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INTRODUCTION

0.1. Radb has introduced and studied the following approach to singular
homology theory (see [2;3;4] for details). With a general topological space X
associate a complex R = R(X) in the following manner. For integers p > 0, let
Vgy + + +, vp be a sequence of p + 1 points in Hilbert space E_, which are not
required to be distinct or linearly independent, and let |vo, « « « , v,| denote
their convex hull. Suppose that T is a continuous mapping from |vg, « + -, vp|
into X. Then the sequence vy, + -+, v, jointly with T determines a p-cell in R,
which is denoted by (v, + « « , vp, T)R. The free Abelian group C; generated
by the p-cells in R is termed the group of integral p-chains in R. For integers
p <0, Cg is defined to be the group consisting of the zero element alone. The
boundary operator 05: Cg—)Cg_l is defined, in the usual manner, as the trivial

homomorphism if p < 0, and by the relation

P
aI;(Uo’ * s Vps T)R = z (_1)P (vO’ Tty f)i, sy Vp T)R

i=0

if p > 0. Since 9%, a{} = 0, one introduces the subgroup Zg of p-cycles in Cs
and the subgroup BS of p-boundaries in Cg in the customary way, and defines
the quotient group of Zg with respect to BI; to be the homology group [1'5.

0.2. The approach to singular homology theory pursued by Radé differs from
other approaches in that absolutely no identifications are made. Thus two p-cells
(g + =+ 5 vpy TR and (0§, + + -, vps T”)R are equal only if they are identi-
cal; that is, if v/ = v/ for i =0, -+ -, p and T'=T" on [vgs + = =5 v
=|vgy « o+, vpl.In [3;4], Rad$ introduces a technique for making identi-
fications in a general Mayer complex and applies his procedure to study identi-
fications in R, particularly those which yield homology groups isomorphic to the
l]g. It is a primary purpose of the present paper to pursue the matter further in
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order to establish stronger results than those obtained by Rads.
The identification scheme of Radd for the complex R is briefly described in
$0.3 below; the reader should consult [3, $1] or [4, $5] for details.

0.3. Let {Gp} be a collection of subgroups G, of the group Cg of integral
p-chains in R such that 85 Gp C Gp-l for every integer p; such a system is
termed an identifier for R. Let Cp' be the quotient group of C? with respectto
Gp, and denote that element of Cp' to which a chain Cg in Cg belongs by {cg}.
The restriction on the groups G, clearly implies that the element {85 cg} in
Cp.y is independent of the choice of the representative cg of the element {cﬁ}
in Cp'; thus one may define homomorphisms dp': Cp'—Cp.; by the formula
ap {cg} = {85 c‘g}. The resulting system of groups C}' together with the operator
dp constitutes a Mayer complex m with homology groups /. Define a natural
homomorphism 7pt Cg———)CZ‘ by the formula p cg = {cg }. It is readily verified
that 7, is a chain mapping; hence it induces homomorphisms 74, : Hg—)H",". If
for every integer p these homomorphisms are isomorphisms onto, then the identi-
fier {Gp} is termed unessential for R. Radé notes that a necessary and suf-
ficient condition in order that an identifier Gp be unessential for R is that every
cycle zg in G, should be the boundary of some chain cgﬂ in Gpyq. (See [3,
$81.3,1.4,1.5] or [4, §5].)

0.4. One of the principal results in this paper may now be described. Let
Bl;: Cg———)Cg be the barycentric homomorphism in R (see [3, $3.1] or [4, S6];
also $1.3), and denote by N(Bg) the nucleus of this homomorphism for every

integer p.

TueEorEM. The system of nuclei N (Bg) of the barycentric homomorphisms in

in R constitutes an unessential identifier for R (see $3.2).

This result is combined with those of Radé in [3] to obtain stronger theorems
concerning identifiers than any previously obtained. Since further definitions
are necessary before these results can be described, the reader is requested to

consult $3 for their statements.

0.5. In the process of proving the theorem above, various results of inde-
pendent interest have been attained. The reader is referred especially to $$1.6,
1.7, 1.10, 2.2 for theorems which show the structural description of the barycen-

tric homomorphism and of the barycentric homotopy operator.
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I. FURTHER RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Radd [3;4], the auxiliary complex K is the *formal complex”, in
the sense of [1], for the set £ of points in Hilbert space. For integers p > 0,
p-cells in K are ordered sequences (vq, « + -, vp) of p+ 1 points in E_, which
are not required to be distinct or linearly independent. These p-cells are taken as
the base for a free Abelian group Cp, which is termed the group of finite integral
p-chains in K. For p < 0, the group C), is defined to be the group composed of
the zero element alone. (See [3, $2.1] or [4, $6].)

1.2. In K the following known homomorphisms will Pe used. (See [3, §2.2] or
[4, Sel.)

(i) For integers j, p such that 0 < j < p, 'p > 0, the homomorphism
jpt Cp—Cp—y
is defined by the relation jp(vg, « + +, vp) = (1) (vgy = =+ 31-, s+ +, p), where
the symbol * is placed over the point v; to indicate that v is to be deleted. For
j =p =0, jp is defined to be the trivial homomorphism. A homomorphism differ-
ing from this one only by the absence of the factor (~1)/ has been used by Rad$

in [2, $2.6]. The definition given above has been chosen because it permits

simplifications in later definitions and formulas.
(ii) For integers p > 0, the boundary operator
dp: Cp ™ Cp
is defined by the formula
P ) .
ap(vo’...,vp) = Z (—1)](1)0’...’1),-, ...’q,b).
j=o
For integers p < 0, d, is defined to be the trivial homomorphism.

