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ON THE BARYCENTRIC HOMOMORPHISM
IN A SINGULAR COMPLEX

P A U L V. R E I C H E L D E R F E R

I N T R O D U C T I O N

0.1. Radό has introduced and studied the following approach to singular

homology theory (see [2; 3; 4] for details). With a general topological space X

associate a complex R s= R (X) in the following manner. For integers p ^ 0, let
vo> , Vp he a sequence of p + 1 points in Hubert space Z?^, which are not

required to be distinct or linearly independent, and let \vQ9 , vp | denote

their convex hull. Suppose that T is a continuous mapping from | vOf , vp \

into X. Then the sequence vQ9 , vp jointly with T determines a p-cell in/?,

which is denoted by (v0, , vp9 T) . The free Abelian group Cp generated

by the p-cells in R is termed the group of integral p-chains in R. For integers

p < 0, Cp is defined to be the group consisting of the zero element alone. The

boundary operator dp: Cp—
>Cpmί is defined, in the usual manner, as the trivial

homomorphism if p £ 0, and by the relation

dR ( v 0 , , vp, T)R = £ (-l)P ( v 0 , . . . , ϊ i t . . . , v p , T ) R

P
i = o

if p > 0. Since dpmi dp = 0, one introduces the subgroup Zp of p-cycles in Cp

and the subgroup Bp of p-boundaries in Cp in the customary way, and defines

the quotient group of Zp with respect to Bp to be the homology group Hp .

0.2. The approach to singular homology theory pursued by Ίladό differs from

other approaches in that absolutely no identifications are made. Thus two p-cells

(vό, 9 vp, T')R and (v"f , vp\ T")R are equal only if they are identi-

cal; that is, if v\ = υ" for i ~ 0, , p and T = T on | t>ό, , vp \

= \VQ'9 , f p | . In [3;4], Radό introduces a technique for making identi-

fications in a general Mayer complex and applies his procedure to study identi-

fications in R9 particularly those which yield homology groups isomorphic to the

Hp. It is a primary purpose of the present paper to pursue the matter further in

Received January 24, 1951.

Pacific J. Math. 2 (1952), 73-97
73
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order to establish stronger results than those obtained by Radδ.

The identification scheme of Rado for the complex R is briefly described in

§0.3 below; the reader should consult [3, §1] or [4, §5] for details.

0.3. Let \Gp\ be a collection of subgroups Gp of the group Cp of integral

p-chains in R such that dp Gp C Gp_i for every integer p; such a system is

termed an identifier for R. Let CT1 be the quotient group βf Cp with respect to

Gp, and denote that element of C™ to which a chain cp in Cp belongs by \cp }.

The restriction on the groups Gp clearly implies that the element \dp cp\ in

Cp-i is independent of the choice of the representative Cp of the element \cp}

in C^; thus one may define homomorphisms d%: C^—•CrΓ-i by the formula

d™ \cp ? = \dp Cp\. The resulting system of groups C™ together with the operator

d™ constitutes a Mayer complex m with homology groups //™. Define a natural

homomorphism πpi Cp—>C™ by the formula πp Cp = { Cp \, It is readily verified

that πp is a chain mapping; hence it induces homomorphisms π*p: Hp—>H™ If

for every integer p these homomorphisms are isomorphisms onto, then the identi-

fier \Gp\ is termed unessential for R. Rado notes that a necessary and suf-

ficient condition in order that an identifier Gp be unessential for R is that every

cycle Zp in Gp should be the boundary of some chain cp+ί in G p + 1 . (See [3,

§§1.3,1.4,1.5] or [4, §5].)

0.4. One of the principal results in this paper may now be described. Let

βp : Cp—*Cp ^ e the barycentric homomorphism in R (see [3, §3.1] or [4, §6];

also §1.3), and denote by N {βp) the nucleus of this homomorphism for every

integer p.

THEOREM. The system of nucleiN (βp) of the barycentric homomorphisms in

in R constitutes an unessential identifier for R (see §3.2).

This result is combined with those of Radό in [3] to obtain stronger theorems

concerning identifiers than any previously obtained. Since further definitions

are necessary before these results can be described, the reader is requested to

consult §3 for their statements.

0.5. In the process of proving the theorem above, various results of inde-

pendent interest have been attained. The reader is referred especially to §§1.6,

1.7, 1.10, 2.2 for theorems which show the structural description of the barycen-

tric homomorphism and of the barycentric homotopy operator.



ON THE BARYCENTRIC HOMOMORPHISM IN A SINGULAR COMPLEX 7 5

I. F U R T H E R RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Radό* [3;4], the auxiliary complex K is the "formal complex", in

the sense of [ l ] , for the set E^ of points in Hubert space. For integers p >; 0,

p-cells in K are ordered sequences (v0, , vp) of p + 1 points in E^, which

are not required to be distinct or linearly independent. These p-cells are taken as

the base for a free Abelian group Cp, which is termed the group of finite integral

p-chains in K. For p < 0, the group Cp is defined to be the group composed of

the zero element alone. (See [3, §2.1] or [4, §6].)

1.2. In K the following known homomorphisms will be used. (See [3, §2.2] or

[4, §6].) *

(i) For integers /, p such that 0 £ / £ p, p > 0, the homomorphism

jp' Cp * ̂ p - l

is defined by the relation jp(v09 , vp) = (—IV (v0, , ty, , vp)f where

the symbol A is placed over the point VJ to indicate that VJ is to be deleted. For

j = p ss 0, j p is defined to be the trivial homomorphism. A homomorphism differ-

ing from this one only by the absence of the factor (—1)' has been used by Radδ

in [2, §2.6]. The definition given above has been chosen because it permits

simplifications in later definitions and formulas.

