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QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY

OF MULTIPLE INTEGRALS

C H A R L E S B. MORREY, Jr.

1. Introduction. We are concerned in this paper with integrals of the form

(1.1) Kz,D) = fD

w h e r e

x = ( x \ . . . , χ * ) 9 z = ( z 1 , . . . , z N ) , p = p f

α

( i = l , . , /V; α = 1 , , v),

f(x,z,p) is continuous in its arguments, and D is a bounded domain.

The object of the paper is to discuss necessary and sufficient conditions on

the function f for the integral / to be lower semicontinuous with respect to vari-

ous types of convergence of the vector functions z. Because of the success of

the "direct methods" in the Calculus of Variations, many writers have shown

that certain integrals are lower semicontinuous. However, the writer knows of

no paper in which a necessary condition for lower semicontinuity was discussed,

although such a condition is very easy to obtain (see Theorem 2.1)

In §2, a general condition called "quasi-convexity" (see Definition 2.2) on

the behavior of / as a function of p is obtained which is both necessary and

sufficient for the lower semicontinuity of / with respect to the type of conver-

gence given in Definition 2.1. This condition is that any linear function furnish

the absolute minimum to I(z,D) among all Lipschitzian (see below) functions

which coincide with it on Z)*, D being any bounded domain and D* its boundary;

here, of course, we consider / to be a function of p only. Section 3 discusses

cases involving more general types of convergence and gives an existence

theorem. In §4, it is shown that if f(p) is continuous and quasi-convex, then

it satisfies a certain generalized Weierstrass condition which reduces to the

ordinary one (for the case at hand) when / is of class C ; this is, in turn, seen

to be equivalent to the Legendre-Hadamard condition (see (4.8)) (quasi-regu-

larity in its general form) when / is of class C . In §5, a general sufficient
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condition for quasi-convexity is proved and the necessary condition of §4 is

seen to be sufficient when / is either a quadratic form in the pι

a or is the inte-

grand of a parametric problem with N = v Λ- l The view of Terpstra's negative

result [5] that even the strong Legendre-Hadamard condition (> 0) does not

necessarily imply the existence of an alternating form C?. p^ p' (Cr.a= -

and so on) such that

(1.2) f(p)+Cfβ p> p>β ,

is positive definite when v > 2, it would seem that there is still a wide gap in

the general case between the necessary and sufficient conditions for quasi-

convexity which the writer has obtained. In fact, after a great deal of experimen-

tation, the writer is inclined to think that there is no condition of the type dis-

cussed, which involves /and only a finite number of its derivatives, and which

is both necessary and sufficient for quasi-con vexity in the general case.

In (1.2), we have used the usual tensor summation convention, and will con-

tinue to use it throughout the paper; unless otherwise specified, the Greek letters

will run from 1 to v and the Latin letters from 1 to N.

We shall denote the sum and difference of vectors of the various sorts (x, z,

p, and so on) in the usual way. We shall define

X = 1/2

If ζ(x) is a vector function with derivatives, π(x) will denote the vector function

πι {x) = ζι

a (#); similar notations involving other letters will be introduced as

the occasion demands.

All integrals are Lebesgue integrals, frequently of vector functions. It is

sometimes desirable to consider the behavior of a function z (x) with respect

to a particular variable xa or to the v - 1 variables (Λ;1, * , xa~ι, xa* ι ,

• , xv\ In such a case, we write x' for (x1, , xa~ 1, xa + ί, , xv\

(# ' , #α)for x and so on. It is also convenient to write the boundary integrals

fD.Aa (x) dxί,

where each Aa (x) may be a vector Aι

a (*) and the boundary D* of the domain is
sufficiently regular; such an integral is to be regarded as a Lebesgue-Stieltjes
integral with respect to the set function x£ (e) on D* chosen so that Green's
theorem
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holds. The closure of a set E will be denoted by E.

Ordinary functions of class tys, 5(5/̂  ^/', and so on, s >_ 1, have been dis-

cussed at length in the papers [l] and [2]; the extension to vector functions is

trivial. We define the integrals ϋs (z,G) and Ds (z,G) by

Ds{z,G) = fG \z{x)\s dx + Ds (z,G), Ds {z,G) = £ [*' β(*) z^ (x)]s/2dx.

Each function z of class ?̂s is equivalent to a function z defined uniquely almost

everywhere as that number such that the Lebesgue derivative of the set function

j f \z(x)-Έ(xo)\s dx

is zero at xo; z is supposed to be defined at every point x0 where such a number

exists; ~z is of class ?β/ (see [1] and [2]) and is also of class §β/ in any co-

ordinate system related to the original by a regular Lipschitzian transformation

(cf. [2], Theorem 6.3; the z there used has a slightly different definition from

the present one but the present theorem has been proved for vectors z with

values in a Riemannian manifold in [4], Lemma 2.3 and Theorem 2.5).

A function z is said to satisfy a (uniform) Lipschitz condition with coef-

ficient M on a set S if and only if

| z ( * t ) - z ( x 2 ) \ < M \ x x - x 2 | , * i £ S , x 2 G S .

A function is Lipschitzian if it satisfies a Lipschitz condition.

K &(y)> 7 ~ (y l> * > yΛ)> ί s summable on a domain D, we define the A-
average function g, by

g A ( y ) = (2λ)-n ^ Λ g{η) dη, h>Q;

if g is summable then g^ is continuous where defined; if g is continuous on D

then gfr is of class C" and g^ tends uniformly to g on each bounded closed set

interior to D; if g is of class 5βs on D then ĝ  tends strongly in 5βs to g on each

domain G with G C D (see [1], Lemma 5.1).