(iii) For integers p > 0 and an arbitrary point v in E_, the cone homo-
morphism h;: Cp— Cp +, is defined by the relation

hZ(vo’ c 'Up) = (—l)p+l (vo, c ey vprv)-
For integers p < 0, hg is defined to be the trivial homomorphism.

(iv) For integers j, p such that 0 < j < p -1, the transposition homo-
morphism tpj: Cp—> Cp is defined by the relation
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tpj(vo”"rvj’ vj+p"',vp) = (‘Uov"',vj+l, v]',°~-,vp).
Observe that tpj(vo, ceey, up) = (vgy o+ o vp) if and only if Vj = Vj4q-

(v) The barycentric homomorphism By Cp-——) C  is defined as follows.
For integers p < 0, Bp is the trivial homomorphism; for p = 0, 8, = 1; and
forp > 0, Bp is defined by the recursion formula

b
Bpos +++ s vp) = hp -1 Bp~-1 Iplvg, v,
where b is the barycenter of the points vg, - -+, vp.

(vi) The barycentric l:omotopy operator p, used by Radé [1; 3, $2.2 (iv);
4, $6] will not be used in this paper. In its stead, a modification pip is presently
introduced, which has a simpler form, satisfies all the important identities which
hold for the Pps and has useful properties not possessed by Pp- The modified

barycentric homotopy operator
P xp : CP b 4 CP +1

is defined as follows. For integers p <0, p,, is the trivial homomorphism; for

P =0, py is defined by the relation

Prg (Wo) = —ho? (vg) = (v5,0);
and for p > 0, pap iS defined by the recursion formula
Pap (Wos = v+ 5 0p) = =RSLL + pup =y Gp] (wgs + =+, 1),
where b is the barycenter of the points vy, « - -, vp.

1.3. Amongst the preceding homomorphisms the following identities hold (see
(2, §2, 3, §2-3])3

p

o= 3 Jp (p20);
j=o

Gp 41 hY + hE oy 3y = 1 ® > 0);

ap BP=’8P"16P (- w<p <+ m;

Bp tpj = ~Bp O<j<p~-1;

Op +1 p*p+p*P_16P=BP—-1 0<p<+w.
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Of these identities, only the last is new; it may be established by an inductive
reasoning similar to that used to prove the corresponding identity for the conven-

tional barycentric homotopy operator pj,.
1.4. For integers k,p such that 0 < k& < p, the homomorphism

kvp: Cp — Cp

is defined by the relation
k*p(UOv ceey vp) = (___1)p+k (UO’ c ey 3k9 ML vp,vk)o
and the homomorphism
Y Cp— L,

is defined by the formula y, = ZZ___O k«p. Obviously one has the identities

v
k*p(v09 "'9vp) ="'I‘?p"'l}"pk (voa "'9vp)’ p20,

k*p(UO""9vp)=h:k_1 kp(vo’... vp)’p>0,

Now the reader will easily verify the relations

(k—l)*p-l ]p ’ 03] <k5_p,
jp kp = 1 k*p'-l(].,*'l)p » 05k <j<p,
kp ’ 0§k§j= p>

G-Dp kep » 0<k<j<p,

ksxp —4 = ¢
Pt o+ Dup 5 0<j <k <p.

From these relations the following identity is readily established:
Yp-19% = % ()’p - D.
Using the identity, the reader will easily prove the following result.
LEMMA. If P (x) be any polynomial having integral coefficients, then
Plyp-1) dp =3 Ply, = D).

Explicitly, if P(x) = z:n=0 a;ix’, where the a; are integers, then
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m . m L Lo
Zi:o % }/pl"l ap = zi=o % ap [Y;’ -t )’;; ' e '+(—1)l] *
where y;; means that the homomorphism y, is to be repeated i times.
1.5. For integers k,p such that 0 < k& < p, the homomorphism
bpk: Cp h— Cp +1
is defined by the relation
bpk(vo,' c vy vp) = ("'1)k Vos * * *y Uy b(‘l}o, c ey vk)’

b(vov”‘svk9vk+l)a"‘,b(UO’°"9vk""svp)]’

where b (vg, « + + , vy) is the barycenter of the points vg, « + +, vg. Verification

of the following simple relations is left to the reader:

b ge e,
_.hp(vo vp) (UO’ ey, vp) = bpp(vo, sy vp);

b(vgysee,v,)
—hp 10 Plbp -1k (Woy e ey vp-y) = bpkh;p-l (g + « ¢y vp=y)

O0W<k<p-D;

b(vo,...

"hp bpk]*p ('Uov R ] vp)

I

» Up) .
P bp-lk ]p(vO’ . "'Up)

0Lk<p-1,0%<j<0p;

b(vg, eee,vp)
_hp 0 pTp

p—1ik ap(vos“‘avp) bpk}’p(vo”",vp)

(0<Ek<p-1);
b(vg,eee,v,) ;-1 i .
hp Pbp-tk Gpyp  Jrp(ert s vp) = bpkyp isp(vos v e vy p)
0<k<p-1,0<j<p, 124

b(vg,eee, ) ; i +1
—hp Yo “p bp—-lkapy;(vo9"'svp)=bpky;7 (UOQ.'.va)

©O<k<p-1,0<%3i.

If P(x) be any polynomial having integral coefficients, then, for 0 < £ < p-1,

we have

_hz(vo,o.-.vp) bp_lkapp(.yp) (vO’ . .’vp) = bpk Yp P('}’p) (on ey, ‘Up).
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1.6. For the homomorphisms 8, and p+,sthe following structural descriptions

are now obtained.