(ii) For integers p > 0, the boundary operator

^ P : P * P " i

is defined by the formula

P
dp (v0, , vp) = ^ (-I)' (ι>0, , VJ, , ι^).

; = o

For integers p £ 0, dp is defined to be the trivial homomorphism.

(iii) For integers p >. 0 and an arbitrary point v in E^, the cone homo-

morphism hpi Cp—> Cp + i is defined by the relation

hv

p (vQ9 , vp) = {-l)P + ι (v0, , vp, v).

For integers p < 0, hp is defined to be the trivial homomorphism.

(iv) For integers /, p such that 0 £ / £ p - 1, the transposition homo-

morphism tpj: Cp —> Cp is defined by the relation
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ιpj(VO> ' * # ' Vj9 Vj + l f , Vp) = (v0, , Vj + l f Vj, , Vp) .

Observe that tpj (v09 , ι>p) = (v09 , Vp) if and only if Vj = vy +1 •

(v) The barγcentric hornomorphism β : C —» C is defined as follows.
J r ^P P P

For integers p < 0, /3 is the trivial homomorphism; for p = 0, β Q = 1; and
for p > 0, β is defined by the recursion formula

βp (*Ό> ' 9

 V

P) = hp - ! β p - ! (9p (v0, . v p ) ,

where έ is the barycenter of the points v0, , vp.

(vi) The barycentric homotopy operator pp used by Radδ [ l ; 3> §2.2 (iv)

4, §6] will not be used in this paper. In its stead, a modification p*p is presently

introduced, which has a simpler form, satisfies all the important identities which

hold for the ρp> and has useful properties not possessed by pp. The modified

barycentric homotopy operator

is defined as follows. For integers p < 0, p*p is the trivial homomorphism; for

p = 0, p + p is defined by the relation

and for p > 0, p* is defined by the recursion formula

P*P (v09 , vp) = - λ p [ l + p*p-ι dp] (v09 , vp)9

where b is the barycenter of the points v09 , vp.

1.3. Amongst the preceding homomorphisms the following identities hold (see

[2, §2; 3, §2.3]):
P

dp = Σ h ( P > 0);

dp+1h% + hv

p-ι dp = 1 (p > 0) ;

dp βp = βp-ι dp (- oo < p < + oo)

(0 < P
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Of these identities, only the last is new; it may be established by an inductive

reasoning similar to that used to prove the corresponding identity for the conven-

tional barycentric homotopy operator pp.

1.4. For integers k9p such that 0 j< k £ p, the homomorphism

is defined by the relation

and the homomorphism

is defined by the formula γp = Σ/p = 0 ^*p Obviously one has the identities

&*p(ι>0, , vp) = -kp + ι hp

h (v0, , vp)9 p >_ 0 ,

&*p (̂ o» * ' 9 vp) = A ^ χ kp (v0, . , vp), p > 0 .

Now the reader will easily verify the relations

(* " D*p -1 j p » 0 < / < k < p,

jp

k*p -I jp

* * p - ι ( / + l)p , 0 < k < j < p ,

kp , 0 < A; < j = p

( / - D p **p . 0 < A < / < p f

/p(* + l)*p , 0 < / < k < p.

From these relations the following identity is readily established:

y P - i dp = dp (γp - 1) .

Using the identity, the reader will easily prove the following result.

L E M M A . If P (X) be any polynomial having integral coefficients^ then

P<Ύp-i) dp = dp P(γp - 1).

Explicitly, if P {x) = ) . . <*iχl

9 where the a{ are integers, then
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where ylp means that the homomorphism γp is to be repeated i times.

1 5 For integers k9p such that 0 _< A ^ p, the homomorphism

6p& 2 Cp * C p + i

is defined by the relation

t>pk(v09- , vp) = (-1)* [v0, , vfa b(v0, , vk),

b(v0, , t ^ , ^ +ι), , b(v0, , v^, , vp) J ,

where a(v 0 , , t^) i s the barycenter of the points v0, , Vq. Verification

of the following simple relations is left to the reader:

jb (ι>0, >vp) .
~hP v^o* ' ' J

 vp> = bpp (v09 . . , vp);

,b(υQψ.. fv p ) v
~ Λ P ^p ~ 1 k (v09 , Vp - ^ = 6 p £ Λp

p- ! ( v 0 , . . . , vp - J

W < A < p - 1)

-hp bp-xk ]p\v09 - , Vp) = bpkj*p(v09 , Vp)

(0 < * < p - 1, 0 < / < p)

6 ( t ; 0 , • • • , V p ) , , Λ . .

-Λp ^p-lA; °p\v09 , Vp) = fyjfcyp Uo> , ί̂ p)

(0 < k < p - 1)

Lb (vQf •• ,v ) i-l . , v * / \
Λp

 P bp~tk dp γp ; * p ( v 0 , * , vp) = 6pΛ. y p j*p{v09 , vp)

6 (f O , . ,V p ) ί . v 1 + 1 .
p υ p 6 p - ! jfc dp γp (v0, , Vp) = 6pA; y p (v09 ,

If P (x) be any polynomial having integral coefficients, then, for 0 j< A <. p — 1,

we have

A υ ° f * " ' p
dp P (γp) (v09 , vp) = £>p& y p P ( y p ) (v09 • • , vp)
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1.6. For the homomorphisms βp and p.*p*jthe following structural descriptions

are now obtained.

