi-circular detours
C, and Cj around the points z =0, z = k, traversed along the arcs z = ¢ el
and z = k + € €'F, respectively, where 7/2 < 6 < 37/2, and 0 < € < 1/h.
Ultimately, € will tend to 0 and T > 1/2 will tend to ®. The integrand f(z)
has first order poles at the points z = 1, 2, « » + , k — 1 due to the factor cot nz,

and at the points z = k/h, 2k/h, .. , (h=1) k/h  because of the factor
cot (whz/k). By (14) we have

¢ (pyz/ky = {(pyz/k + 1) + (k/2)P,

so that the point z = 0 is a pole of order p + 2 for f(z). Using the power series

expansion

. o (2mi)" B,
(18) nz cot rz = Yy ——— 2"

1
n =0 n:

in the neighborhood of z = 0 (with the understanding that B, should be replaced
by 0), and (15) with @ = z/k we find that Cauchy’s theorem gives us

1 1 k"‘l h
—_ f f(z) dz = — cot — #{(p,y/k)
27t “C w = k
=1
(19) A
k ! k
+t— cot"Vé(p,v/ﬁ)——f—C(P+1)+Ro,
mh v=1 h n?h
where

. Ry = Res cot wz cot (whz/k) (k/z)P.
z=0
We now observe that by periodicity of the cotangent and by (14), the contribu-
tion to the integral from the part of C consisting of vertical line segments is

€

(‘i/;‘ie + [;,—iT) cot 7z cot (mhz/k) (k/z)P dz,

and this vanishes since the integrand is an odd function of z. Next, the integrals
along the horizontal segments tend to zero as T— ® since, for 0 < x < k we
have cot n(x +iy)— ¥ i and, by (16), { (p,(x + iy)/ k) tends to O uniformly
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in x as ¥ = + ©, Finally, combining the integrals over Cy and Cj, by means of
(14) and letting T — ® we obtain

lim jc f(z) dz = jc cot 7z cot (whz/k) (k/z)P dz.

T— oo 0

When € — 0 we find

lim ‘/C“ = ni R,

€ -0 0

so that equation (19) leads to the result

k-1 h-1
1 h k k
— Y cot ”kﬂ C(pypu/k) + — Y cot i ¢ (p,v/h)
T =y Th oy

1
=_p C(P"'l)——Ro'
a2k 2

From (18) we easily calculate that

2 @mi)» P [p 41
Ry = ——— Bs Byyr-s K KPHL™S
° ah(p+1)! Z s s Tprics

s =0
and, since we have

@Qri)P *! Bp 41

(p+1) =~ 2]

’

equation (20) yields (17) and the proof is complete.

In [8], Rademacher gives a proof for the case p =1 using (5) instead of (4).
Apparently unaware of [8], K. Iseki [3] has given a proof very much like
Rademacher’s analytic proof for the case p=1 in a recent paper.
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