Pacific Journal of Mathematics

MULTIPLICATIVE CLOSURE AND THE WALSH FUNCTIONS

PAUL CIVIN

Vol. 2, No. 3

March 1952

MULTIPLICATIVE CLOSURE AND THE WALSH FUNCTIONS

PAUL CIVIN

1. Introduction. In his memoir [1] On the Walsh functions, N. J. Fine utilized the algebraic character of the Walsh functions by interpreting them as the group characters of the group of all infinite sequences of 0's and 1's, the group operation being addition mod 2 of corresponding elements. In this note, we investigate some properties of real orthogonal systems which are multiplicatively closed. We show that any infinite system of the stated type is isomorphic with the group of the Walsh functions. Furthermore, under hypotheses stated in Theorem 3, there is a measurable transformation of the interval $0 \le x \le 1$ into itself, which carries the Walsh functions into the given system of functions.

As is well known, the Walsh functions are linear combinations of the Haar functions. B. R. Gelbaum [2] gave a characterization of the latter functions in which the norm of certain projection operators and the linear closure in L of the set of functions played an essential role. Although the characteristic features of the Walsh functions are, aside from orthogonality, totally distinct from those for the Haar functions, there is some similarity of proof technique in establishing the characterization.

For the sake of completeness, we define the Rademacher functions $\{\phi_n(x)\}$ as follows:

(1.1)
$$\phi_0(x) = \begin{cases} 1 \ (0 \le x \le 1/2) \\ -1 \ (1/2 \le x \le 1) \end{cases}; \quad \phi_0(x+1) = \phi_0(x).$$

(1.2)
$$\phi_n(x) = \phi_0(2^n n)$$
 $(n = 1, 2, \cdots).$

The Walsh functions, as ordered by Paley [3], are then given by

(1.3)
$$\psi_0(x) = 1$$

and

(1.4) if
$$n = 2^{n_1} + 2^{n_2} + \dots + 2^{n_k}$$
 $(n_1 < n_2 < \dots < n_k)$, then

Received September 21, 1951.

Pacific J. Math. 2(1952), 291-295

$$\psi_n(x) = \phi_{n_1}(x) \phi_{n_2}(x) \cdots \phi_{n_k}(x).$$

Throughout we denote the Lebesgue measure of a set E by $\mu(E)$. Equalities of functions are in the sense of almost everywhere equalities, and considerations of sets should be interpreted "modulo sets of measure zero".

2. Algebraic correspondence. Let us consider any sequence $\{\lambda_n(x)\}$ of functions satisfying the following conditions:

(2.1)
$$\lambda_n(x)$$
 is measurable, real valued, and
 $\lambda_n(x+1) = \lambda_n(x)$ $(n = 0, 1, \dots),$

(2.2) $\int_0^1 \lambda_n(x) \lambda_m(x) dx = \delta_n^m.$

(2.3) The sequence $\{\lambda_n(x)\}$ is closed under multiplication.

THEOREM 1. Any system of functions satisfying (2.1)-(2.3) is a commutative multiplicative group.

Proof. Associativity and commutativity are immediate. Let i, j be given nonnegative integers, and let k, m, and n be defined by the formulas

$$\lambda_i(x) \ \lambda_j(x) = \lambda_k(x), \ \lambda_i^2(x) = \lambda_m(x), \ \lambda_j^2(x) = \lambda_n(x).$$

Then

$$1 = \int_0^1 \lambda_k^2(x) \, dx = \int_0^1 \lambda_m(x) \, \lambda_n(x) \, dx \, .$$

Hence m = n, and by a renumbering we have $\lambda_i^2(x) = \lambda_0(x)$, for all *i*. In particular, $\lambda_0^2(x) = \lambda_0(x)$, and for almost every x either $\lambda_0(x) = 0$ or $\lambda_0(x) = 1$. Since

$$\int_0^1 \lambda_0^2(x) \, dx = 1, \qquad \text{we have } \lambda_0(x) = 1 \quad \text{almost everywhere.}$$

Thus the set $\{\lambda_n(x)\}$ possesses a multiplicative unit; and since $\lambda_i^2(x) = 1$ for all *i*, the set is a group.

THEOREM 2. The multiplicative group Λ with elements $\lambda_n(x)$ is isomorphic

with the multiplicative group Ψ with elements the Walsh functions, $\psi_n(x)$.