THEOREM. The following relations hold:

P*o = 4oo»
P

P*P = bpp + Σ έ pp-7 fy # ' * fy> * / + ^ (p > 0) .

Proof. It is sufficient to verify these formulas for a given p-cell(v0, , vp).

For p = 0, the formula p*0(v0) = ftoo^o) * s obvious from the definitions. So

assume that

p - i

P*p - l = &p ~ l p - l + Σ bP " i P ~ i -/ Yp - i # * #
 (ΎP " i - / + D (P > χ ) •

Using §1.2, §1.4, §1.5, and this assumption, and letting b = i ( v 0 , , vp\

one obtains

P*p (v0, . , v0)

P*p - i dp(v09 . . . , Vp)

ί>pp (^05 > v p) -Ap ftp - 1 p -1 <9p (t; 0, , vp)

P b

~ Σ A P & P - 1 P - 1 -/ yp - 1 * fyp - 1 ~ / + 1^ d
p

P 6

- Σ Apέp~ lp -l -;^> (yP - 1) (yP -/) (*
7 = 1

pp (^o> » Vp) + ftpp - 1 yp (^0> ' ' * 9 Vp)

P
+ Σ bpp-j yp (yp - 1 ) (yp - / + D (̂ o»

p

p + Σ hp-j Yp * *' ^p ~/ + ^ (̂ o> »
7 = 1
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So the proof is complete by induction.

1.7. THEOREM. The following relations hold*.

βo = 0i *oo>

βp = Op +1 b

Po YP (yP ~ 1) * typ - P + 1) > P > °

The proof is similar to that for the theorm in the preceding section.

1.8. From these formulas for βp and p^ and the identities in §1.3, many

further interesting relations may be obtained. For example, it is easy to establish

the following results:

(p > 0);

dP = ~Pp P*P~ι

βp = (P + Dp + 1 (p + 2) p + 2 p*p + ! p*p (p >. 0) .

These relations are not needed for the present purposes; they may be studied

on a later occasion.

In order to clarify the structural descriptions for βp and p*p given in §§1.6,

1.7, it is convenient to introduce another homomorphism.

1.9. For integers p >_ 0, let i0, , ip be any rearrangement of the se-

quence 0, , p, and put £ l o . . . ι equal to +1 or to ~1 according as i09 , ip

is obtained from 0, , p by an even or by an odd number of transpositions.

With each rearrangement one associates a homomorphism

defined by the formula

τ p (v0,

V

' , Vp) =

cp^
CP

, vip).

Sometimes, for clarity, the more explicit notation Tp(i0, , ip) is used for

this homomorphism. For integers / such that 0 <^ j <_ p, denote by Tpj the class

of all Tp(i0, , ip) for which i0 < < ij — that is, for which i0, , ij

are in natural order. Obviously Tpp consists of just one element, namely

^p(0, , p) = 1; and Tpo consists of the Ίp obtained by all possible re-

arrangements of 0, , p. Moreover, Tp y - x D Tpj for 1 £ j' <^ p. Clearly the

number of elements in the class Γpy is (p + 1) p (/ + 2) for 0 _£ / ^ p — l

For each integer / in 0 <_ / £ p, define a homomorphism
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cp

by the formula

Ppi = Σ τp ( χ P c r p i ) .

Observe that P p p = 1. The reader will readily verify these identities:

k*p Ppj = Ppj, 0 < < k < p;

i
£ k*p Ppj = Ppj-ι, 0 < / < p.

k =0

From these identities, the following result is established.

LEMMA. The following relations hold:

Ppp = ι,

Ppp-j = y P ( y p - l ) ( y P - y + l ) , 1 < / £ P

Proof, That Ppn = 1 was noted above. From the second relation above it

follows that

P
ppp~ι = Σ k*p ppp = ΎP PPP β yp»

A; = 0

so the general formula is established for j = 1. Now suppose that

Ppp~j + ι - y p ( y p - l ) (yP - ; + 2) (2 < / < p) .

Using the preceding identities, one finds

P

YpPpp-j+l = Σ k*pPpp~j + l
k=o

p -/ + l p

Σ ^*p ^ p p - / + i + Σ ^*P PPP~i + ι

k = 0 A; = p - / + 2

= P p p - + 0' - W ^p p -/ + 15

^ P p -/ = (yP - / + D p p p -y +1 = yP (yP - l) (yP - / + D •

Thus the lemma is established.
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1.10. Combining the results of the preceding lemma with those in the theo-

ems in §§1.6, 1.7, one obtains the following description for the homomorphisms

βp and p * p .

THEOREM. The following relations hold:

βP = 0 p + 1 bp0 Pp0 = £ 0 p + 1 bp0 τp (p > 0 ) ;

P P

P*P = Σ hpk p

Pk = Σ Σ bpk τ p (P > 0).
k=o /c=o τp e τpk

1.11. Let t> 0 , , vp (p •> 0) be any sequence of p + 1 points in E^. In

§§1.2, 1.4, 1.5, 1.9, homomorphisms / p , tpj, k*p, ip&, T p , have been introduced

which, when applied in any appropriate combination hp to the special chain

(v0, , vp), yield a special chain either of the form +(yo>
 # * > Ύq) 0 Γ °̂  t n e

form -(yo» ' > 7q) I n t n e sequel, [Ap {v0, , f p ) ] is defined to be thep-cell

(yo> * 9 Ύq)i a n ( l I hp(v0, , Vp) I denotes its convex hull | y 0 , , yq\ .