A form

< ι/> χ < α < ^ χ < < / y χ \

is called alternating if and only if the C's satisfy the obvious symmetry require-

ments and also the antisymmetry condition that
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Qβ\t • » βμ _ + QO-I t # »αμ

*l» f*μ. ιl*'***iμ

according as (/31 ? > βμ) is an even or odd permutation of the indices

(<XU , Cίμ); if £ (x) is a vector function, then

3(% l , , X μ )

the fractions on the right denoting Jacobians.

2. A necessary and sufficient condition for lower-semicontinuity. We begin

with some definitions.

DEFINITION 2.1. For the purposes of this section, we say that the vector

functions zn tend to the vector function z on the domain D if and only if the zn

and z all satisfy a uniform Lipschitz condition on D, independent of n, and the

zn tend uniformly to z on D. We shall write zn —> z to denote this type of con-

vergence.

DEFINITION 2.2. A function f{pι) is said to be quasi-convex if and only if

S D f [ p + π ( * ) ] dx > f(p) m ( D ) , ^ (*) = ζι

χa(x),

for each constant p, each domain Z), and each vector function ζ which satisfies

a uniform Lipschitz condition on D and vanishes on D .

We shall show in this section that the integral l{z,D) is lower semicontinu-

ous with respect to the type of convergence specified in Definition 2.1 on each

bounded domain D if and only if f(x9 z,p) is quasi-convex in p for each fixed

THEOREM 2.1. Suppose I(z,D) is lower semi continuous with respect to the

type of convergence indicated on every region D. Then f is quasi-convex in p

for each fixed (x, z).

Proof. Let x0 be any point, R be the cell x0 j< xι <^ x\ + h, Q be the cell

0 <_ xι _< 1, and ζ be any function of class C x and periodic in each xι with

period 1. Let z0 be any function of class C o n R.

For each n, define ζn(x) on R by
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0 * ) = »~l h ζl [nA-i (x-x0)].

Then

and

ζn, R)= fR f{*,*'0 (*) + C (*). P^y <*) + π'γ [nh~ι(x - **)]} dx

= Σ fRa(f {X>zio (X> + ?n (*>» Po r <*) + 4 tnA"1 (* - *o)]}

P'
θγ

where

α = ( α l f

xa=xp

n \,χP = ra"1 (0Lβ- 1), β = 1, , v.

As n—->°°, we see, since / i s uniformly continuous on any bounded part of space,

ζ (x) tends uniformly to zero, and the πι are bounded, that

lim I(z0 + ζn, R) = / f JΓ / [ Λ : , 2 0 (%), p0 (%) + 77 (£)] ^ 1 ^ λ '

FVom the lower semicontinuity of /, we must have

f I f f[x,zQ (*), Po (Λ) + π (ξ)] dξ] dx > f f[x,z0 (x), p0 (x)] dx.
K [ Q J — A

Now, let Λ;0, Z 0 , and p 0 be any constant vectors. By letting

z0 (x) ~ z0 + Pθα ( Λ "" % o ' '

div id ing by hv a n d l e t t i n g h —> 0, we obta in

JU 7 L X O > 2 O > P O + ^ v ς J a ζ ζ_ J \XQJ zo> Po)
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By approximations, we can extend this to all ζ which satisfy a uniform Lipsx:hitz

condition over the whole space and are periodic of period 1 in each xa.

Now, let D be a bounded domain and suppose ζ satisfies a uniform Lipschitz

condition on D and vanishes on D*. Let R be a hypercube of edge A, with edges

parallel to the axes which contains D. Extend ζ to the whole space by first de-

fining it to be zero on R-D and then extending it to be periodic of period h in

each variable. Then a simple change of function and variable reduces R to Q and

establishes the result.

LEMMA 2.1. Suppose R is a cell with edges (2hι), , (2hv) and center

x0. Let h be the smallest ha. Suppose also that 0 < k < h, that ζ* satisfies

a uniform Lipschitz condition with coefficient M >_ 1 on R*, and suppose

\ζ*(x)\ < A, xCli*.

Then there is a function ζ on R which satisfies a Lipschitz condition with

coefficient M on R, coincides with ζ* on /?*, and is zero except on a set of

measure at most

m(R) [1 - (1 - h~ιk)v]-

Proof. Let Rι be the cell with center at x0 and edges 2 (ha - k), α = 1,

• , v . Then, since h = min ha , we have

m(Rx) ^ m(R) . (1 - h~ι k)v .

Define ζχ = 0 on Rx and equal to ζ* on /?*. Then

\ ζ ι ( * ι ) - ζ ^ l < l * i - * 2 | i f * i C Λ , , x2CR*

Thus ζt satisfies a uniform Lipschitz condition with coefficient M on Rx U R*.

By a well known theorem, there exists an extension of ζ to R (the whole space

in fact) which satisfies the same Lipschitz condition.

LEMMA 2.2. Suppose the vectors ζn—»0 (in our sense) on R and suppose

f is quasi-convex in p. Then if p0 is a constant vector we have

m f(Po) < liminf / f[p0 + πn (x)} dx .

Proof. For all sufficiently large n, we have kn < h, and A^—> 0, kn being

the maximum of | ζn (x)\ for x C R* For each n for which kn < h, let ηn be the
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function of the preceding lemma which coincides on /?* with ζ , and let ωn

— ζ — η , Then if each ζn satisfies a uniform Lipschitz condition with coef-

ficient M _> 1 on R, then each η and ωn satisfies one with coefficient M and

2Λf, respectively. Moreover, each derivative ηι

nχ0L is uniformly bounded and

ηι

nχa—>0 almost everywhere. Since / is uniformly continuous on any bounded

portion of p-space, we see that

But the result then follows, since, for each n9 we have

because of the quasi-convexity of the function /.

