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ON THE GENERATION OF SEMIGROUPS OF LINEAR OPERATORS

R. S. P H I L L I P S

1. Introduction. Let T(ξ) be a semigroup of linear bounded transformations

on a Banach space 3C to itself (see [4]), strongly continuous on [0, oo) with

Γ(0) = /. Further let 0C( ί, ξ) be a one-parameter family of functions of bounded

variation in ξ >^ 0 which form a semigroup in t >^ 0 with product defined by

convolution. Then

(1) S ( ί ) = JΓ°° T(ξ) dξ a(t,ξ)

will also form a semigroup of linear bounded transformations on 3C to itself. If

the semigroup 0C(ί, •) satisfies certain continuity conditions, then S(t) will

be strongly continuous for t >̂ 0. This method of generating new semigroups

out of old ones has previously been considered in a general way by N. P.

Romanoff [10] and in connection with stochastic processes by S. Bochner [2].

We shall consider the problem in the setting described above and attempt to

obtain the infinitesimal generator B of the semigroup S ( ί ) directly in terms

of the semigroup T{ξ) and its infinitesimal generator A. We shall seek also to

relate the spectrum of B to that of A

In general the integral in (1) will not converge unless 0ί is suitably re-

stricted. The most general function (X of bounded variation, for which the inte-

gral converges absolutely, will satisfy the condition

( 2 ) JΓ°° exp [ * > ( £ ) ] \da\ < oc,

where ω(ζ) = log | l ^ ( f ) | | is lower semicontinuous, subadditive, and bounded

near the origin. We shall accordingly limit ourselves to the Banach algebra

G(α>) consisting of the set of all such functions α, where the norm is given by

the integral in (2) and the product is given by convolution. Now S ( ω ) can also

be considered as an operator algebra over the Banach space C(ω) consisting

of the absolutely continuous elements in Θ(ω). In the course of proving that

the operator topology forS(ω) and the original topology are isomorphic we have
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344 R. S. PHILLIPS

obtained the following relation for the case lim ω(ξ) = 0:
£-0

(3) j Γ exp[ω(£)] | rfα | = lim /o°° exp dξ.

We have been able to extend the results of A. Kolmogoroff [7] and Paul Levy

[β] on semigroups of distribution functions to the case of semigroups of mono-

tonic nondecreasing functions in 6(ω) when ω(ζ) satisfies the additional

condition

(4) lim / s u p [ω(ξ) - ω(ζ + 8)]) < oo.
δ-° \S 1 o /

In fact, if we set ωo = inf ω (ζ) / ζ and

(5) Φ[λ, α] = fQ°° e x p [ λ ^ ] ^ α for R [λ] < ω0 ,

then we have shown that a necessary and sufficient condition that 0C(ί, ξ) be

a semigroup of monotone functions in G(ω) (strongly continuous over Q(ω) at

t = 0) is that

(6) Γ 1 logΦ[λ, α(ί, •)] = mλ + fj0 ( e x p [ ( λ - ω o ) f ] - 1) dφ + α,

where m >̂  0, a is real, and φ is monotonic nondecreasing on (0, oo) satisfying

the conditions

J ζdφ < oo and J exp [ω(£) - ω0 ξ] c?ψ < oo.

Finally, we have been able to obtain a characterization of the infinitesimal

generator B of S(t) when S(t) is generated by a semigroup of monotone func-

tions in G(ω). In this case we show that for x in the domain of A we have

(7) Bx = mAx + f°° [exp(-ωo£) T(ξ)x - x] dφ + ax,

where m, α, and φ(ζ) are obtained from (6). In addition, if λ0 belongs to the

spectrum of A, then

77iλ0 + f°° (exp[λ0 - ωo)ξ] ~ 1) dφ + a

belongs to the spectrum of B.
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2. The Banach algebra 6 ( ω ) . This section will be devoted to a character-

ization of various kinds of convergence in the Banach algebra δ ( ω ) . We shall

suppose that the weight function ω(ζ) satisfies the hypothesis

( i ) ω(ζ) is real valued and lower semicontinuous on [0, oo );

(h) ( i i) ω ( 0 ) = 0, Thn" ω(ξ) < oo;

(iii) ω(ξ) is suhaά&tive: ω(ξχ+ξ2) < 0)^) +ω(ξ2) toe ξιf ξ2 > 0.