For example,

[0 p +! 6 p 0 Tp(i 0 , , ip) (i;0, , Vp)]

If for two sequences of points ιt0, , up and v0, , tγ> it is true that

= (b(vo)9 b{v0, vx\ , 6(v0, vi9 , vp))

then clearly wy = Vj for 0 < / < p. From the remarks in §1.9 and the preceding

theorem, one thus obtains the following result.

LEMMA. // the points v0, , Vp (p 2l 0) are distinct, then the chain

βp(vo> ' > vp) contains (p + 1)! terms; that is, for distinct elements Ίp and

Ίp in Tp0, we have

[Op + l ^po tp (t>o> 9 vp)] £ [Op +i 6po Tp'(t>0» , v p ) ] .

1.12. LEMMA. Lei v0, , vp (p >_ 0) be any set of p + 1 points in E^,
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not necessarily distinct or linearly independent. A necessary and sufficient

condition that a point v belong to the convex hull of the points

(i) b(v0), b(v0, t ^ ) , , b(v0, vx , , vp)

is that it possess a representation of the form

P
(ii) t;= j μjVj

7 = 0

Proof. If v belongs to the convex hull of the points (i), then it has a repre-

sentation of the form

P
(iii) v = ]Γ λj b{v0, ,Vi)

i =o

Thus

P ί VJ P P λ;

»- Σ λ< Σ 77τ= Σ Σ — T V
ι = 0 / = 0 7 = 0 1 = 7

which gives a representation of form (ii) for v. Conversely, if v has a representa-

tion of form (ii), put λ; = (i + 1) (μ; - μι + γ) for 0 £ i ^_ p — 1, λp - (p + 1) μp .

It follows at once that v has a representation of form (iii), and hence belongs to

the convex hull of the set of points (i).

1.13. For integers p >_ 0, if u0, , up is any sequence of p + 1 points in

Eoo, then \u09 , Up \ will denote its convex hull. Let k be any integer such

that 0 £ k _£ p, and consider the sequence of p + 2 points

(i) u09 u^9 b(uQ9 UA ) , , b{uQ9 , u/ΐ9 , Up),

that is (see §1.5), the sequence of points occurring in bp^ (uθ9 , up). Let

(ii) w09 , Wp + ι

be any rearrangement of the sequence of points (i). Designate by x0 = whQ = u,0

the first M; (0 £ i _< A;) occurring in the sequence (ii). In general, let x\ - whι

- uiχ (0 £ Z < A:) be the (Z + l)st U( (0 £ ι £ A;) occurring in the sequence (ii),

and put x\ — u\ for A: + l _ £ Z _ £ p i n case k < p. Now clearly # 0 , , Xp is a

rearrangement of the sequence u09 , u« in which the last p — A; elements are

unaltered; the sequence (i) is a rearrangement of the sequence
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. (iii) x09 , xjς, b(x0, . , xk)9. . . , b(x0, , **, * , xp)

in which the last p + 1 — k elements are unaltered; and the sequence (ii) is a re-

arrangement of the sequence (iii) in which the points xOf , x^ appear in the

same order as in (iii); that is, %/ = wfy for 0 £ I £ k, where 0 £ h0 < hi

< . . . < hk £ p. Now let q be any integer such that 0 £ q £ p + 1. It will be

shown that

(iv) b(w09 , wq) G I b(x0), b{x0, xx\ , b{x0fxl9 , xp) \

(0 < q < p + 1) .

Case q = 0. Then b(w0) = w0. If w0 is one of the u( (0 £ ί £ A;), it follows

by the choice above that h0 ~ 0 and M;0 = %0 = b(x0). If M;0 is not one of the
ui (0 _̂  ι \ £ )̂» there must be a / >_ ̂  such that tc0 = b{uQ9 , w ,̂ , &/)

= b(x0, , Λ^, , */) . Thus relation (iv) is established when q ~ 0.

General case. By a rearrangement, the points wOf , w;̂  may be ordered

into two sets

wh0 = *o 5 * * > whι = «/ (0 £ Z £ A, 0 <_ Ao < < hi < p),

(k £ ί/ + i < ii+2 < < ί9 £ p) .

The special cases which arise when one of these sets is missing are left to the

reader. Now clearly

b(w0, , Wq) = b(wh0, , whq)
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In view of this equation and of the lemma in §1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently es-

tablished.

LEMMA. Let v09 , vp (p £ 0) be any sequence of p + 1 points in E^

Fix T p + ι C Tp+ίo(0 < k < p), τ p C Tpk (see §1.9). Then there exists a

Tp C Tp0 such that (see §1.11).

I °p + 2 bp + l o τ p + l bpk τp(*>o> # ' # 9 vp) I C I Op + ! 6 p 0 Tp'(t;0, . , vp) \ .