THEOREM 2.2. Suppose f is continuous in (x,z,p) for all (x,z9p) and is

quasi-convex in p for each (x, z). Suppose also that zn—» z0 on the bounded

domain D. Then

I(zo,D) < lim inf I{zn,D).
— n-*oo

Proof. Let e be any positive number. For each positive integer k, let D^

consist of all the hypercubes of edge 2" whose faces lie along hyperplanes

xa = 2 ia (each i α a n integer) which lie in D. Since all the points [x,zQ (x),

po(x)] and [ x, zn (x), pn (x) ] for % £ D lie in a bounded portion of {x, z, p)

space, we may choose kx so large that

( 2 X ) •£ n , \f<<x>zn,Pn)\ dx < e/5, / \f(x,zo,Po)\ dx < */5

for all n .

Let the hypercubes of Dj€ι be Rγ 9 9 /?#. For each k >_ kί9 let Rfci,

i = 1, , N 2v(<k ~kι\ be all the hypercubes of side 2~k described above

which lie in Djfcj. For each such k, define x^{x)9 z£ (x)9 pζ (x) on D^^ by

x*(x) = [m(β^)]-1 / x dx, z*(x) = [m(Rki)Γι / z0 (x) dx,
κki Rki

(2.2) pi (X) = [ m ( ^ ) ] - 1 fRki p0 (x) dx

rk
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where x £ Rki . Let ζn (x) = zn (x) - z0 (x), πn (x) = pn {x) - p 0 (x) Then, on

Dkι,

f[x,zn (x), pn (x)] - f[x,z0 (%), po (*)]

= {f[x,zn (x), Pn (x)] "~ /[*» *o (*)»

(2.3) +

2o(*)» Po (*)1 ~ /[^(^)» z^(*)f P^

+ [f[x*k(x), z^{x\ pl(x) + ττn (*)] - / [ ^ ( Λ ) , p^(*), P^(«)]} .

Now, all the arguments of / occurring in (2.3) for xζ^D^^ lie in a bounded

closed cell in (x,z9 p )- space over which / i s uniformly continuous. Let

€ ( p ) = max | / ( * ' , z ' , p ' ) - f(*",z",p")\, P > 0

for all (*', 2 ' , p θ and ( x " , 2 " , p " ) in this cell with

then 6 ( p ) is continuous for p >_ 0 with e (0) = 0. Then, for each rc and each

k >_ A:t , we have

| / [ Λ , 2 Π (%), p n (%)] - f[x,z0 (x), pn {x)]\ ;£ e(\zn{x) - z 0 ( * ) | ) »

\f[x,zo(x), po(x) + TΓΛ(Λ;)] - / [ ^ ( * ) , z ^ ( « ) , p ^ ( * ) + w n ( « ) ] | < € [ Γ Λ ( Λ ; ) ] ,

Now, the Γ̂ . (%) are uniformly bounded on D^ and tend to zero almost every-

where on Djtι Hence we may choose a k >_ kγ so large that

S \f[x,Zo{x)f Po(χ) + πn(
χ)] ~ f[χl(χ)> zk(x>>> Pk(χ) + " " Λ ( % ) 1 | rf* "̂  € / 5 >

(2.4)

f \f [x, zo{x), po(x)] - f[xl(x), z*k{
χ), pl{x)]\ dx < e/5,

for all n. Since zn converges uniformly to z 0, there is an nχ such that

(2.5) / \f[χ

9zn{x),Pn(x)] - f[x9z0(x),pn(x)]\ dx < e/S, n > nx .
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Finally, since Xi(x)9 and so on, are constant on each Rki* and / is quasi-convex,

we conclude from the previous lemma that

lim inf f \f[xUx), z*k(x\ p£(x) + πn(x)] - f[xUx), *&(*), p£(*)l \dx >_ 0
n— oo L>kί I J ""

Using (2.3)-(2.5) and the above inequality, we see that

lim inf I(zn,D) > I(z09D) - e.
n —» oo

Since e is any positive number, the result follows.

3. Lower semicontinuity and weak convergence in P s (s :> 1). In this

section, we discuss additional conditions which with the quasi-convexity of

/in p are sufficient to guarantee the lower semicontinuity of l(z,D) with respect

to weak convergence in $β on D.

DEFINITION 3.1. Suppose ζ is of class 5βs on the bounded domain D and

suppose R is a cell with R C D. Then ζ is said to be strongly of class ^>s on

R* if and only if ζ is of class ^βs in x£ on each face xa = const, of R and there

is a sequence ζn of class C o n R such that

Ά Ua - C> R) - » o , DS (ζn - ζ, R*) _ » 0 .

LEMMA 3.1 Suppose ζ is of class 5βs (s >_ \) on the bounded domain D.

For each 0C, 1 <_ 0C <̂  1/, let (αα, ba) be the open interval projection of D on

the xaaxis. Then there exist sets Za of measure zero such that if R:ca<_ xa £ da

(α = 1, , v) is any closed cell in D with

caC(aa,ba) - Za, d« £ (a«, ba) ~ Z« ( α = 1, . . . , v ) ,

then ζ is strongly of class tys on /?*.

Proof. Let R' be any rational cell in D (that is, R = [ C, D] with Cα, Da

rational). In [l], Lemma 5.1, we have seen that if ζ is of class $βs on D, then

(3.1) lim D8{ζ - ζ, R) = 0.
h -* 0

For each α , define

[Σ
β
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Since 1 is obviously of class ψs in < for almost all xa on [Ca,Da], φ%(xa,R')

is defined for almost all xa and

lim JD

a

a \φ%(xa,R')\ ώ α - 0.
Λ —»0 C

By arranging the rational cells /?' in some order and choosing successive

subsequences, we may choose (on account of (3.1)) a final sequence h^—» 0

such that φ% (xa, # ')—> 0 and ~ζ is of class ^ in Λ/ on [ C ^ D£] for each

# α not in a set Za{R') of measure zero ( α = 1, , v ) . Now let

Zα = UZα(/ϊ0;

then

m ( Z α ) = 0 ( α = 1, , v ) .