If, in a d d i t i o n ,

( i v ) lim f s u p (ω{ξ) - ω(ξ + δ ) ) l < oo,

we shall say that ω satisfies the hypothesis (A*). Conditions ( i ) and ( i i i )

imply ( see [4, Chap. 6]) that lim* + ω(ξ) _> 0, and hence that ω{ξ) is

bounded in every finite interval [0, L ]. Further,

(8) ω0 = inf ω(ξ)/ξ= lim ω(ξ)/ξ.
ξ > o ξ-+<*>

We now define δ ( ω ) to be the set of all completely additive complex-valued

set functions CC(σ) on the sigma-field of Borel measurable subsets B of [0, oo)

such that

/°° exp [ω(ξ)]\dα\ < oo.

We require only that CC(σ) be finite if σ is contained in a finite interval. The

norm is given by

(9) | | α | | = ^°° e χ p [

It is clear that S ( ω ) is a Banach space. In order to define the product γ = (X *j3

of two elements of 6 ( ω ) , we consider the product measure γ of CC and β de-

fined on the smallest sigma-field S 2 generated by ϊ x 35. For any σ £ B,

we set

γ(σ) = ψ[(u, v) I u + v C σ; u, v >^ 0 ] .

It follows that the product is commutative, that

( 1 0 ) γ ( σ ) = / 0 L ( σ - u ) d u β = J β(σ-u)du(X,
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and that

(ID l l y l l <

Thus S(α>) is likewise a Banach algebra with unit e. It will sometimes be con-

venient to consider 0 t€ S(ω) not as a set function CX(σ), but simply as a

function of bounded variation continuous on the left, namely as

This correspondence between set function and point function is clearly one-to-

one and should not cause any confusion.

Let Q (ω) be the set of Borel measurable functions f(ζ) such that

fo° f{ξ)

Then with norm

(12) | | / | | = J f « p [ ω ( £ ) ] \f(ξ)\dξ,

Q(ω) is a Banach space Further if α G δ(ω), then

(13) Aa(f) f(ξ - u) dua

defines a linear bounded transformation on Q(ω) to itself. Clearly

I K ( / ) I I < | | α | | 11/11,

and hence

(14) | |Λ«|| < | | α | | .

We shall show that the two norms are isomorphic. To this end we set

1/δ for 0 < ζ £ 8 and zero elsewhere. Then by (14),

(15) lim f°° exp[ω(f)]
-•0+ °

0-* 0 +

dξ

\ A Λ ( i % ) \ \ < c\\a\\,

where
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(16) c = lim δ~ ι

s - o +

Because of (h-ii) and the subsequent remarks, it is clear that 1 £ c < oo.

LEMMA 2.1. If ω(ξ) is subadditive and merely lower semicontinuous, then

(17) lim Γ exp[ω(£)]
- δ)

dξ > \\a\\.

Since exp[ω(ζ)] is lower semicontinuous, we can approximate it from below

by a sequence of continuous functions wn(ζ) such that

and lim wn(ζ)
n—*oo

pointwise. We shall show that

(18) lira Γ wn(ξ)
8-0+ °

- α ( ^ - δ)
dξ>

and hence that

lim Γ
- α ( ^ - δ)

for all n. The inequality (17) then follows by Fatou's lemma. It remains to prove

(18). Now given e > 0 there exists a subdivision ξQ = 0 < ξχ < < ξn ~ L

such that

(19) u,(ξf)

where ^Γ

ί_1 £ '̂? < ξ^ and this inequality remains true for all refinements of

the above subdivision of [ 0, L] Setting

du,

we have
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j* w{ξ)[0i{ξ)- OL(ξ-δ)]dξ

- fb W(ξ)da(ξ) + fb6

la "a

(20)

[ W { b ) ~ - fa [W(a) - δ)]da

[W(ξ + 8)-W(ξ)]da.