Proof. Evidently [τ p(t> 0, , υp)] = (i; l o, . • • , v(p), where ΐ 0 , . . , ip is

a rearrangement of 0, , p such that i0 < < ijς Put αy = V(. for 0 £ / £ p,

so that [τ p (z; 0 , , vp)] = (M 0, , Up). Then

[bpk τp(v0, , vp)]

= (u 0, , ufr, b{u0, u^), , b{uθ9 jUfc, ,Up)),

and [ τ p +1 όp .̂ τ p (v09 , vp)] = (ι^0, , wp + i), where w0, , wp + i

is a rearrangement of

o> > /c> o o * * > "Λ> * •'• f up)

Finally,

[Op +2 ί>p +1 o t p -v l bpk Ίp {v09 , vp)]

= [b(wo)9 b(w09wx)9 , ύ ί ^ o ί ^ i * * " * 9 Wp +i)3

The reasoning of §1.13 shows that there is a rearrangement x09 , xp of

u09 , up9 and hence of v09 , vp9 such that

I Op + 2 bp +1 o τ p + x ipfc τ p (v0, . . , vp) I

C \b(xQ\ bixQ.xJ, , 6 U 0 , x l f 9 x p ) \ .

Let Tp be that element of Tp0 such that [Ίp(v09 , r p ) ] = (Λ 0 , , Λ;p).

Since

[Op +! δp0 ^p'(^o» * 9 ^p)] β (ί>Uo)

the lemma is established.

1.15. If cp is a p-chain in K, and A is a convex subset in EOQ9 then the in-
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elusion Cp C A will mean that either cp - 0 £ Cp or else

n
c p "
Cp = Σ mj(vOj> * » Vp/)»

where the πij are nonzero integers and | voj , , vpj | C A for 1 £ j £ n One

readily verifies the following inclusions (see [3, §2.4]):

jp (v09 ,vp) C I v 0 , 9 υ p I (0 < y < p ) ,

dp (ι>o, * > v p ) C I v 0 , , vp I (p > 0 ) ,

βp(v09 , vp) C I v0, . , vp I (p > 0),

P *p (v0, , Vp) C I v0, , Vp I (p >. 0) ,

« k*p(v0, , ι;p) C I v0, , vp I (0 £ A £ p),

yP (v09 , vp) c I vQ9 , vp I (p >. 0),

*p*(f0,
 5 , V C K , . . . 9vp\ (0 < A £ p),

τp(^0> * * ' > vp) C I v0> ' ' * 9 vp I ( τ p C Γp0) ,

ίpy (vo. . V c I v09 ,vp I (0 < / < p) .

II. R E L A T I O N S IN T H E C O M P L E X R = R(X).

2.1. If A is a convex subset of E^ then for integers p >_ 0, Cp denotes that

subgroup of Cp generated by those p-cells (v0, , vp) for which | v0, , vp \

C A; for p < 0, we have Cp = 0 C Cp (see §1.1). Suppose T: A—>X is a con-

tinuous mapping (see §0.1). For integers p >_ 0 define a homomorphism

by the relation Tp (v0, . , vp) = (v09 , vp9 T)R for (v09 , vp) C Cp .

For p < 0, let Tp be the trivial homomorphism. For chains cp in Cp the notation

7V> Cp — {cp, T) is used. In terms of this notation one finds the relation (see

§0.1): d*(cp9 T)R = (dp cp, T)R.

Now suppose that, for certain integers p,

is a homomorphism from the group Cp of p-chains into the group Cq of qr-chains
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in K with the property that for all p-cells (vOf , vp) in K one has

hp (t>0, , vp) C I v0, , vp I .

Then clearly one may define for these integers p a homomorphism

r R rR . rR

by the formula hR (v0, , vp, DR = (hp (v0, , vp), T)R in case p > 0, and

one may make hp the trivial homomorphism if p < 0. In view of the inclusions in

§1.15, one observes that this definition creates the following homomorphisms in

R (see [3, §3.1]):

jp-- C*-*CΪ-t (0<j<p);

β R

p : C«—>C* ( - o o < p < + c o ) ; γR: CR — > CR ( p > 0 ) ;

P% ^ - > C J + 1 ( - α > < P < + o o ) ; b^ . CR — CR

 + ι (0 < k < p);

fί/ s C " ^ C ? ( 0 < / < P - l ) ; τ j : C« — C« ( T C T ) ;

2 . 2 . From the re lat ions in § 1 . 3 , one der ives the fol lowing ( s e e [ 3 , § 3 . 1 ] ) :

ΘP βR

P - βR-idR

P < - « < P < + « > ;

< / < p - l ) ;

1 p < + oo).

T h e theorems in § § 1 . 6 , 1,7 give r i se to t h e s e formulas for βp and p .

_, dR = /8j - 1 (0 1 p < + oo).

P*p-bR

PP

+ Σ ^pp-jYΪ' 'Λγϊ-J + l) (P>0);

i - »

β R r°R

P

 bR

0 >

βR = °p + i *Jo j ί ^ - w ^ j ί - p + w ( p > 0 )

From the theorem in §1.10, one obtains the following description for βp and p*p.
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THEOREM. The following relations hold:

4 - Σ * ; * * £ - Σ Σ * ^ τ j (p>o).

2.3. The writer is indebted to T. Radό for suggestions which led to the

results presently presented in §§2.3-2.7, 2.9, 2.10, 2,12. The new facts con-

tributed by this paper are contained in §§2.8, 2.11, 2*13. For integers p >_ I,

any chain of the form (1 + tR) (v0, , vpt T)R (0 < j 1 p - D is termed an

elementary t-chain in R (see [3, §3.2] or [4, §7]), and the subgroup of C* gener-

ated by these elementary ί-chains is denoted by Γ Λ . For p < 1, T is defined

to be the subgroup of C composed of the zero element alone.