Now suppose /? is one of the cells described in the lemma. Then it lies in some

rational cell /?' and we may take ζn - ζ^ .

LEMMA 3.2. Suppose R is a cell with edges (2>hι), , (2AV) and center

x0. Let

h = min ha, K = h~ι (ha ha)ί/2 .

Suppose also that 0 < k < h, that ζ* is of class ^>s on an open domain con-

taining R in its interior, and that ζ* is strongly of class 5βs on /?* with

jr. \ζ*\s dS <ks, Ds(ζ*,R*)<Ms ( * > 1 ) .

Then there is a function ζ of class 5̂ on R which coincides with ζ* on

i?*, is zero except on a set of measure

m{R) [1 - α -

and satisfies

2S/2 (s < 2),

Proof. For each x C R, x ^ xθ9 let x*(x) be the intersection of the ray xQx

with /?*, and for each x C R define

0 (x = * 0 ) ,

Let Π~ be the pyramid in R with vertex x0 and base the face F~ where
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On the pyramid Π*, introduce coordinates ξι

9 , ξv~ι

9 r by

xv = %l + rhv, x? = Xy + rξΎ (0 < r < 1, y = 1, . . . , „ - 1).

Then, if r and £" ̂  are considered as functions of x, we have

r(x) = r, *•(*) = [^(at) + %l , , ξv~l (*) + * P A" + xol

Similar coordinate systems may be set up on each of the other Γ^ .

Define

φ(r)
AA"ι(r - 1 +

(0 ;< r < 1 - AA"1),

(1 - kh~ι < r < 1).

Choose a sequence ζ* satisfying the conditions of Definition 3.1; and for each

n, define

£„(*)- φ[r(x)] C [**(*)]•

Then each ζn (x) is of class D ' on /?.

We now compute the derivatives of ζ on each pyramid Πα taking Π^ as an

example. Then

O =Γ"1 ^ G {I < γ < v - l ) ,

= (A")"1 φ' (r) 4* - (ATT 1 ^ y (y summed from 1 to 1/ — 1) .

Then, since r~ι φ(r) <^ 1 and ̂ ' (r ) = k~ι A for 1 - Aί;"1 < r £ 1,

Using the inequality

(a < σs ( | α |

(nnotsummed)

1 (s < 2)

2 < s - 2 ) / 2 ( s > 2 ) f
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we obtain

-* f \ζ*\s ds + K> Da (ζ£, F+)\.
v J

Also

/ Π ί 14 Is «& - j T A_, Γ""1 ^ (r) ̂  jf ; i c | ds

^h~lk 1+ \ c \ s dS-
v

Adding these results for all the Π , we obtain the result for each n; and also

Ds (ζn, R) is uniformly bounded. Thus, we may extract a subsequence which

tends weakly in 5β5 to some function ζ of class ^>s on R. Since each ζn - ζ*

on R*, ζ* tends strongly in Ls to ζ* on /?*, we see from [2], Theorem 8.5, that

ζ - ζ* on /?*. From the lower semicontinuity of Ds (see [2], Theorem 8.2), the

result follows.

LEMMA 3.3 Suppose f is quasi-convex and of class C for all p, and suppose

for all p that

Σ ( f i
p

If p 0 is any constant vector, D is any bounded domain, and ζ is of class ^βs on

D and vanishes on D*9 then f [p0 + π{x)] is summable over D and

fD fίpo + n(x)] dx > m(D) . f (p0) .

Proof. There exists a sequence of functions ζn, each of class C o n fl and

vanishing on and near D , such that Ds(ζ — ζ, D)—»0 (see [2], Definition

9.1). For each n and almost all x on D, we have

1/ [Po + πn (*)] - fίPo + π(x)] \ =
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<. \nn(x) - n(x)\ . K ' J^ I I (1 - t) p0 + π (x) + tp0 + πn {x) \ - + 1 [ dt

(3.2)
< K\πn{*)- π(x)\ { M P o + π{x)\8~ι+ K \p0 + ^ ( x ) ! ' " 1 +

where

is"1 (1 < s < 2)

[s""1 2S~2 (s > 2).

Using the Holder inequality, and so on, and the strong convergence in $βs, we

see that

l i m X flPo + ιrπ(*)l ^ = / / [p 0 + 77(%)] ώ .

Since / is quasi-convex, the result follows.

LEMMA 3.4. Suppose that f satisfies the hypotheses of Lemma 3.3. Suppose

also that each ζn is of class Sβs on a domain D and is strongly of class 5βs on

/?*, fic D, with

lim / * \ζn\
s dS=O, Ds(ζn,R*) <Ms,Ds(ζn,R) < Ms (n « 1,2. )•

n —»<χ> **

ΓΛera for each p 0 , / [ p 0 + πn (x)λ ι s summable for all sufficiently large n> and

l i m i n f / / [ p 0 + τ τ n ( χ ) ] d,x > m ( R ) / ( P n ) , 77L ( Λ ; ) = /" π ί ^ ) *
/I —»oo Λ " *

Proof. For each τι, let

and let K and A be the quantities of Lemma 3.2 for R. Since kn—> 0, we have

kn < h for all n > some nx. For each such n, let 77̂  be the function of Lemma

3.2 which coincides on R* with ζn, and let

Then, since y Λ = 0 on /?*, we have

fR f[π0 +ωn(x)] dx lm(R) f(Po) .
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As in (3.2), we see that, for each n, and almost all x on D,

l / Ί P o + ω π (x) + / ^ (x)] - f[p0 + ωn (x)]\

<K 1 ^ ( ^ ) 1 (hs\Po + ω n ( * ) + κ n ( * ) | β " ι + λ s |po + ω n ( % ) | s " ι +

< K | κ π ( * ) | [(l + shs)hs \Po + 7 7 r t ( % ) | s ^ + sλ* \κn(x)\*~ι+ 1 1 .