THEOREM. The following relations hold:

Pro = boo>

P
prp = bpp + X bpp-jyp e lp-i+l) (p > 0).
j=1

Proof. Itis sufficient to verify these formulas for a given p-cell (vy,+ + +, vp).
For p = 0, the formula pso(vy) = byo(vy) is obvious from the definitions. So

assume that
p-1
P*p"l=bp“1p"1+ Z bp"lp‘l"jYP‘I"'(yp‘l"j+1) (P.?_l)-

j=1

Using $1.2, $1.4, $1.5, and this assumption, and letting b = b(vg, « ¢+ ¢, vp),

one obtains
Pap (vgy * + *  Vg)

b b
== —hp(vo, e ooy, UP) "hp p*p"l ap(vo, ¢ e ,vp)

b
bpp(vo,o-.,vp) "'hp bP'lp"l ap(vo,--.’vp)

It

p-1

b .
"Z hp bp"lp"l'j )’p—l"'(}’p—l“]"'l) ap(vOD'°’!Up)
i=1

bpp(vo,-‘- P)+bPP-1 )lp(vos"‘avp)

p~1 b

—Z hpbp—lp—l—-jap(}/p‘l)"'(}’p"‘j) ('Uo:""vp)
=t

= bpp(vos"‘,vp) +pr"1 )’p(vo""’vp)

p
2 bppojplp =D e bp=j+ D) (oo, e, wp)
i=2

P
= pr+ z bpp—]‘)./PO-O(‘yp—-j-{»l) (vo’...,vp).
j=1
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So the proof is complete by induction.

1.7. TuEOREM. The following relations hold:

Bo

0y bgo>
Bp = 0p+1 bpo )’p()’p “1)"'(Yp—P+1)’ p > 0.
The proof is similar to that for the theorm in the preceding section.

1.8. From these formulas for 8, and Pip and the identities in §1.3, many
further interesting relations may be obtained. For example, it is easy to establish

the following results:

By = Wper =+ Dyl oo (¢ > 0
ap = =Pp p*p -1 ap (P 2 0);
Bo = (+Dp+1 (p+2p+2 pap+1 prp (p 2 0).

These relations are not needed for the present purposes; they may be studied
on a later occasion.
In order to clarify the structural descriptions for Bp and pxp given in §¢1.6,

1.7, it is convenient to introduce another homomorphism.

1.9. For integers p > 0, let iy, « - -, i, be any rearrangement of the se-
quence 0, « - +, p, and put € ... ip equal to +1 or to ~1 according as 5, « « « , ip
is obtained from 0, - - - , p by an even or by an odd number of transpositions.
With each rearrangement one associates a homomorphism

Tpt Cp——) Cp

defined by the formula

Tp(vo, e ey, vp) = €i0°"ip (viO: ey ”ip)-

Sometimes, for clarity, the more explicit notation Tp, (ig, * + 5 ip) is used for
this homomorphism. For integers j such that 0 < j < p, denote by Ty; the class
of all T,(i, + « +, ip) for which i, < ... <ij —thatis, for which ig, « « «, i;
are in natural order. Obviously Tj,, consists of just one element, namely
Tp(0, « « «, p) = 1; and T, consists of the T, obtained by all possible re-
arrangements of 0, « « «, p. Moreover, Tp j~, D Tpj for 1 < j < p. Clearly the
number of elements in the class T, jis(p+ D p -+ (j+2) for0 <j<p-1.
For each integer j in 0 < j < p, define a homomorphism
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Pp]': CP -3 Cp
by the formula
Bpj = 2 Tp (tp € Tp))-

Observe that P,, = 1. The reader will readily verify these identities:

ksp Ppj=Ppjs 02 <k <p;

j
Y kwp Ppj = Ppj-1,0<j<p.
k=0

From these identities, the following result is established.
LEmmA. The following relations hold:

Ppp:l’

PPP_j = yp(yp-'l)"‘(yp—j+]-)’1.Sj_<.P‘

Proof. That Py, = 1 was noted above. From the second relation above it
follows that

P
Pop-1 = kZ kxp Fop = ¥p Ppp = ¥p»
=0

so the general formula is established for j = 1. Now suppose that

Pop-jt1 = vplyp=1) e e yp —j+2) (22ji2p-

Using the preceding identities, one finds

p
YW Ppp-j+1 = X Fsp Ppp-j+1
k=o
p-itt P
= Z k*p PPP'J'“"’ Z k*p PPP‘I’“
k=0 k=p-j+a2
=Ppp-j+ (G=1) Pop-jsss

Ppp-j = (Vp'ff+1) Pop-j+1 = yvplp =D e (p~j+1D.

Thus the lemma is established.
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1.10. Combining the results of the preceding lemma with those in the theo-

ems in $§1.6, 1.7, one obtains the following description for the homomorphisms

Bp and pup.

THEOREM. The following relations hold:

Bp = Op+1bpo Ppg = Y Opsybp Tp (p 2 0);
Tp eTpo
p
Prp = 2 bpk Ppi = Z 2 b o P2 0.
k=0 =0 7 € Ty

1.11. Let vg,+ + +, v, (p > 0) be any sequence of p + 1 points in £_. In
§§1.2, 1.4, 1.5, 1.9, homomorphisms Jps tpjs k*p, bpk’ Tps have been introduced
which, when applied in any appropriate combination A, to the special chain
(Vgsy *+ * * vp), yield a special chain either of the form +(yg, « + +, yq) or of the
form —(yg, «« -, yq). In the sequel, [hp (vgy =+, vp)] is defined to be thep-cell
(Yos * =+ » ¥g)s and | Ay (vy, « « +, vp)| denotes its convex hull | yg, « + 4 ¥, .