Now

δ) - W(ξ)]dθL- w(ξ')δ[a(b) - α ( σ ) ] |

£ O S C [ M ; ; α , b + 8] v a r [ ( X ; α , b]f

where a < ξ' <_ b. If M = max [ | κ> ( f ) | | f £ [ θ , L ] ] , we see that the first two

terms on the right of (20) are bounded above by Mδ var[θC; b — δ, b] and by

M8 var[(X; a - δ, a] respectively. Hence

%-ι

- a(ξ~ δ)

> Σ
S

> Σ ^(^') lαίf^-

osc[u;; f..^ ^. + δ] var[α; ξ^χ9 ξ.

- i f a ' ^ - i -δ, f..1] + var[α;f. -δ,ί f

We first choose a subdivision sufficiently fine so that for all sufficiently small

δ > 0 we have
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max \osc[w; ξimmχ9 ξ. + δ]} <
v a r [ α ; 0, L]

Combining (19) with the above inequality we then get

JP00 t t\ \ J i C°° / Λ x ^ vs / *" tt(f - δ)

n

+ 2e + 2M ^ var[α; ξ. - S, ξ.]

1 = 0

The inequality (18) now follows from the fact that 0L is continuous on the left

and the arbitrariness of e > 0.

As a consequence of Lemma 2.1 we see that

P a l i = sup | K ( / ) | | / 11/11 > Hm P a ( / 8 ) | | / Thί | | / s | | > | | a | | / c
δ-»o+ δ—o+ °

Combining this with (14) we have

(21) | |α||/c < p α | | <

THEOREM 2.1. The operator norm for the elements of G(ω) over Q ( ω )

is isomorphic to the regular norm (9).

In particular, if lim,. + ω(<f) = 0 then c = 1, and hence (3) follows from

(15) and (17).

We next obtain a criterion for the strong convergence of elements in G(ω)

considered as operators on Q ( ω ) .

THEOREM 2.2. The operators Aa converge strongly to 0 if and only if the

110tn 11 are bounded and

(22) lim j Γ expU(<f)] | 0Ln (ξ) - an (ξ - δ) | dξ = 0

for all sufficiently small δ > 0.

K "mπ_*oo Aan (/) = 0 for each / C ? ( ω ) , then by a well-known theorem due

to Banach [ l , p. 80] the | | / 4 α n | | are bounded, and hence by Theorem 2.1 so are

the | |θC n | | . Further, if f§(ζ) = 1 for 0 < ξ £ δ and zero elsewhere, then
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IMαB(/S)ll = j f

for all δ > 0. Conversely, suppose (22) is valid for all δ C (0, δ0 ). Then given

a > 0 there exists an integer k and a δ C (0, δ0 ) such that A δ = α. Now for
a n v ζQ — 0 we have

0 j - 0Cn (ξ - 8) \dξ

as n—»oo. Hence

^ Σ

as n—>oo. In other words, if / ( f ) = 1 for 0 < ζ < a and zero elsewhere, then

I M α r a ( / ) | | — * 0 . Since the linear extension of this class of functions is dense

in C(ω), and since |Mαn II
 a r e bounded by (14), the desired result follows from

the Banach-Steinhaus theorem [l, p. 79].

We now define

Φ(λ, α) = f°° exp[λξ]d(X,

(23)

/)= Jo°° ex?[λξ]f{ξ)dξ.

These integrals converge absolutely for R[λ] £ ω 0 . We recall that the Laplace

transform of the convolution of two functions is the product of their Laplace

transforms, and hence that

(24) f" exp[λf] Aa(f)dξ=Φ{λ)φ{X).

We next obtain a necessary condition for the strong convergence of the operators

Aan, where again an G 6(ω).
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THEOREM 2.3. If the operators Aa converge to 0 in the strong topology,

then the | |θCn | | are bounded, Φπ(λ)—»0 uniformly in every bounded subset of

R[λ] £ ω0, and Oίn(ξ)—>0 pointwise.