Using the Holder inequality, and so on, we see that

l i m X l / t P o + ^ n ( * ) 3 ~ / t P o + ωn(x)]\ dx = 0 ,

from which the resul t follows.

THEOREM 3.1 . Suppose f is of class C in (x,z,p) and quasi-convex in p.

Suppose also that there are numbers k and K, K > 0, such that

( i ) f ( x , z , p ) l k , (in) fχ<χ f%a < K 2 (\P\S + I)2

( " ) f i f i < K 2 ( \ p \ s ~ ι + I ) 2 , ( i v ) fz. fz. < K2 ( \ p \ s + I ) 2 .
OL OL

for all (x,z,p).

Suppose also that zn—> z0 weakly in 5βs on the bounded domain D and that

either

(a) each zn and z0 are continuous on D and zn converges uniformly to z0 on

each closed set interior to D, or

(b) the set functions Ds (zn,e) are uniformly absolutely continuous on each

closed set interior to D.

Then

I(zo,D) < liminf I(zn9D).

n —>oo

REMARK. If s = 1, weak convergence in ^ s implies the hypothesis (b).

Proof. We note first that hypothesis (ii) implies

(3 3) \ f (χi z*p) ~~ f (χi z >0) = p Γ f 4 (x.z.tp ) dt\
a Jo pa a

< \P\ / ' M i f i (x,z,tf
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< \P\ j f K ( t s ~ l P 5 " 1 + 1 ) d t < K ( s ~ ι \ p \ s + \ P \ ) .

Also, hypotheses (iii) and (iv) similarly imply

(3.4) l / ( * , * , 0 ) - / (0,0, 0 ) | < K(\x\ + | z | ) .

Thus, for all (%, z,p), we have

(3.5) \ f ( x , z , p ) \ < | / ( 0 , 0 , 0 ) | + K ( \ x \ + \ z \ + s ~ ι \ p \ s + \ p \ ) .

Therefore /(z o ,D) and the I(zn,D) are uniformly bounded.

For each OC (1 <_ OC _< 1/), let (αα, ba) be the open interval projection of D

on the xa axis and let Z^ and Z£ be the sets of Lemma 3.1 for z0 and zn. Also

for each α, n, k, let £ ^ k be the set of xa in (α α , fcα) - Z£ , where

D s(F r a,D^α) < t,

A^α ^ e i n g t n e s e t °f x ά such that (Λ;^, #α) C D. Suppose that Ds (zn, D) _< M,

some uniform bound existing because of the weak convergence. Let

Then

For each α, let

εa= u n u ££*, Zo = («α. n - £ α υ z* u u zn

α.
A = l ΛΓ= l n = N n = l

Then m(Z0) = 0. For each (X, each natural number n, and each integer i, define

ZΠj , as the set of all xa such that xa — i 2 ~" C Z o , and define

Z α = U
71, ί

Then/π(Zα) = 0.

Now, choose a point # 0 such that x^ is not in Z (CX = 1, , v). For

each natural number kf let Q̂ . be the totality of hypercubes of side 2 bounded

by hyperplanes of the form xa « x% + i 2~k. None of the numbers x£ + i 2*^

is in Z and, moreover, To and each "zn is strongly of class $βs on /?* with
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Ds (zn9R) uniformly bounded for infinitely many values of n, R being any hy-

percube of any Q.̂ . Since the totality of these hypercubes is countable, we may

choose a subsequence, still called zn, such that I(zn,D) tends to the former

lim inf, ~zn—> To almost everywhere on D, and Ds (zπ,/?*) is uniformly bounded

for R of any Q^ in D. Since zn —> z in | ? s , we also have

lim / I zn - z0 Is dS = 0

for each such R

Now, we first consider the alternative (a). Let 6 be any positive number.

For each k, let Dk be the union of all the cells of Q̂ . which are interior to D.

Since / i s bounded below and I(zo,D) is finite, we first choose kx so large that

(n = 1,2, )•

(3.6)

1 (zn,D-Dkί) > - 6/5

I (zo,Dkι ) > I(zo,D) - 6/5.

For this kl9 let Rl9 , Rq be the cells of Dk and for each k >_ kί9 let

/?*.- (ί = l, , q 2" ( *-*

be the cells of Q̂ . in D^ For each k, define x^.(x), \{x), and P^ix) on Z)̂ . by

(2.9). Then, from (ii), (iii), and (iv), it follows that

\f[x,zo(x), Po(x)] - f[x*k(χ), z*k(x), p*k(x)]

(3.7)

where

| p o ( * ) - p * ( x ) | ,

~ι

" 1 2 s " 2

(1 < s < 2),

2 s " 2 (s > 2);

the method of proof is similar to that of (3.3). If we let

Cn = zn ~ 2o» ">, = Pn ~ Po »

we see similarly that
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\f[x,zo(x), po(x) + πn{x)] - f[x*k(x), z*k(x), p*k(x) + πn(x)]\

(3.8) < K(\Pn(x)\s + 1) {\x-x*k(x)\ + I zo(x)- z*k{x)\ )

+ K(hs I p ^ ^ l 5 " 1 + hs \p*k(x)+ πn(x)\s~ι + 1) \Po(x)~P*k(x)\;

(3.9) \f[x,zn(x), pn(x)] - f[x,zo(x), Mx)]\

< K(\pn(x)\s + 1) \zn(x) - zo(x)\ .