Proof. We first reorder the sequence $\{\lambda_n(x)\}$. Let $\nu_0(x) = \lambda_0(x)$ and $\nu_1(x) = \lambda_1(x)$. For $k = 1, 2, \cdots$, define $\nu_{2k}(x)$ as the first set in the sequence $\{\lambda_n(x)\}$ which follows $\nu_{2k-1}(x)$ in that sequence, and which is not a product of elements of the sequence $\{\lambda_n(x)\}$ which preced it in that sequence. For

$$n = 2^{k_1} + \dots + 2^{k_r}, k_1 < k_2 < \dots < k_r, \text{ let } \nu_n(x) = \prod_{j=1}^r \nu_{2^{k_j}}(x).$$

By virtue of (2.3), each $\nu_n(x)$ is a $\lambda_j(x)$. Also each $\lambda_j(x)$ is a $\nu_n(x)$, by the method of construction, and the representation is easily seen to be unique. Thus the sequence $\{\nu_n(x)\}$ is a rearrangement of the sequence $\{\lambda_n(x)\}$. The isomorphism between the groups Λ and Ψ is now evident upon pairing $\nu_n(x)$ and $\psi_n(x)$.

We have incidentally established the result that any denumerable group all of whose elements satisfy $a^2 = 1$ is isomorphic to Ψ .

3. Analytic transformation. We introduce the terminology that the subscripts i_1, i_2, \dots, i_r are unrelated if no $\lambda_{i_k}(x)$ is a product of the remaining $\lambda_{i_a}(x)$.

In the proof of Theorem 1, we incidentally established the result that $\lambda_n(x)$ takes on only the values ± 1 . Let

(3.1) $P_k = \{x: \lambda_k(x) = 1; 0 \le x \le 1\},\$

$$(3.2) N_k = \{x: \lambda_k(x) = -1; 0 \le x \le 1\} k = 1, 2, \cdots$$

It is convenient to adopt the convention that E_k and F_k represent some ordering of the pair P_k and N_k .

LEMMA 1. If i_1, i_2, \dots, i_r are unrelated, then

$$\mu\left(\bigcap_{j=1}^{r}E_{i_{j}}\right) = 2^{-r}.$$

Proof. Let

$$g(x) = 2^{-r} \prod_{j=1}^{r} [1 + \delta_j \lambda_{i_j}(x)],$$

where

$$\delta_j = 1 \quad \text{if} \quad E_{i_j} = P_{i_j},$$

and

$$\delta_j = -1 \quad \text{if} \quad E_{i_j} = N_{i_j}.$$

Then g(x) is the characteristic function of $\bigcap_{i=1}^{r} E_{i_i}$. Hence

$$\mu\begin{pmatrix} r\\ \bigcap_{j=1}^{r} E_{i_j} \end{pmatrix} = 2^{-r} \int_0^1 \prod_{j=1}^{r} (1 + \delta_j \lambda_{i_j}(x)) dx$$
$$= 2^{-r} \int_0^1 \left\{ 1 + \sum_j \delta_j \lambda_{i_j} + \sum_{j \leq j^*} \delta_j \delta_{j^*} \lambda_{i_j}(x) \lambda_{i_j^*}(x) + \cdots \right\} dx = 2^{-r},$$

since the integral of any product of λ 's with unrelated indices is zero.

COROLLARY. Any infinite product of sets E_i , without repetitions, has measure zero.

Proof. Of the subscripts involved in the infinite product, an infinite number must be unrelated. The product set is thus a subset of a set of measure 2^{-r} for each r.

In the remainder of the discussion it is convenient to revise the notation so that P_k , N_k , E_k are associated with $\nu_{2k}(x)$ rather than with $\lambda_k(x)$.

THEOREM 3. If any system of functions satisfy (2.1)-(2.3) and for almost every choice of E_k as P_k or N_k , the set $\bigcap_{k=1}^{\infty} E_k$ consists of a single point, then there is a transformation T, defined almost everywhere, of the interval $0 \le x \le 1$ into itself with the following properties:

- (i) T, where defined, is one-to-one except possibly over a denumerable set over which it is two-to-one;
- (ii) $\nu_k(x) = \psi_k(Tx);$
- (iii) T is a measurable transformation;
- (iv) For any measurable set E, $\mu(T^{-1}E) = \mu(E)$.

Proof. The hypothesis of the theorem implies that almost every $x, 0 \le x \le 1$, is in exactly one set $\bigcap_{k=0}^{\infty} E_k$. To any such $x, x \not\in \bigcap_{k=0}^{\infty} N_k$, associate the number Tx according to the following scheme. Let the kth position of the dyadic expansion of Tx be 0 if $E_{k-1} = P_{k-1}$ and 1 if $E_{k-1} = N_{k-1}$. We thus obtain a transformation, defined almost everywhere, of the interval $0 \le x \le 1$ into itself.