For example,
[0p +1 bpo Tpligs =+ 5 ip) (vg, = v+, vp)]
= (b(v,-o), b(vio, Uil) N b(v,-o, Vijs tt s vip)).
If for two sequences of points ug, = « +, up and vy, « « +, vp it is true that
(b(ug)y b(ugs ug)y « v vy blug, ugy « « + 5 up))
= (b(vg), b(vgs )y = = =5 b(vg, vy« + 5 1))

then clearly u; = v; for 0 < j < p. From the remarks in $1.9 and the preceding

theorem, one thus obtains the following result.

LEMMA. [f the points vy, » « « , v, (p > 0) are distinct, then the cham
p 0 p \P Z
BP (vgy =+ » vp) contains (p + 1)! terms; that is, for distinct elements ’I.'p and

pm Tpo » we have
[0p +1 bpo T6 (wos +++ 5 vp)] # [0p 41 bpo Tp (vgs =+ 5 1) 1.

1.12. LEMMA. Let vg, « =+, vp (p > 0) be any set of p + 1 points in E_,
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not necessarily distinct or linearly independent. A necessary and sufficient

condition that a point v belong to the convex hull of the points

(1) blug)s blvgsvy)s » ot s blvgyvyse e, vp)

is that it possess a representation of the form

P P
(i) v="3 T om=Llopo 2 200 2 pp 2 0]
j=o j=o

Proof. If v belongs to the convex hull of the points (i), then it has a repre-
sentation of the form

(iii) v=§ Aj blvgy o ,v)) Zp Ai=1,0<X;,0<i<p
i=0 i=0
Thus
P 4 v; P P )t,;
v=iz=:o Az]§0i+1=]§0 EJHlvi,

which gives a representation of form (ii) for v. Conversely, if v has a representa-
tion of form (ii), put A;= G+ 1) (ui~pi+) for 0 < i < p=1,Ap=(p+1) pp,
It follows at once that v has a representation of form (iii), and hence belongs to

the convex hull of the set of points (i).

1.13. For integers p > 0, if ug, + « +, up is any sequence of p + 1 points in
Es, then |ug, « « «, u, | will denote its convex hull. Let k£ be any integer such

that 0 < £ < p, and consider the sequence of p + 2 points
(i) uoy"'uk,b(uo""uk)9"'sb(uoa""”k""!up)’

that is (see §1.5), the sequence of points occurring in bp (ug, « + « , up). Let
(i1) wgy « + Wp + 1

be any rearrangement of the sequence of points (i). Designate by x, = Why = Ui,
the first u; (0 < i < k) occurring in the sequence (ii). In general, let x; = wy,
=uj (0 < 1 < k) bethe (I +1)stu; (0 < i < k) occurring in the sequence (ii),
and put x; = u; for k+1 < [ < p in case £ < p. Now clearly xp, « - -, xp isa
rearrangement of the sequence ug, + « -, up in which the last p — & elements are

unaltered; the sequence (i) is a rearrangement of the sequence
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(ui) xo,...’xk,b(xo’...,xk),...,b(xo,...,xk,..-’xp)

in which the last p + 1 — k elements are unaltered; and the sequence (ii) is a re-
arrangement of the sequence (iii) in which the points x,, - - + , x; appear in the
same order as in (iii); that is, x; =wp, for 0 < I < k, where 0 < Ay < &,
< .+..<hy < p.Now let ¢ be any integer such that 0 < ¢ < p + 1. It will be

shown that

(iv) b(wgy « =+ 5 wg) € |blxg)y b(xg, 1), =+« b(xg, 21, « + + 5 %p) |
0<qg<p+].

Case q¢=0. Then b(wy) = wy. If wy is one of the u; (0 < i < k), it follows
by the choice above that Ay =0 and w, =x, = b(x,). If w, is not one of the
u; (0 < i < k), there must be a [ > % such that wy = b(ug, « « +, ugy « +, up)
= b(xg, * *+ * 5 Xy + » + 5 x7). Thus relation (iv) is established when g = 0.

General case. By a rearrangement, the points wg, « + + , w, may be ordered

into two sets

Why = %g s vy Why =X 0< 1<k 0<hy <+:e:<h;<p),

0
whl+l =b(u0""’uk”"’uil+1) =b(x0,--.’xil+l)
whl*Z = b(uo, c ey Uy vy, uil+2) = b(xo, ooy xil+2)

whq=b(u0a"',uks""uiq)=b(x°’“"xiq)

(B < ip+y < ip4g <eve<ig < p).

The special cases which arise when one of these sets is missing are left to the

reader. Now clearly

b(wos c wq) = b(whOQ c whq)

1 EAC

= 1+ x; + x;
. ] . ]
i=o g+1 h=l+1 iptl j=l+1 g+l , 4, i +1
142 i
1 d 1 a 1 1
> IR e A 1 +1
jEipgg t1 g+1 p=p4p pt =iy g+l 1.+
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In view of this equation and of the lemma in $1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently es-

tablished.

LEMMA. Let vgy -+, vp (p < 0) be any sequence of p + 1 points in E_.
Fix Tp+i € Tp+10(0 <k < p) Tp € Tpk (see $1.9). Then there exists a
TI; CTPO such that (see $1.11).

|0p+2 bp+10 Tp+1 bpk Tp(vos cvey,vp)| Cl0p+y bpg T(wgy « ooy vp)].