Now, by the Hβlder inequality on each β^, » we see that

(3.10) 1 \p*k{x)\s dx< jΓ | p o ( ^ ) | s dx.
υkί

 υkι

By applying the Minkowski inequality, we see that the integrals

(3.11) X \πn(x)\s dx, S \p*k(x) + πn(x)\s dx
kl kl

are uniformly bounded. Finally,

(3.12) lim f \Po(x) - PUx)\s dx = 0.
/C-KX) L>kγ

Hence, using (3.7)-(3.12)> we may choose a i so large that

(3.13) / \f[x,zo{x), Po{x)) - f[x*k(x), z*k(x), P*k(x)]\ dx< e/5,
kχ

(3 14) ^D \ί^Z^X^ Pn{x)λ - f[x*k(x)9 **k(x) P*k(x) + πn(x)]\ dx < e/5

(n = 1, 2, ),

and then choose nί so large that

(3.15) / \f[x,zn(x), Pn(x)] - f[x,zo(x), pn(x)]\ dx < e/5, n > nι .
Dkι

Since xk(x)9 z^(x)f pk{x) are constant on each Rk{, it follows from Lemma 3.4

that

(3.16) lim inf jΓ f[x*k(x), zUx), pϊ(x) + πn(x)] dx
n -+ oo υk ^
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Using (3.6) and (3.13)-(3.16), we see that

liminf I (zn,D) > l{zo,D) - e.

n —>oo —

The result follows in this case.

We now consider the alternative (b). For each natural number q, we define

fq(x,z,p) = [1 - aq(x,z)] f(x,z9p) + k aq(x,z)9

0 ( 0 < R < q),
aQ(x,z) = 3(Λ - 7)2 ~ 2(R-q)3 (q <R <q + 1),

1 ( « > ? + ! ) , Λ

Remembering (3.3)"(3.5)> we see that each fq satisfies hypotheses (i)-(iv) with

the same k and some K^. Moreover fq is independent of (x, z) for R >_ q + 1,

and also

Thus it is sufficient to prove the lower semi continuity for each q.

For a fixed qr, we note that we may replace | zo(x) - z^(x)\ by

(3.7) and (3.8) and \zn(x) ~ z o(%)| by ψn(x) in (3.9), where

φk(x) = min ( | Z O ( Λ ) - z£(x) | , 2ςr + 2) ,

0 Λ («) = min (I zn(x) - 2 0 (^)l , 2̂ 7 + 2) .

From the uniform boundedness of the φ^ and φn (q fixed), the uniform absolute

continuity of the set function Ds(zn,e), and the facts that

lim φk(x) = 0, lim φΛx) = 0

almost everywhere, it follows that the argument can be carried through as before

for each fixed q.

THEOREM 3.2. Suppose s > v and suppose {satisfies the hypotheses of

Theorem 3.1 with (i) replaced by
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0 ' ) f{x,z,p) > m\p\s + k (rn > 0) .

If z* is any function of class tys on the bounded domain D, then there is a

function zQ of class $ s which coincides with z* on D* and minimizes I(z,D)

among all such functions.

Proof. Let zn be a minimizing sequence. It follows from ( i ' ) that Ds (zn,D)

is uniformly bounded. From [2], Theorem 9.4, it follows that Ds (zn,D) is uni-

formly bounded. But then a subsequence, still called 1-2̂  I, converges weakly in

$ s to some function z0 of class 5ps which coincides with z* on D* by [2], Theo-

rem 9.2. But, from [3], Chapter II, Theorem 2.1, it follows that the equivalent

functions ~zn and F o are equicontinuous on closed sets interior to D. Hence zn

converges uniformly to Fo on each closed set interior to D. Hence, from the pre-

ceding theorem, z0 is a desired solution.

More general theorems involving variable boundary values, similar to those

in [3], Chapter III, §5, with s > v, can be proved.

4 Necessary conditions for quasi-convexity. In the two preceding sections,

we have established the connection between quasi-convexity and lower semi-

continuity. In this section, we shall establish some necessary conditions for

quasi-convexity. In the next section, we establish some sufficient conditions

which are also necessary when /has certain interesting special forms. Unfortu-

nately, the writer is unable to establish conditions which are both necessary and

sufficient in the general case.

LEMMA 4.1. Suppose f is continuous, Q is the cell

\χa\ < l ( α - 1 , . , v ) , δ > 0 ,

and suppose

(4.1) j£ f[p + π(x)]dx l

for every function ζ which satisfies a Lipschitz condition with coefficient < 3

on Q and vanishes on Q*. Then (4.1) also holds with Q replaced by any bounded

domain D.

Proof. Suppose ζ satisfies the conditions on the bounded domain D. Let

R be a hypercube of side h which contains Z), and extend ζ to R :

xo = χCL = xo + h
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by defining ζ = OonR-D. Then ζ satisfies the conditions on R, and

ζ*{x)-h'1 ζ{x0 + hx)

satisfies the conditions on Q, and

ζ*ίi*) - <£α(*b + **)•

DEFINITION 4.1- The function / is said to be weakly quasi-convex if with

each p is associated a § > 0 such that (4 1) holds for all D and all ζ satisfying

a Lipschitz condition with coefficient < 8 and vanishing on D* .

In other words, / is weakly quasi-convex if and only if each linear function

furnishes a weak relative minimum among all Lipschitzian functions coinciding

with it on the boundary, whereas / is quasi-convex if and only if any linear

function furnishes the absolute minimum among all such functions. Thus we have

the following result.

THEOREM 4.1. // f is continuous and quasi-convex, it is weakly quasi-

convex.

We shall see that if / is weakly quasi-convex and continuous, then / satis-

fies a uniform Lipschitz condition on any bounded set in p-space and satisfies

a generalized Weierstrass condition (see Theorem 4.3) which reduces to the

ordinary Weierstrass condition if / is of class C (see (4.7)) and is equivalent

to the Legendre-Hadamard condition (see (4.8)) if / is of class C " .

LEMMA 4.2. Suppose φ is continuous, and suppose corresponding to any

point X in Ev there is a 8 > 0 such that for any unit vector μ we have

kφ(λ0 - hμ) + hφ(λ0 + kμ) :> {h + k) φ(λ0) (0 < h < δ , 0 < k < 8).