By virtue of Theorem 2, all we need do to establish (ii) is to show that $\nu_{2k}(x) = \psi_{2k}(Tx)$ $(k = 0, 1, \dots)$. For $x \in P_k$, Tx has the (k+1)th place of its dyadic expansion 0. Hence

$$\psi_{2^{k}}(Tx) = \psi_{0}(2^{k}x) = 1 = \nu_{2^{k}}(x).$$

Similarly, if $x \in N_k$, then

$$\psi_{2k}(Tx) = -1 = \nu_{2k}(x).$$

In the interval $0 \le x \le 1$, any dyadic interval consists of numbers whose dyadic expansions have their first r digits $a_1 \cdots a_r$ and the remaining digits arbitrary. The inverse image of such an interval is the set $\bigcap_{j=0}^{r-1} E_j$, where $E_j = P_j$ if $a_{j+1} = 0$ and $E_j = N_j$ if $a_{j+1} = 1$. Lemma 1 shows that the measure of the inverse image is 2^{-r} . Hence for dyadic intervals, the inverse image is a measurable set of the same measure. Since any open set is the union of disjoint dyadic intervals, the same statement can be made for any open set, and similarly for any closed, F_{σ} , or G_{δ} set. A classical argument then shows the statement to be valid for any measurable set E.

References

N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
B. R. Gelbaum, On the functions of Haar, Ann. of Math. 51 (1950), 26-36.

3. R. E. A. C. Paley, A remarkable class of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.

UNIVERSITY OF OREGON

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

R. M. ROBINSON

University of California Berkeley 4, California *R. P. DILWORTH

California Institute of Technology Pasadena 4, California

E. F. BECKENBACH, Managing Editor

University of California Los Angeles 24, California

*During the absence of Herbert Busemann in 1952.

ASSOCIATE EDITORS

R. P. DILWORTH	P. R. HALMOS	BØRGE JESSEN	J. J. STOKER
HERBERT FEDERER	HEINZ HOPF	PAUL LÉVY	E. G. STRAUS
MARSHALL HALL	R. D. JAMES	GEORGE PÓLYA	KÔSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA, BERKELEY	WASHINGTON STATE COLLEGE
UNIVERSITY OF CALIFORNIA, DAVIS	UNIVERSITY OF WASHINGTON
UNIVERSITY OF CALIFORNIA, LOS ANGELES	• • •
UNIVERSITY OF CALIFORNIA, SANTA BARBARA	AMERICAN MATHEMATICAL SOCIETY
OREGON STATE COLLEGE	NATIONAL BUREAU OF STANDARDS,
UNIVERSITY OF OREGON	INSTITUTE FOR NUMERICAL ANALYSIS

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. F. Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may obtain additional copies at cost.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December, by the University of California, Berkeley 4, California. The price per volume (4 numbers) is \$8.00; single issues, \$2.50. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

UNIVERSITY OF CALIFORNIA PRESS . BERKELEY AND LOS ANGELES

COPYRIGHT 1952 BY PACIFIC JOURNAL OF MATHEMATICS

Pacific Journal of Mathematics Vol. 2, No. 3 March, 1952

Lars V. Ahlfors, <i>Remarks on the Neumann-Poincaré integral equation</i>	271
Leonard P. Burton, Oscillation theorems for the solutions of linear,	
nonhomogeneous, second-order differential systems	281
Paul Civin, <i>Multiplicative closure and the Walsh functions</i>	291
James Michael Gardner Fell and Alfred Tarski, On algebras whose factor	207
algebras are Boolean	297
Paul Joseph Kelly and Lowell J. Paige, <i>Symmetric perpendicularity in</i> <i>Hilbert geometries</i>	319
G Kurena On a characteristic property of finite sets	323
Ioseph Lehner A diophantine property of the Fuchsian groups	327
Donald Alan Norton Groups of orthogonal row-latin squares	335
R S Phillips On the generation of semigroups of linear operators	343
G. Piranian, Uniformly accessible Jordan curves through large sets of	545
relative harmonic measure zero	371
C. T. Rajagopal, Note on some Tauberian theorems of O. SzÃ;sz	377
Halsey Lawrence Royden, Jr., A modification of the Neumann-Poincaré	
method for multiply connected regions	385
George H. Seifert, A third order irregular boundary value problem and the	
associated series	395
Herbert E. Vaughan, Well-ordered subsets and maximal members of ordered	
sets	407
Hans F. Weinberger, An optimum problem in the Weinstein method for	
eigenvalues	413
Shigeki Yano, Note on Fourier analysis. XXXI. Cesàro sunmability of	
Fourier series	419