The boundedness of the | | θ C Λ | | follows as in Theorem 2.2. Since

\φ(Kf)\ < 11/11 *<* R [ λ ] < ω 0 ,

it follows from (24) that | Φn{λ) φ(λ, f) \ < | | 4χn(/) | | -» 0 uniformly for

H[λ] £ ωo The uniform convergence of ΦΛ(λ) to zero on a bounded subset

E of R[λ] £ ω0 now follows from the fact that there exist functions φ(λ, f)

bounded away from zero on E. In fact, for /g defined as in the previous theorem,

φ{\, fs )= ( e x p ( λ δ ) - l ) / λ will suffice for δ sufficiently small. The fact

that &n(ξ)—»0 is a consequence of the following lemma, patterned after the

P. Levy convergence theorem [8, p. 49].

LEMMA 2.2. // an C S(ω), the | |θCπ | | are bounded, and Φ(λ, an) con-

verges to Ω(λ) uniformly in every bounded subset of R[λ] < ω0, then there

exists an α C S ( ω ) such that Φ(λ, Oί) = Ω(λ) and OLn(ξ)—»α(£) at every

point of continuity of α.

Since the variations of the CLn are uniformly bounded in every finite interval,

we can apply the Helly theorem and obtain a subsequence CLnk{ξ) which con-

verges to a function OC (ξ) (likewise of bounded variation in every finite interval

and continuous on the left) at each point of continuity of 0t(£). In order to show

that OtC δ(ω), we approximate exp[ω(^)] as in Lemma 2.1 by a sequence

of continuous functions wn(ζ)9 where

0 < wn{ξ) < αfc+ ι(£) and wn(ξ)—

pointwise. Then, by hypothesis,

JH° ™n(O \dank\ < jΓ°° exp[ω(ξ)] \dθink\ < M.

For each L > 0 we have

fL wn(ξ) \da\ < lim ΪL Wntf) \dCtnk\.

Hence J wn(ξ) \dθL \ <^ M for each n; and, by Fatou's lemma,

f°° exp[ω(ξ)] \da\ < M.
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Thus α C 6 ( ω ) , On the other hand, for any δ > 0 and u = R (λ ) <. ω 0, we have

( 2 S Γ 1 fV*S Φn(u + iv)</i/ = / ~ exp[(u + iv)£] (δξ)~ι sin δ£ rfαn.
f "~ o 0

Φn(u + iv)</i/ /
f "~ o 0

Now

1 °̂° exp[(α + iv)δ] (δξΓ1 sin δξ dan\ < M/(SL)9

so that

Ĵ °° exp[(u+ «;)£] ( δ f Γ l s i n δ f ^ α n

—» J°° exp[(a + iϋ)^] (δξ)~ι s inδf rfα.

Finally, since Φn (λ)—> Ω(λ) uniformly in every bounded subset of R[λ] < ω 0,

we obtain, for all δ > 0,

( 2 δ Γ ι j Γ * 8 Ω(u + iv)dv = jΓ°° exp[(« + iv)ξ] (8ξ)~ι sinδξdΰL

= (28)~ι Γ + S Φ ( B + iv)dv.
Vm" o

Thus Φ(λ) s Ω(λ) for R[λ] £ ω 0. Finally since this is true of all subse-

sequences, it follows from the uniqueness theorem for Laplace transforms that

>OL(ξ) at all points of continuity of

3. Nonnegative semigroups in S ( ω ) . In this section we shall obtain a gener-

alization of the Kolmogoroff [7] and P. Levy [8, Chap. 7] representation for

semigroups of distribution functions in terms of their characteristic functions. We

shall consider the semigroup α ( ί , ξ), where

( i ) for each t >^ 0, 0C (t, ξ) is a nondecreasing function in 6 ( ω ) ;

( ϋ ) α(tx + t2, . ) = α ( ί l f •)* α ( ί 2 , •), α ( 0 , •)= β;

(25) ( i ϋ ) there exists an M such that | | α ( ί , ) | | < M for 0 < t < 1;

(iv) Φ [ λ ; α ( ί , •)] = f°° exp (λf)rf^ α ( ί , ^) converges to one as ί—->0+f
uniformly in any bounded subset o f R [ λ ] _< ω o

It will be convenient to introduce the auxiliary space S ( ω ) , where
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ω (ξ) = ω(ξ) - ωoξ.