Then φ is convex in λ.

Proof. Let λ 0 be any point, and μ any point with | μ| = 1. We shall show that

φ{t) = φ(λ0 + μt)

is convex in t. From the hypothesis, it follows that for each ^ , there is a

8(t0) > 0 such that

( 4 . 2 ) kψ{t0 - h) + hψ(t0 + k ) > ( A + k ) ψ(t0) ( 0 < h < 8, 0 < i < S ) .
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Now, suppose tί < t2 . Let

t ~tx

l ψ ( t 2 ) - ψ ( h ) ] .
t2 -

Then χ(t) satisfies (4.2) and χ(t\) = χ(h) - 0. Suppose M = max χ(t)

(t1 <C t <^ t2), and suppose M > 0. Let ί0 be the smallest value of t such that

χ(t) - M, and let the number δ(t0) be chosen as above. Clearly tγ < t0 < ί2.

Choose £3 and £4 with

Then ^ ( ί 3 ) < M, y ( ί 4 ) <_ Af, so that

which contradicts the hypothesis. Thus x (t) <^ 0, so that

Since tx and t2 were arbitrary with tx < t2, the function ψ is convex in t. Thus

0 is convex in λ.

THEOREM 4.2 // / is weakly quasi-convex, then f(pι + λα ζι) is convex in

X for each fixed p and ξ.

Proof. Let pι

a, ξι and λ Q α b e fixed and let μι be any unit vector, and sup-

pose h > 0, h > 0. Choose δ(p^, ζι

9 λQ α) > 0 but so small that, for any bounded

domain G,

(4.3) ζ i ^ i i

for all £ satisfying a Lipschitz condition of constant < δ on G and vanishing on

G . Let (μ 1 , , μ j / ) b e a normal orthogonal set of unit vectors. If ξ = 0, the

result is obvious. If ξ £ 0, choose h and A; with 0 < h \ξ\ < δ, 0 < k \ξ\ < δ,

and let p be any number > | £ | / δ Let // = (1/p) k, K = (1/p) Λ, and let i? be

the rectangular parallelepiped

^ < /> (/3 = 2, , v)
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where

μβ

Let Fΐ be the face yι = - p //, F* be the face y 1 = p K, Fg be the face

yβ = — p , F + be the face yβ = p 9 and letΓΠ and Π tbe the pyramids with vertex

at the origin and base FT and Fβ9 respectively. Let ζ be defined on R to be

continuous on R, zero on /?*, linear on each EL and IIί", with ^(0) = <f. Then

(4.4)

, on Π'

, on

Also

(4.5)

lβ)= v

pv K, m{R) = 2v~ι pv (H + K)

( j 8 = 2 , f i / ) .

Then, by applying (4.3), (4.4), and (4.5), we obtain

1 f 2A; Ίh

τ;

Letting p—>oo, we obtain

^ )

( h + A)

From the preceding lemma, it follows that f (pι

a + λaξ
ι) is convex in λ for each

ζ and p.
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THEOREM 4.3. Suppose f is continuous and convex in λ for p and ξ.

Then f satisfies a uniform Lipschitz condition on each bounded closed set,

and for each fixed p there exists a set of constants A? such that

(4.6) α ^ f α

for all λ and ξ. If f is of class C, (4.6) holds if and only if A* - f ι, that is,
Pa

(4.7) / ( p ' . + λ ^ ) > / ( p ) + / i ( P ) λ α ^ .

Pa

If f is of class C", (4.7) holds for all p, λ, ζ if and only if

(4.8) / p ί p ; ( p ) λ α λ ^ f ι ^ > 0

for all λ, ξ, p.

Proof. Suppose, first, that / is of class C". Let p and ξ be fixed. Then

(4.7) follows from the convexity in λ. Moreover, since each unit vector e£ in

the p-space is of the form λ ξι, we see from the convexity in λ that

(4.9) f(p)-f(p-ea)<fi(p)<

V *J = pα

for all p. Thus the derivatives of / are uniformly bounded by these differences

in the values of f on any bounded part of space. Moreover, in this case, if

constants A? satisfy (4.6), we must have

Now, if / is of class C"9 equation (4.8) with p replaced by pι

a + λα £ ι i s

equivalent to the condition that / is convex in λ for each fixed p and ξ.

Finally, if / is continuous and has this stated convexity property, it is clear

that the A-average function also does, and f^ is of class C. By letting h—»0,

we see that / satisfies a uniform Lipschitz condition on any bounded closed

set. Now, choose hn = n ι and choose p fixed. From (4.9) and the uniform con-

vergence of /̂  to f on any bounded part of space, we conclude that the de-

rivatives /Λnpί (p) are uniformly bounded. We may therefore choose a subse-

quence, still called hn, such that
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Since (4.7) holds for all λ and ξ for each n, (4.6) holds in the limit.

5. Sufficient conditions for quasi-convexity. In this section we prove one

general sufficient condition and then give conditions which are necessary and

sufficient when / h a s certain interesting special forms.

LEMMA 5.1. Suppose ζ satisfies a uniform Lipschitz condition on the closure

D of the bounded domain D and suppose ζ = 0 on D . //

1 < μ < v, 1 < iχf , iμ < N, 1 < OLX < α 2 < < aμ < v,

then

J dx = 0.
μD T / α l aLL\

d(x S , x μ)

Proof. Choose a large cell R containing D in its interior, and extend ζ by

defining it to be zero outside D. Then the second /^-average function ζ^ is of

class C " on R and vanishes on and near R . Since any integral of the above

type formed for ζ^ tends to that for ζ as h —> 0, we need prove the theorem

only for functions ζ of class C o n cells R.

As an example, take i* = 0(g= β, β = 1, , μ, D = R. Then

= fR* Cμ Σ ( - D μ + α

α = 1 .