LEMMA, / / C * G T*9 then

βR

p cR

p - 0,

This lemma differs from that in Rado [3, §3.2], only by the fact that the

barycentric homotopy operator pR has been replaced by the modified operator p

(see §1.2). It may be established by the same reasoning as that employed by

ttadό.

2.4. For integers p L̂ 1> a n y chain of the form

(v0, , vj, VJ + 1 ? . . , vp9 T)

with VJ ~ Vj + x for some / such that 0 £ / 5 p - 1 i s called an elementary fl?-chain

in R (see [3, §3.3] or [4, §7]), and the subgroup of C* generated by these ele-

mentary ^-chains is denoted by DR. For p < 1, DR is defined to be that subgroup

of CR composed of the zero element alone.

LEMMA. If C* € DR, then

(ii) β* cR

p = 0 ,
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(iii) pR
p cR

p€DR
p + ι .

This is the lemma in [3, §3.3], except that the modified barycentric homotopy

operator pR is used in place of pR; it is proved in the same way.

2.5. LEMMA. Let (v09 , Vp9 T) be any p-cell in R (p _> 1).Suppose that

the sequence wθ9 , Wp is obtainable from the sequence vQ9 , Vp by n

transpositions. Then there is an element tR in TR such that

(v09 , vp, T)R = (- l ) n (w0, --.,wp, T)R + tR.

Proof. By assumption there exist n + 1 sequences v0 , , Vpj for 0 <_ / ^_n

where V(o - V{ and V(n = wι for 0 <̂  ι <_ p such that

(**>;» » vpj* T)* = tpij (v0 j - u , vp , - ! , T)R

for some integer ij satisfying 0 <. ij £ p — 1, 1 <̂  / £ n. Clearly

(vo» V ^ = (- I)71 K , Wp, Π R

7 = 1

and the lemma is established.

2.6. LEMMA. Lei (ι;0, , vp9 T)R be any p-cell in R (p >_ 1), for which

Vi = v^ for some i9k such that 0 <_ i £ k <^ p. ΓAew ίAere are elements tR in

TR and dR in DR such that

(v09 . - , t ι p > T)R = tR + dR.

Moreover, 2(v09 , vp9 T) is in T .

Proof. Since the sequence v09 , v;-i, t;̂ , vt , , ^^-p vk+ι> * β ' » VP

is obtained from ι;0, , t?j, , v^9 , vp by k — i transpositions, and

Vj s vyr. by assumption, if follows that

is an element dp of Dp. Moreover, from the lemma in §2.5 it follows that there

is an element tR in TR such that (vQ9 , vp9 T)R = dR + tR, and the first part

of the lemma is proven. Now the sequence v09 , v^9 , v , , vp is

obtained from v09 , t>j, , v^9 , vp by 2(k - i) - 1 transpositions.
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Again, from the lemma in §2.5 it follows that there is an element tR in TR such

that

(ι;0, , Vi, , vk, - , vp, T)R = - (v0, , vk, , Vi, , vp9 T)R + tp .

Since v{ = v^9 one obtains 2(vO9 , vp9 T) - tp and the second part of the

lemma is demonstrated.

2.7. For integers p >_ 0, a chain Cp is termed an elementary rc-chain in R if

it has the form

n

cp =
cp = Σ mΛvθ9

 # * " > vp>
r = 1

where

(i) for 1 £ r <_ n9 the mr are nonzero integers;

(ii) for 1 < Γj ^ r2 — n* the transformations Tr and TΓ are not identical

on I v09 , vp I

(iii) the points t>0, , vp are distinct. The p-cell (v09 , vp) in K (see

§1.11) is called the base for Cp, and the notation cR - cR (v09 , vp) is

used when it is desirable to display the base.

2.8. LEMMA. Suppose that cp is an elementary n-chain in R for which

βp $ = 0 . T h e n ^ + l p * p cR

p = 0 .

Proof. With the notation of §2.7, one finds (see §§2.1, 2.2).

cp = Σ Σ ^ r ( 0 p + 1 6 p 0 T p ( t ; 0 , . . . , V p ) , Tr)
R = 0 ;cp

Σ Σ Σ Σ
T P + I G ^p + i o Λ = o TpζTpk T = i

τ p + ! ά p ^ τp (v09 , v p ) , Γ Γ ) Λ .

In view of §2.7 (iii), and §1.11, it follows from (i) that for each τ p £ Γ p 0 ,

one has

n
(iii) Σ « r ( 0 p + i ί>po τ £ ( v 0 , ••-, t;p), Γ r )

R = 0 ( τ p ' G Γ p 0 ) ,
r = l
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Fix

τ p + i G Tp + 1 0 , τ p G Tpk (o < A < p) .

From the lemma in §1.14 follows the existence of a T p G Γp 0 such that

( i v ) I Op + 2 bp + ί 0 Ίp + ι bpk Ίp(v09 ••• , v p ) \

c I °p + l δpo Tp(^o» * f vp) I •

From (iii) and (iv) one concludes that for each

τp +! C Γp +! o , τ p G Tpk (0 < £ < P ) ,

we have

(v) 2 mr(0p+2 ^p + io τp+i bpk ^ t ^ ^ V ' Γ ^ = 0 #

Γ = 1

In view of (ii) and (v) the lemma is now established.