Proof. Evidently [T, (vgy e« vp)] = (vio’ cen, Uip)v where igy < o, ip is
a rearrangement of 0, « « -, p such that i, <. .. <i;. Puty;= vy for0<j<p,
so that [Tp (vgy * * = » vp)] =(ugy ** *» up). Then

[bpk ’tp(uo, ooy, vp)]
= Ctigy » + + » ks Bltigy =+ = )y« + v, Blugs + + =y ks + = +5up)),
and [Tp+1 bpy Tp(vgy « =+ vp)] = (o, <+« wp +1), Where wg, -, w‘:,“
is a rearrangement of
oy + =+t blugs v o s uk)y o v ey blugy = v ey thy ey up).
Finally,
[0p+2 bp+io Tp+1 bpk Tp("o’ "‘a”p)]
= [b(wg)y blwgytoy)y =+ 5 blwg,wys e, wp+1)].

The reasoning of $1.13 shows that there is a rearrangement x4, « « «, %p of

Ugs * = * 5 Up, and hence of vy, « ¢ -, vp, such that
|0p+2 bp+10 Tp+1 bpk Tp (vgy + = =5 vp) |
C | b(xp)y blxgsxy)y » + vy Bxgs2ys oo o5 xp) |-

Let T; be that element of Tp, such that [Tg(vgs « =+ 5 vp)] = (xgy =+« %p)-

Since
[Op +1 pr Tp'(vov ey, Up)] = (b(xo)y b(xoaxx)y cey b(xlyx[a ey xp)),
the lemma is established.

1.15. If ¢, is a p-chain in K, and 4 is a convex subset in E_, then the in-
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clusion ep C A will mean that either cp=0 € Cp or else

n

C‘P = z mj(vol-,...,vpj)’
J=1

where the m; are nonzero integers and [vgj, « -« -, vpjl € 4 for 1 <j < n.One

readily verifies the following inclusions (see [3, $92.4]):

Jp oy e e vy vp) T Jugy e vey vp 0<j<p,
ap(vos"‘svp) C l”o""s”pl >0,
Bp(vgs »+ =5 vp) C Jvgy + v, vp| (p > 0),
prplvg, <+ vy vp) C lvo,---,vp‘ (>0,
tpj (wgs + vy vp) T fug, ey vp | 0<j<p-D,
T O N LT ©<k<p)
)/p(vo,'--,vp) C |v0,---,vp] (>0,
bpk(vgs ¢+ vy vp) C Jugy vy vp] 0<k<p),
Y N IR <l P (1, € Tpo),
Bpj (g ooy vp) C Jugyee ey vp (0<j<p.

II. ReELaTions IN THE CompLEX R = R(X).

2.1. If 4 is a convex subset of £_, then for integers p > 0, Cﬁ denotes that

subgroup of C, generated by those p-cells (vg, « « « , vp) for which |vg, « « «, vp |
C A; for p <0, we have C{,i =0 € Cp, (see §1.1). Suppose T: A—>X is a con-

tinuous mapping (see §0.1). For integers p > 0 define a homomorphism
. A R
Tp: CP — Cp

by the relation Tp(vg, «+«, vp) = (vgy « ¢+ vps TYR for (vgy « -+, vp) € C;,l.
For p <0, let T, be the trivial homomorphism. For chains ¢ in Cg the notation

Tp cp = (cp, T)R is used. In terms of this notation one finds the relation (see
§0.1: 9f (cpy DX = 9, cp, DE.

Now suppose that, for certain integers p,
hp: Cp— Cy

is a homomorphism from the group Cp, of p-chains into the group Cg of g-chains
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in K with the property that for all p-cells (vg, « « +, vp) in K one has
hp(vo9“'9 Up) C ‘1’09 "’,vpl.
Then clearly one may define for these integers p a homomorphism
R, R R
hp 2 C)— Cy

by the formula hg (vgy o2+ » Ups R - (hp (vgs *=v vp), T)R in case p >0, and
one may make AR the trivial homomorphism if p < 0. In view of the inclusions in

$1.15, one observes that this definition creates the following homomorphisms in

R (see[3, $3.11):

R ., R R < i< .
] .Cp_")cp_l (0_]__p)’

P
R, (R R o < p < . R, (R R .
Byt CF—Cp (~0 < p < + 0); vp: Cp—=Ch (p20);

R:Cﬁ—)CI;.,.l (-0 < p < +; bgk: C§—>C§+1 (0 <k <p);
R, R R < i < _ . R, R R .
thit C'p——)C'p__l 0W<LjLp-1); TP.CP——)CP (TPCTPO),
R, CR R <i<o).
Ppyz Cp—> €y 0<j<p)

2.2. From the relations in $1.3, one derives the following (see [3, $3.1]):

ag B}}::,BR_lag (—(X)<p<+m);
R R R .

= - <i<p=1);
Bp toj = PBp 0<j<p~-1);
R
Oy Phy + g 9E = BR -1 (0<p<+a).

The theorems in $$1.6, 1,7 give rise to these formulas for Bg and pfp:

R _ iR
Pxo = 550>
b R
Pwp = Z pPp ]yP S lp =i+ (> 0);
R _ oR 1R .
Bo '"O boo’
R R
By = O b YaOh =1y =p+ D) (> 0.