It is clear that ω(ζ) will also satisfy the hypothesis (h) and that inf ω(ξ)/ξ =

0. Hence if β £ G(ω), then β is a function of bounded variation on [0, oo).

The transformation

(26) β ( σ ) = U ( α ) ( σ ) s £eiap(

is a norm preserving isomorphism of the Banach algebra S ( ω ) onto 6 ( ω ) .

Further,

Φ(λ, α) = JΓ°° ejφ{\ξ)dξa = JΓ°° exp[{λ- ωo)ξ]dξβ = Φ(λ- ω0, β).

Hence if

β(t, . ) = U [ α ( ί , •)]

then all of the conditions (25) are fulfilled for the semigroup β(t, ) C S ( ω )

with 0 replacing ω0 in (iv). Since, in particular,

O < j 8 ( t , o o ) < | | j 8 U . ) | | < J l ί forO < ί < 1,

β(h + t2, oo) = β(h, oo) β(t2, oo),

it follows from well-known results on multiplicative functions that β(t,co) =

exp(αί) We now define

(27) γ(t,ξ) = e x p ( - α f ) β(t9ξ).

Then y( ί , ) is a semigroup of distributions, continuous in the sense of (iv).

Hence we can apply the results of Kolmogoroff and P Levy, We refer the reader

to Khintchine's proof [6] which has been reprinted by Hille [4, p. 435]. Implicit

in P. Levy's discussion of this theorem [8, p. 178] is the following modification,

valid for one-sided distributions (that is, distributions defined on [0, co))

LEMMA 3.1. Let γ(t$ ξ) be a semigroup of one-sided distributions such that

(28) lim y(ί , ξ) = 1 for each ξ > 0.
ί-» o +

Then

(29) Γ ι log(Φ(λ, y(ί, •)]) = ™λ + j Γ t e x p U a - l]dψ(ξ)



3 5 4 R. S. PHILLIPS

for all R(λ) £ 0, where m > 0; φ(ζ) is nondecreasing on (0, oo); φ (<x>) < oo;

and J ξ dφ < oo. Conversely, every such choice of m and φ defines a semi-

group of onesided distributions satisfying (28).

For the sake of completeness, we shall sketch a proof of this fact. The

reader will be able to fill in the details by referring to Hille [4, pp. 435-438].

It is readily seen that

log(Φ[λ,yU, •)]) ^ tΦχ(λ),

and hence that

(30) Φi(λ) = lim Γ ι f°° [exp(λf) - l ] dμ γ{t9 ξ).

We next define

G U ξ) = Γ ι j£ f 7/2/(1 + 772) dv y(ί, 77).

As in [4], it can be shown that var[G(ί, •)] is bounded for 0 < t < tQ; that the

variation of G(t, ξ) in [L, 00) goes to zero as L—>oo, uniformly for 0 < t _< ίo;

and that for some sequence tn tending to 0+,

G{tn,ξ)—>G(ξ) and mn = jΓ°° ξ~ι dG(tn, ξ) —> m0 > 0.

It follows that G(ξ) can have no jump at the origin and that

WQ ^ lim I ζ dG ( t n 9 ζ) = I ζ

Thus jΓ°° ξ~ι dG(ξ) < oo. Hence, by (30),

Φ t(λ) = lim J mnλ
71 — oo I

ξ2)/ξ2] dG(tn,

= mλ+ fo°°[exV(kξ)-l]dφ(ξ),

where
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m = m 0 - £°ξ~ιdG(ξ) > 0 and φ(ξ) = - fg°° {l + η*)/η* dG{η).

Thus the function φ{ζ) is monotonic nondecreasing on (0, oo); φ(ζ) <_ 0;

and J ξ dφ(ξ) < oo. The uniqueness of φ(ζ) follows from the uniqueness of

G(ζ) as in [4]; the converse statement is also proved as in [4]

For our purposes we shall need a theorem of this type applicable to semi-

groups in G(α7) satisfying the conditions of (25). We shall show that if

f exp[ω(ξ)] dψ(ξ)<

then y(ί, ζ) G G(ω), and that the converse is likewise true for suitable re-

stricted ω(ζ). Without loss of generality we set t = 1.