2.9. For integers p >; 0, the class Np is defined to be that subset of Cp

composed of the chain 0 G Cp and of all cp having a representation of the form

R V •»**
C — 7 C

p *•* p s

s = 1

where

(i) for 1 <̂  s £ n the c p s (t>os, * , vps) are elementary ra-chains (see 2.7);

(ii) for 1 < s t < s2 < n, the point sets v0Sι, •• , vpSί and vOs2» " * ' vps2

are distinct. For p < 0, the class Np consists of the chain 0 C. Cp alone.

Each of the elementary rc-chains cps (v0S9 , vps) (1 ;£ 5 <^ n)9 is termed a

Λ-composant of c p . Observe that the sets Np are not generally subgroups of

CR

2.10. LEMMA. Let

n
CR = Y CR (VQS9 . . . f t, s )

s = l

ie ατιy nonzero element in Np. A necessary and sufficient condition in order that
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βR

 C

R = 0 is that βR cR

s = 0 for every n-composant c* (1 < s < re).

Proof. Trivially the condition suffices. It is presently shown to be neces-

sary. With explicit notations (see §§2.7, 2.9),

βR CR _ V βR CR - y Y* m (8 (v v ) Γ ) R

s = 1 s = 1 Γ = 1

= Σ Σ Σ mrs(Op+ι bpo τp{vos, . . . , ι ; p s ), Trs)
R « 0.

s = 1 r = l τ p (Γ Γ p 0

In view of §2.9 (ii) and of the remarks in §1.11, it is clear (see §0.2) that, for

1 < s < n we have

p c

pS

Σ Σ m r s (Op + ! 6 p 0 Tp ( i ; 0 S f . . . , vps), Trs)
R = 0

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let cR be any element in NR for which βR cR = 0. Then

This result is an immediate consequence of the lemmas in §§2.8, 2.10.

2.12. LEMMA. Every chain cR has a representation of the form (see §§2.3,

2.4, 2.9)

cR =tR+dR+nR (tR C Γ j f dR € DR
p, nR € NR).

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the

proof of its existence which follows. For chains cp = 0 G CR, the result is

trivial, so assume that cR ^ 0. Then cR has a unique representation of the form

n

( i) cR = 2 » » / ( v o / V " . ^ Tj)R*

i - i

whe re t h e mj a r e n o n z e r o i n t e g e r s and the p - c e l l s (voj , • • • , vpj*y ^ / ι ^ a n c ^

" P7*2f; p/ 2 /2 f°Γ 1 £ 7i £ 7*2 £ Λ ^ n e proof is made by

an induction on n. If n = 1, then c ί = mι(vQι9 ••• , ^pi> TJ . If, for some inte-
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gers i, k such that 0 £ i < k £ p, one finds V( t = t ^ , then the fact that Cp

has a representation of the prescribed form follows from the lemma in §2.6. On

the other hand, if all the t>0 1, ••• , vpϊ are distinct, then Cp is an elementary

Ti-chain (see §2.7). Thus the lemma is established in case n = 1. Suppose that

the lemma is true for all chains Cp having a representation of the form (i) with at

most n ~ N — 1 terms (N > 1). For chains Cp whose representations (i) have N

terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of cζ without

loss of generality one may assume it to be the first for which there are inte-

gers i, k such that 0 £ i < i £ p and v(t = v, . By the lemma in §2.6 there

are elements ίpX in Tp and dpt in Dp such that

By assumption there are elements tp2 in Tp, dp2 in Dp, and rip in Np such that

7 = 2

Thus

and since Tp and Dp are subgroups of Cp, the existence of a representation of

the prescribed form for cζ follows in Case 1.

Case 2. Assume that for each (1 £ / £ N) the vojf ••• , vpj are distinct.

By rearranging terms one may obtain from (i) a representation of the form

m

(ii) Cp = £ ^ m Γ S (ί; 0 S , . . . , v p s , Trs)
R, 2 ns = N,

s = i r = i s = l

satisfying these conditions: none of the mrs is zero; for the same s (1 _< s <, m),

1 £ 7*! < r 2 £ Λ S , Uae mappings Γ Γ l S and Γ Γ 2 S are not identical on | t > o s ,

•• > V p s | ; f°Γ 1 l s i < S2 - m> t n e p-cells (vO 5 ] l» ••" » v p s t ) a n ( l ( v os 2 »

'•• 9 vps ) are dist inct in K ( see §1 .1) . Now for each s (1 £ s £ m) clearly

each of the chains

Σ
/ =
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is an elementary rc-chain in R (see §2.7). The proof is carried forth by an in-

ductive reasoning on m. If m - 1 then Cp is an elementary ra-chain in /?, and the

representation (ii) already has the prescribed form. So assume that Cp, whose

representation (i) has at most N terms, has a representation of the prescribed

form whenever its representation (ii) has at most m — M — 1 terms (M > 1).

Suppose now that Cp is a chain whose representation (i) has N terms while its

representation (ii) has M terms

s = 1

Subcase 2.1. Assume that for 1 <_ s ,_ < s2 £ M the point sets v0Sι, ••• , vps

and t>os2> •'• 9 vps2

 a r e distinct. From §2.9 it is clear that cp is itself an ele-

ment in Np and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers 5 with no loss of

generality one may assume these to be s = 1 and s = 2 such that the sets

voί, ••• , Vpi and v02, ••• , tv>2 are the same. It follows that the sequence
v02» ••• » ^p2 i s obtainable from v o v , vpl by a positive number I of trans-

positions. Hence by the lemma in §2.5 there exists for each r in 1 <_ r £ nx an

element tpr in Tp such that

(voι, •• , Vpi, lrι) = V- -U \v02, •• , Vp2f irO + tpr U < r < nί).

