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SYMMETRIC PERPENDICULARITY IN HILBERT GEOMETRIES

P. J. KELLY AND L. J. PAIGE

1. Introduction. A hilbert plane geometry [2] can be generated in the follow-

ing way. Let K be a simple, closed, convex curve in the euclidean plane and //

its open interior. If a and b are any two points in H, they determine a line a x b1

which intersects K in a pair of points u and v. With R denoting cross-ratio, the

hilbert distance from a to b is defined by

h ( a , b ) = k I l o g R ( a , b; u, v ) \ 9

where k is an arbitrary positive constant. The region H is then a metric set with

respect to K. Under the additional requirement that K contain at most one seg-

ment, H defines a hilbert plane geometry in which any pair of points are uniquely

connected by a geodesic, and these geodesies are open straight lines. If K is

an ellipse, then the hilbert geometry coincides with the well-known Klein model

of hyperbolic geometry.

Perpendicularity in H is defined through the idea of distance. If p and ξ are

any point and line respectively, then a point f on ζ is a "foot of p on ζ" if

h(p, f) <h(p,x) for all points % on ξ. A line η, intersecting ξ, is perpendicular

to ζ if every point on η has the point of intersection, ζ x η,* as a foot on ζ.

Under this definition, there is no need for the perpendicularity of η to ξ to

imply the perpendicularity of ζ to η. The aim here is to show that when perpen-

dicularity is always symmetric, the hilbert geometry is hyperbolic.

As before, let p and ξ be any point and line in //, and let η be a line passing

through p and intersecting K in the points u and v. It can be shown quite simply

that a necessary and sufficient condition for η to be perpendicular to ξ is that

a pair of supporting lines exist, one at u and one at v, intersecting at a point w

on ξ [ l ] . If η is perpendicular to ξ, then the previous statement implies that η

is also perpendicular to every line through w which is a secant to K. When such

a secant cuts K at points m and n9 then symmetry of perpendicularity requires

that a supporting line exist at m, and one at /ι, such that the two intersect on η.

1Here and henceforth the line joining a and b will be indicated by a X b, and sym-
metrically the point of intersection on lines ξ and η by ζ X η.
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2. The family F. The foregoing facts suggested the independent problem of

identifying the following family of curves.

Family F: Every curve C in F is a simple, closed, convex curve. If sup-

porting lines at p and q on C meet at w, and ξ is any secant through w,

cutting C at m and n9 then supporting lines at m and n exist, intersecting

on p x q.

We are going to show that the family F consists of all triangles and ellipses.

LEMMA 1. If a curve C in F contains a straight line segment then the curve

is a triangle.

Proof. Let a and b denote the end points of a segment contained in C, and

take p to be a regular point (a point of C with unique supporting line) of C which

is not on ζ — ax b. If σ denotes the supporting line at p, assume that q = σ x ζ

is not a point of C. Because the secants to C through q form a continuum, while

the corner points (points possessing more than one supporting line) of C are

denumerable, there exists a secant 77, through q, such that its intersections with

C are two regular points m and n. But by the definition of C, the unique sup-

porting lines at m and n must intersect on p x b and also on p x α. Hence they

intersect at p, which contradicts the fact that p is regular. Therefore the inter-

section σ x ξ is a point of C, and so is either a or 6. Suppose it to be α. The

segment from α t o p is then part of C. Let c denote the other end of the largest

segment contained in C and containing the segment from α t o p . Let r be a regu-

lar point of C, not on ξ nor on γ = a x p, and let δ be the supporting line at r.

By the same reasoning as before, the points ^ x 5 and 8 x γ must lie on C, and

hence are the points b and c respectively. Thus C is the triangle α, b9 c.

LEMMA 2. // a curve C in F contains a corner point, then the curve is a

triangle.

Proof. Let p be a corner point on C, with δ t and δ 2 two supporting lines at

p. Assume: (*) that no supporting line contains two points of C. Let q and r be

any two regular points of C, with σ and 77 denoting their respective supporting

lines. Set iίj = σ x δj ( i = 1, 2) and v = η x (p x q). Because of (*), the

line ui x r is a secant, and intersects C again at a point s{ (i = 1, 2) . By the

definition of C, at s, a supporting line exists which intersects 77 at a point of

p x q9 namely at the point v. But because of (*), the point v is exterior to C.

In addition to 7/, then, there can be only one other supporting line through v*

Hence the lines v x sx and v x s2 are the same, which contradicts (*). Be-

cause (*) is false, C contains a segment, and so, by Lemma 1, it is a triangle.
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THEOREM 1. The family F consists of all ellipses and all nondegenerate

triangles.

Proof. If C contains a segment or a corner point then it is a triangle; so

suppose C to be strictly convex and differentiate. Let pί and p 2 be two points

of C such that the supporting lines, σι and σ 2 , at p t and p 2 are parallel. Intro-

duce a rectangular reference frame so that pi is the origin, σ t is the y-axis, and

with p 2 lying in the first quadrant. Take θ to denote the acute angle between the

the line η = p 1 x p 2 and the x-axis, and let σ2 be the line x = k. A vertical

chord of C, lying on the line σ(x) through (x, 0), is cut by η into an upper and

lower segment such that the ratio of their lengths, μ(x), is constant for all x

on the interval <0, k). To prove this, let T be the affinity y ' = — x tan θ + y,

χ/ = x, taking C into a new convex curve C'. Under Γ, the line η goes into the

%-axis, which seperates C" into an upper curve yι - fι(x) and a lower curve

Ϊ2 = f2^x^' Because T preserves distance on any vertical line, the ratio μ(x)

equals fχ {x)/f2 {%)> The line σ{x) is a secant to C through σι x σ2 hence the

tangents to C, at its intersections with σ{x)9 are lines which intersect on η .

Then C" has the property that the tangents at {x, fγ (x)) and (x, f2 {x)) inter-

sect on the x-axis. From simple triangle relations it follows that

for Λ; on < 0, A: >. If a is fixed, and x is variable, on < 0, k ) , then the equality

Ja fix) Ja fix)

shows that

and hence that μ(x) is a constant. The original curve C, therefore, has the

property that if a line -joins the contact points of two tangents which are parallel

in a direction Ot, then the line cuts all chords parallel to α in a ratio which is

constant (with α). But then it is known that the ratio is unity for all directions

and that the curve is an ellipse [3]. Since it is easily shown that either a tri-

angle or an ellipse does belong to the family F, the theorem is complete. In

particular, it may be noted that the property of family F, applied to strictly

convex curves, characterizes the ellipse.
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3. Symmetric perpendicularity. The answer to the original problem is now

clear. When perpendicularity is symmetric in a hilbert geometry, then the curve

C belongs to the family F. Since C can have at most one segment, it is not a

triangle, and hence is is an ellipse. Therefore the geometry is hyperbolic. Thus

we have proved the following theorem.

THEOREM 2. The hilbert geometries in which perpendicularity is symmetric

are the hyperbolic geometries.

The result obviously extends to higher dimensions. Perpendicularity refers

to lines in the same plane. When the perpendicularity is symmetric, every plane

section of the gauge surface K is an ellipse; hence K is an ellipsoid which

defines a higher dimensional hyperbolic geometry.
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