From the theorem in $1.10, one obtains the following description for Bg and pfp.
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TaeorEM. The following relations hold:

» € Tho

AP RG>0y,

P p

P P
kz ByPh = XX bk T (20,
=0

k=0 Ty, € Tpj

It

Py

2.3. The writer is indebted to T. Radé for suggestions which led to the
results presently presented in $$2.3-2.7, 2.9, 2.10, 2,12. The new facts con-
tributed by this paper are contained in $$2.8, 2.11, 2.13. For integers p > 1,
any chain of the form (1 + tpl) (vgy o+ v s YR (0 < j< p=-1) is termed an

elementary t-chain in R (see [3, $3.2] or [4, §7] ), and the subgroup of C gener-
ated by these elementary t-chains is denoted by TII; For p < 1, T is defmed

to be the subgroup of CR composed of the zero element alone.
LEMMA. Ifc € TR, then
: R _R R
(1) ap CP € Tp -4
(i) By ¢f =0,

(iii) p*p g € T’;+1

This lemma differs from that in Radé [3, $3.2], only by the fact that the
barycentric homotopy operator pI; has been replaced by the modified operator pI:p
(see $1.2). It may be established by the same reasoning as that employed by
Radé.

2.4. For integers p > 1, any chain of the form
(vos *e s Uiy Ujtyqs sy Upy T)R

with v; = v; 4, for some j such that 0 < j < p — 1 is called an elementary d-chain
in R (see [3, $3.3] or [4, $71), and the subgroup of Cp generated by these ele-
mentary d-chains is denoted by Dg. Forp < 1, DP is defined to be that subgroup

of Cg composed of the zero element alone.
LEMMA. [fc;f € Dg, then

. R R R
(i) ap cp € Dp“l’

(ii) 3’; c;f =0,
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.. R _R R
(iii) Pup p € DP+1'
This is the lemma in [3, §3.3], except that the modified barycentric homotopy

operator pfp is used in place of p;f; it is proved in the same way.

2.5. LEMMA. Let (vg, « * = 5 vp, T)R be any p-cell in R (p > 1).Suppose that
the sequence wg, « « +, wp is obtainable from the sequence vy, «« -, vy, by n

transpositions. Then there is an element tg in Tg such that
(vgs + =y vps DR = (=D (wgy + ++, wp, DR + t;}.
Proof. By assumption there exist n + 1 sequences vgj, « « « ,vp; for 0 <7< n
where v;, = v; and v;, = w; for 0 < i < p such that
. . TR _ 4R R
(vO]’ ceey vp], T) = tpl] (1)0]-_1, e ey, vp ]"'l’ D

for some integer i; satisfying0 < i; < p~1,1 < j < n. Clearly

(Uos“‘,vp’ T)R = (“1)" (wo""gwp, T)R
n .
+ z ("‘ 1)]—1 (1+t}}5ij) (1}0 ) At § IRERRE Up j-1s T)R’
j=1

and the lemma is established.

2.6. LEMMA. Let (vgy * « + 4 vp,y T)R be any p-cell in R (p > 1), for which

v; = v, for some i,k such that 0 < i < k < p. Then there are elements tg in

Ty and d in DY such that

R R R
(v0,~'-,vp,T) =tp+dp.

Moreover, 2(vgy + « « Ups TR is in Tg .

Proof. Since the sequence vy, « = <y Vi1, Upy Vs ** 5 Vpgs Vpyps ** *5 Up
is obtained from wp, <+, v+, vy, -+, vp by k~i transpositions, and

v; = vy by assumption, if follows that

- R
(“]—)k ' (1)0, Ce s VUimly Vpy Upy s Upys Vpyys *° vp)

is an element dIR; of Dg. Moreover, from the lemma in §2.5 it follows that there
is an element t§ in Tg such that (vg, « + -, Up» TR = d}g + tg, and the first part
of the lemma is proven. Now the sequence vg, ++ <y Vpy = e, Vjy = o, Vp is

obtained from vy, e+, vy c e, v, 0, v, by 2(h-i)~1 transpositions.
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Again, from the lemma in §9.5 it follows that there is an element tg in Tlg such
that

R R
(vo’..-’vi,..o’vk’.-.’vp’ T)R = - (UOI""vk""’vi9""vp’ T) + tp .

Since v; = v, , one obtains 2(vy, + « +, vy, Nk - tg; and the second part of the

lemma is demonstrated.

2.7. For integers p > 0, a chain cg is termed an elementary n-chain in R if

it has the form

n

R
CR = z mr(vo,°",vp’ Tr) ’
r=1

where
(i) for1 < r < n, the m, are nonzero integers;

(i) for1 < r; < r, < n, the transformations T, and T;, are not identical
on |vg, ++ ¢, vp|;

(iii) the points v, « « «, v, are distinct. The p-cell (vg, + + +, vp) in K (see
$1.11) is called the base for cg, and the notation cg = cg (vgy » » vp) is

used when it is desirable to display the base.

2.8. LEMMA. Suppose that cg is an elementary n-chain in R for which

R R R R R
'BP cp = 0. Thean+1 Prp Cp = 0.

Proof. With the notation of $2.7, one finds (see $$2.1, 2.2).

n
(l) '8}15 05 = Z Z TIlr(Op t1 bPO Tp(vO’ M} vp)1 Tr)R = 0;
Tp C TPO r=1i

P n

(i) Bgn pr cp = 2 ) 2 X mOp+z by

To+1 € Tp+10 k=0 T € Tpp 7 =1
Tp+l bpk Tp(vo’ ctty vp)’ Tr)R .
In view of $2.7 (iii), and $1.11, it follows from (i) that for each T}; € Tpos

one has

n
(i) X mr0p+y bpo Tplvg «oey vp)y THR =0 (tp €Ty,

r=1
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Fix
To+1 € Tp+10s Tp € Tpk (0<k<p.
From the lemma in $1.14 follows the existence of a 15 € Tpo such that
(v) [Op+2 bp+1o Tp+1 bpr Tplvgy ==+ vp)|
Cl0p+y bpo Tplvg, eoey vp)]|.
From (iii) and (iv) one concludes that for each
Tp+l€Tp+10’ TPE-'TPk (Osksp)’
we have
n
(V) X mrOp+2.bp+10 Tp+1 bpi Tplvg, =y vp), DF = 0.
r=1
In view of (ii) and (v) the lemma is now established.