Σ
α = l dxa

where

the last equality holding by Green's theorem. But the boundary integral vanishes

since ζ - 0 on /?*, and the integrand in the second integral vanishes on R (see

[3], Chapter II, Lemma 1.1, for instance).
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THEOREM 5.1. A sufficient condition that f be quasi-convex is that for

each p there exist alternating forms

A? j , Af? πi π L , . . . , A?u " ''a.v i r ' v . . . I T ' "
i a' ij a β> ι l f •• , ι v ax av

such that for all π we have

Proof. This is an immediate consequence of the preceding lemma.

THEOREM 5.2. // the a°β are constants and

(5.1) / < P > - ί f Pi p £ .

a necessary and sufficient condition that f be quasi-convex is that

(5.2) <tf λaλβ ξι ξ' > 0

for all λ and ξ.

Proof. If ζ - 0 on D*f we see from Lemma 5.1 that

fDf\-P+ *(*)] dx = f(p) m (D) + JD <ήf <(*) πμx) dx.

But Van Hove [6] has shown that the condition (5.2) is necessary (this also

follows from Theorem 4.3) and sufficient for the second integral to be > 0 for

all ζ of class D' on D which vanish on D (hence this is true also for all ζ of

class $β on D and vanishing on D ).

LEMMA 5.2. Suppose

for all x and y for which

Σ bi

Then there is a constant K such that
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atj = Kbη (i, j = 1, , n).

Proof. We may introduce new variables ξ and η by

x = cξ, y = dη,

c and d being n x n nonsingular matrices. Let a and b be the matrices of the

original forms and A and B those of the transformed forms. Then

A = c'ad, B = c'bd (cf. = c . ; ) .

We shall show that there is a scalar K such that y4 = KB. We may assume that

Ba = 1 (ί = 1, . . . , r); B/y = 0 otherwise, r < n,

unless B = 0 in which case /4 = 0 also and the theorem holds. By taking ηs = 1,

ηl = 0 (/ ^ s, s = 1, , Λ) in turn we see that

Ais = 0 (t = 1,. . . . , rc, 5 > r); 4 ; s = 0 (i £ s, s = 1, , r, i = 1, . . . , n).

Then, by choosing 1 < s < t < r and setting ηs = 7/ = 1, 7/ = 0, / 7̂  5, / ^ t,

we have

(-4»s + 4 t ί ) ^'" = 0 for all f with ξs + ξι = 0.

Thus tliere exists a constant K (s,t) such that

4 S S + Ast = X (s , ί ) , ' 4 ί s + >4tί = X ( s , ί ) .

Hence

^ 11 — ^ 2 2 = = / i Γ r — ^ >

so that v4 = /vβ.

THEOREM 5.3. Suppose that N = v + 1 arc*/

(5.3) / (p) = F(Xl9..., Xv+X),

where F is positively homogeneous of the first degree in the X( and

Xi = - det Mi (i = 1, , i/), ^ v + 1 = det Mv+ι ,

* v + i = U P . 1 . •••. P . V I I , Mi = l l p i , •••, P Γ 1 . P Γ > PL+1> — .pva\\

{i = 1, •• , v).
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Then f is quasi-convex in p if and only if F is convex in the X(.

Proof. If F is convex in the Xi, it follows from Theorem 5.1 that / is quasi-

convex in p.

Hence suppose / is given by (5.3) and is quasi-convex in p. If

then

(5.4)

Also, since

Pk

β Xk = 0 ( / 3 - 1 , . . . , v),

we have

(C r\ k v . __ s>α y

Now, choose a set of Xi not all zero and choose any p such that

Since / is quasi-convex and hence weakly so, there are constants A1 such that

Since /depends only on the X.f we must have

(5.6) Af λaξ
i <0 for all λ, ξ with Xkp^ λ α ξl = 0 (k = 1, . . . , v + 1).

Obviously, then, the equality must hold in (5.6). Using (5.4) and (5.5), we see

that

(5.7)

Hence,

(5.8)

for all

we

λ,

must

ξ for

have

which

Af λα ξ* = 0

(5.9) X. ξι = 0 and Df λa ξι = 0, Of = Xk Xkpi.
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Now, since not all the X^ are zero, assume X^ ̂  0. Then

(5.10) Σ te^-

for all λ, ζ for which

(5.11) Σ ( D f ^ -
itk

From the preceding lemma, it follows that there is a constant K such that

(5.12) A^.Xk-AlXi^

Hence

(5.13) Af = KDf + La X. , La = X" 1 ( 4 * - AD*) .

From (5.7) and (5.13) it follows that

(5.14) Af λa ξ
ι = KDf λα ξ

ι + La λα X. ξι = Ck AXk, Ck =

Finally, if we are given any values of the ΔZ/ , the quantities

h = P* Δ h <*' - ! ' » ") a n d Av+i = ̂  Δ Z t

are determined and the ΔA .̂ are also uniquely determined by the h^. Using (5.7),

we may determine the λα in terms of the hj (i - 1, , v), and substitute them

into

*v+l - * * * * * - * ? * . £ ' .

and we merely have to choose the ζι to satisfy the equation

l = 0 w i t h X ξι' + 0;

this is always possible unless all the D^h^ — 0. Thus, unless these linear

relations in the ΔX hold, we have

(5.15) F(X+ ΔX) =

The result follows in this case by continuity.
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Finally, since F is homogeneous of the first degree, we see by taking

AX = hX, A > - 1,

that

F [ ( l + h ) X ] = ( 1 + h ) F ( X ) > F ( X ) + h C k X k ,

o r

h[F(X) - CkXk] > 0, A > - 1.

Hence F(X) - C X^ Then by setting X = hXQ, XQ £ 0, choosing the C for
this XQ, and then letting A—> 0, we see that (5.15) holds for some C even if
X = 0.
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