Since Tp is a subgroup of Cp , the chain

r = l

is an element £p* in Tp. Consequently,

Σ (~ι)l
cR = ίK,

P P* r - 1

M ns

+ Σ Σ
S = 2 Γ = 1

Clearly the terms in square brackets may be rearranged into the form (ii) with

an integer m £ M - 1, and their representation in form (i) has an integer n £ /V.

By the inductive assumption there are elements t # in Γp , dp , in Dp and ^p in
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NR such that cR ~ {tR* + tR#) + dR + nR, and the existence of a representation

of the prescribed form for cR now follows in Case 2. Indeed, it is obvious in this

case that dR = 0 G CR. So the lemma is completely established.

2.13. LEMMA. If CR isxatty chain in CR for which βR cR = 0, then

The proof follows at once from the lemmas in §§2.3, 2.4, 2.11, 2.12.

R E S U L T S

3.1. In [3, §4.1] (see also [4, §8]) Radό has established a lemma from which

one derives the following statement by replacing the barycentric homotopy oper-

ator p by the modified barycentric homotopy operator pR (see §§1.2, 2.1).

LEMMA. Let \Gp\ be an identifier for R (see §0.3) such that the following

conditions hold:

(i) cR C Gp implies that βR cR « 0;

(ϋ) cR € Gp implies that pR
p c

R CGp+χ.

Then \Gp\ is unessential.

3.2. For each integer p let N(β ) be the nucleus of the homomorphism

βRι Cp—*CR (see §2.1). Since βR is a chain mapping (see §2.2) it is clear

that the nuclei N (β ) constitute an identifier for R (see §0.3). Now in view of

the lemma in §2.13, conditions (i) and (ii) of the lemma above are clearly ful-

filled for the identifier \N(βR)\, and furthermore, this choice of an identifier

yields the maximum amount of information that may be obtained from that lemma.

Thus the \N(βR)\ constitute an unessential identifier for /?, and one of the

main results is now established (see §0.4). It is summarized in the following

statement.

THEOREM. The system of nuclei N(β ) of the barycentric homomorphisms

β : C —>C constitutes an unessential identifier for R.

3.3. In order to compare this result with those in Radό [3; 4], first observe

that it follows from the lemmas in §§2.3, 2.4 that

N(β*)?T*+D* ( - o o < P < + α ) ) .

Moreover, since CR is a free group, it is clear that the division hull oί N (β )
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must be identical with the group N(βR). Thus the group N {βR) also contains the

the division hull of the group Tp + Dp for all integers p. An example is now

given to show that the group N (βR) generally contains more.

3.4. Denote by d0, dl9 d the points (1, 0, 0, •••), (0, 1, 0, 0, ), (1/2,

1/2, 0, 0, •••) respectively, let X be Euclidean %-space, and define transforma-

tions by the following relations:

7\: x = υ0 - 1/2 (i; C \do,dt\);

τ . Λ β ( 0 (v€\d09d | ) ;
2' X \v0 - 1 / 2 {v C \d ,dι | ) ;

> - 1/2 (v C \do,d | ) ;

(i G μ . i J ) ;

Γ4: x = 0 (t> C I dQ9 dt I ) .

Clearly

R (J J ππ \R ίj J T \R ίj J T \R , ίj J nr \Rc χ - ( d Q f d 1 9 l ι ) - { a O 9 a l 9 l 2 ) - { a 0 , d i 9 1 3 ) + κ a Q 9 d ί 9 l 4 )

belongs to C t and βR cR = 0. Moreover, cR is an elementary rc-chain (see

§2.7). An elementary reasoning shows that it cannot belong to the division hull

for the group T ί -f D ί .

3.5. In order to describe the largest unessential identifier for R obtained by

Radδ, a further definition is needed. For integers p >_ 0, let (v0, , vp9 T)

be any p-cell in R (see §0.1). Let wQ9 , wp be any set sequence of p + 1

linearly independent points in E^. Then there is a linear mapping

α: I w09 , Wp I — > I v09 , vp m

such that (λ(w{) ~ V( for 0 £ i _£ p. The p-chain

p P P

is termed an elementary a-chaίn in R (see [3, §3.4]), and the subgroup of Cp

generated by the elementary α-chains is denoted by Λp. For p < 0, Λp consists

of the zero element alone. In [3, §3.4] Radδ has a simple characterization for

the group AR which he uses to define the group in [4, §7].

3.6. For each integer p, put Γ£ = A* + DR + TR (see §§2.3,^2.4, 3.5),

and let Γp denote the division hull of Γp . Then Radδ shows that ίΓp} is an
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unessential identifier in R (see [3, §4.7] or [4, §9]), and this is his best result.

If one sets Δp = Ap + N{βR) (see §3.2) and lets Δp denote the division hull

of Δp, then clearly Δp 3 Γp, and hence Δp D Γp . If one modifies the reasoning

of Radδ in [3, §4] by replacing the barycentric homotopy operator pR by the

modified barycentric homotopy operator ρ*p (see §2.1), one finds that Δp is an

unessential identifier for/?. Thus one obtains the following result.

THEOREM. // Δp is the division hull of the group Ap + N(βR) then the

system {Δp 1 is an unessential identifier for R.
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