2.9. For integers p > 0, the class N§ is defined to be that subset of Cg
composed of the chain 0 € Cg and of all cg having a representation of the form

R
ps (voss *+ = vps)

o

T X
1]
M=

1

where

(i) forl < s < nthe cgs (voss + + + » vps) are elementary n-chains (see 2.7);

(ii) for 1 £ s; < s, < n, the point sets Vosgs *** s Ups, and Vos,s * s Ups,
are distinct. For p < 0, the class Ng consists of the chain 0 € Cg alone.
Each of the elementary n-chains cgs (vosy =»* vps) (1 <s <n), is termed a

n-composant of 05' Observe that the sets Ng are not generally subgroups of
CR
p*

2.10. LEMMA. Let

o
°T
Il

WM =

R
ps (vosy =+ 1’ps)

s =1

be any nonzero element in Ng. A necessary and sufficient condition in order that
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BR R = 0is that BR

R
p p = 0 for every n-composant Chs (1 <s < n).

PPS

Proof. Trivially the condition suffices. It is presently shown to be neces-
sary. With explicit notations (see $$2.7, 2.9),

n n s
Bg CIIS = Z Bg gs = Z E Mrs (:Bp (UOS’ ccy vps) Trs)R
s =1 s=1r=1
n ng
= z E Z Mrs (OP +1 bPO Tp (vOS! ] vps), Trs)R =0.
s =1 r= P € T,

In view of $2.9 (ii) and of the remarks in $1.11, it is clear (see $0.2) that, for
1 <s < n we have

p ps = Z Z mfs(op *t1 bPO p (vosy *ov s vps)’ Trs)R =0
=1 7o & Tpo

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let cg be any element in Ng for which Bg cg = 0. Then
R
Bp +1 p*p P = 0.

This result is an immediate consequence of the lemmas in §$92.8, 2.10.

2.12. LEMMA. Every chain cg has a representation of the form (see $$2.3,
2.4, 2.9)

R _ ,R R R R R R R R R
ey = ¢, +dp +ny, (LPCTP, dPCDp, anNp).

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the
proof of its existence which follows. For chains cﬁ =0 € Cg, the result is

trivial, so assume that cg # 0. Then cg has a unique representation of the form

n
: R R
(1) CP = E m]' (vojy ey vp]" T]) ’

J=1

where the m; are nonzero integers and the p-cells (vgj, ==+, vpj;» le)R and
(voiz’ cety Upjy sz)R are distinct for 1 < j; < j, < n. The proof is made by

an induction on n. If n = 1, then cg =my(vors =+ s Vpys T)E. I, for some inte-
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gers i, k such that 0 < i < k < p, one finds v;; = v, , then the fact that cg
has a representation of the prescribed form follows from the lemma in $2.6. On
the other hand, if all the vgy, ««+, vy, are distinct, then cg is an elementary
n-chain (see $2.7). Thus the lemma is established in case n = 1. Suppose that
the lemma is true for all chains cg having a representation of the form (i) with at
mostn = N — 1 terms (N > 1). For chains cg whose representations (i) have N
terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of cg—— without
loss of generality one may assume it to be the first = for which there are inte-
gers i, k such that 0 < i < k < p and v;; = v, . By the lemma in $2.6 there
are elements t:f in Tg and d§1 in Dg such that

.. R _ ,R R
mx(vo‘,- ,vpl,T1) _tp1+dp1’

By assumption there are elements tgz in TS, dgz in Dg, and ng in Ng such that

N

(v .y ooe L, TR = 4R R R
.;2 mi s vees g TT =g, 4 dy + mp
e

Thus

R _ (,R R R R R
cp = (tp1 + tp2) + (dpl + dp2) +ny
and since Tg and Dg are subgroups of Cg, the existence of a representation of
the prescribed form for cg follows in Case 1.

Case 2. Assume that for each j (1 < j < N) the vyjy ¢+, vpj are distinct.

By rearranging terms one may obtain from (i) a representation of the form
m m
. R R
(ii) p = Z mrs (Vgsy =+ oy Upss Trs)™, Z ns =N,
= s =1
satisfying these conditions: none of the m,s is zero; for the same s (1 <s < m),
1 <r; <ry < ns, jge mappings Tr s and T, s are not identical on | voss
ey vpsl; for 1 <'s; < s, < m, the p-cells (voslr sty Ups,) and (vosz’

«++, vps,) are distinct in K (see $1.1). Now for each s (1 < s < m) clearly

each of the chains

ps? °rs
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is an elementary n-chain in R (see §2.7). The proof is carried forth by an in-
ductive reasoning on m. If m = 1 then cg is an elementary n-chain in R, and the
representation (ii) already has the prescribed form. So assume that c;f, whose
representation (i) has at most N terms, has a representation of the prescribed
form whenever its representation (ii) has at most m = M ~ 1 terms (M > 1).
Suppose now that Cg is a chain whose representation (i) has N terms while its

o

representation (ii) has M terms

M
Zn,s=N
s=1

Subcase 2.1. Assume that for 1 <s; <s, < M the point sets Vosyr *** s Ups,
and vog,, o0 0y vps, are distinct. From $2.9 it is clear that cg is itself an ele-
ment in Ng and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers s — with no loss of
generality one may assume these to be s =1 and s = 2 — such that the sets
Vors tte s Upy and vg,, +++, vp, are the same. It follows that the sequence
Vs *** s Upy is obtainable from vyy, +++, vpy by a positive number [ of trans-

positions. lence by the lemma in $2.5 there exists for each r in 1 <r < n, an

element tﬁ, in Tg such that
R R
(Vo1 *** s Upts Trl)R = (— 1)1 (vgy == Vp2s T, )% + tor (1 <r<ng.
Since Tg is a subgroup of Cg, the chain
!
z mry tgr
r=1
. R . R
is an element 5+ in Tp. Consequently,
™
R _ ,R l R
¢p = tp* + Z 1) Mry (voz’ Tt Upyr Trl)
r=1

Clearly the terms in square brackets may be rearranged into the form (i1) with
an integer m < M ~ 1, and their representation in form (i) has an integer n < N.

By the inductive assumption there are elements tg# in Tg, dg, in Dg and ng in
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Ng such that cg = (tg* + tg#) + dg + nlg, and the existence of a representation
of the prescribed form for c{f now follows in Case 2. Indeed, it is obvious in this
case that dg =0€ Cg. So the lemma is completely established.

2.13. LEMmaA. If c}; is\any chain in CR for which Bg cl; = 0, then
R

Bp +1 p*p p

The proof follows at once from the lemmas in $$2.3, 2.4, 2.11, 2.12.

R -o.

REsuLTs

3.1. In[3, $4.1] (see also [4, $8]) Radé has established a lemma from which
one derives the following statement by replacing the barycentric homotopy oper-
ator pI; by the modified barycentric homotopy operator pI:P (see §$1.2, 2.1).

LEMMA. Let {Gp} be an identifier for R (see $0.3) such that the following

conditions hold:
N R .. R R _ .
(i) cy (= Gp implies that ’BP cp = 0;
.. R . . R R
(i) cp € Gp implies that Pp p € Gp ‘e
Then {Cp} is unessential.

3.2. For each integer p let N(BR) be the nucleus of the homomorphism
BR CR-—)CR (see $2.1). Since 8 is a chain mapping (see §92.2) it is clear
that the nuclel N(B ) constitute an 1dent1f1er for R (see $0.3). Now in view of
the lemma in $2.13, conditions (i) and (ii) of the lemma above are clearly ful-
filled for the identifier {N(ﬂﬁ)}, and furthermore, this choice of an identifier
yields the maximum amount of information that may be obtained from that lemma.
Thus the {N(BR) constitute an unessential identifier for R, and one of the
main results is now established (see $0.4). It is summarized in the following

statement.

THEOREM. The system of nuclei N (BR) of the barycentric homomorphisms

,Bg CR——)CR constitutes an unessential zdentzfzer for R.

3.3. In order to compare this result with those in Rad$ [3; 4], first observe
that it follows from the lemmas in $$2.3, 2.4 that

N(By) > TR + Df (-w<p<+ .

Moreover, since C’; is a free group, it is clear that the division hull of N(Bg)
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must be identical with the group N(BR) Thus the group N(,B ) also contains the
the division hull of the group TR DR for all integers p. An example is now

given to show that the group N (Bp) generally contains more.

3.4. Denote by d,, d,, d the points (1, 0, 0, -++), (0, 1, 0, 0, --+), (1/2,
1/2, 0, 0, «++) respectively, let X be Euclidean x-space, and define transforma-

tions by the following relations:

Ti:x=vy = 1/2 (v € |dysdy )
{O (v € |dy,d |);
Ty): x =
- 1/2 w€|d,d |);
{00‘1/2 (v € |dy,d |);
T3: X =
0 (U Cld ’dl‘);
T,: x=0 (v € |dg,dy ).
Clearly
= (do’ d1, Tl)R - (doy dly TZ)R - (do9 d1’ T3)R + (do’ dl, T4)R
belongs to Cff and Bf{ ¢® = 0. Moreover, cX is an elementary n-chain (see

§2.7). An elementary reasoning shows that it cannot belong to the division hull

for the group TR + DR,

3.5. In order to describe the largest unessential identifier for R obtained by
Rad8, a further definition is needed. For integers p > 0, let (vg, +--, Vps T)R
bé any p-cell in R (see §€0.1). Let Woy * =+ 5 Wp be any set sequence of p + 1

linearly independent points in E,. Then there is a linear mapping
s IWO! ey wp' _)lUOa sty Up.,
such that & (w;) = v; for 0 < i < p. The p-chain

CI; = (1)0,°",7-)p, T)R - (wm cet W ,TOL)R

is termed an elementary a-chain in R (see [3, $3.4]), and the subgroup of CR
generated by the elementary a-chains is denoted by A . Forp <0, AP consists
of the zero element alone. In [3, $3.4] Rad$ has a smple characterization for

the group Ag which he uses to define the group in [4, $7].

3.6. For each integer p, put FR AR + Dg + TR (see $82.3, 2 4, 3.5),
and let F denote the division hull of FR Then Rado shows that {F } is an
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unessential identifier in R (see [3, $4.7] or [4, §9]), and this is his best result.
If one sets AR = + N(BR) (see $3. 2) and lets A denote the division hull
of A , then clearly AR P FR, and hence AR D) F . If one modifies the reasoning
of Rado in [3, $4] by replacing the barycentnc homotopy operator pg by the
modified barycentric homotopy operator pfp (see §2.1), one finds that Ag is an

unessential identifier for R. Thus one obtains the following result.

THEOREM. If AR is the division hull of the group A + N(Bg) then the

system {A }is an unessentml identifier for R.
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