THEOREM 3.1. //

(31) logΦ(λ,y) = mλ+ j H [ e x p ( λ f ) - l]dψ(ξ),

where

m > 0, fl ξ dφ < oo, and f°° exp[ω(£)] dφ(ξ) < oo,

then γ £ S ( ω ) .

It is clear that y is the convolution of three one-sided distributions, namely:

γ = an m-shift to the right,

7 2 , where log Φ ( λ , y 2 ) = £ [exp (λξ) - l ] dφ,

y3 , where logΦ(λ, y3 ) = ^° ° [exp(λf)- l ] dφ.

It is further clear that γχ C 6 (ω), so that it remains to show that the same is

true of y2 and y3 Now J* [exp(λ^) - 1] dφ(ξ) can be approximated by sums

of the type

uniformly in every bounded subset of R(λ) <_ 0. Suppose y is such that

logΦ(λ,y7r)= £
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Then γ^ is the convolution of n Poisson distributions, and hence has a jump of

n n ( Δ J T / Γ ) * n

" ^ Zmί iΨ' L i L#] Z* i ^i *

It follows that

( n I n \ n {ΔiXlj)
ki

Now by assumption (h-ii) there exists an M > 0 such that exp[ω( ξ)] £ M for

0 £ <f £ 2. Hence, in general, exp[ω(£)] £ M^ for all ξ >_ 1. Thus we obtain

1 = 1

Finally, since f exp[ω(^)] dyπ(ξ) £ Λf, and since ^* (M* — \) dψ < oo,

the approximating γπ*s can be chosen to satisfy the conditions of Lemma 2.2.

It follows that y2 C S(ω). Likewise J°° [exp (λξ) - 1 ] c?0 can be approxi-

mated by sums of the type

ί = l

uniformly in every finite subset of R(λ) £ 0. Hence y3 can also be approxi-

mated by distributions of the type γπ. Now

« | Σ *<£•) l Σ *iω(^ ),

\ί-I / «-I

so that in this case we have

n
l og||yπll £ Σ [ e x p ω ( ^ ) - l ] Δ ^ .

1 = 1

Since J (exp[ω(f)] - 1) dip < oo, it follows as above that y3 C S(ω).

THEOREM 3.2. If γ{t, ξ) is a semigroup of distributions in G(ω) satisfying
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the conditions (25), and

(32) lim sup [ω (ξ) - ω( ξ + 8)] < oo,

then

Γ 1 log Φ[λ, y(ί, )] = mλ + JΓ°° [exp(λ£) - I] dφ ,

where m >_ 0, φ{ζ) is monotone nondecreasing with

J ξdφ < oo, and J°° exp[ω(f)] dφ < co.

It is clear that the continuity conditions (iii) and (iv) of (25) imply (28) by

Lemma 2.2. Hence we may avail ourselves of the results of Lemma 3.1. It re-

mains therefore only to verify the statement J exp [ ω ( ξ ) ] dφ < oo. By the

assumption (32), there exists a Δ > 0 and a k > 0 such that ω(ξ + 8) >. ω{ζ)- k

for all ξ >_ 0 and all 0 < 8 £ Δ. It follows by an induction argument that

ω ( f + δ) > ω(ξ)~ (δΔ~ ι + l)k for all ξ _> 0 and all δ > 0. Suppose now that

γ( ξ) is of bounded variation on [0, oo) and that γ(ξ- m) £ G ( ω ) . Then

I dγ I < exp[(mΔ 1 + 1)A;] / e x p [ ω ( £ + m)
υ ''0

so that γ{ξ) £ G(ω). Thus without loss of generality we may assume that

m = 0 For t equal to, say, one, we define γ and y as before, so that
2 3

logΦ(λ,y2) = £

and

l o g Φ ( λ , y 3 ) = . f

Then

Π ll II II / °° / c

y ! l = l l y 2 * y 3 l l = X X
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whence

Since y2 is a distribution function, we have y2 ( e ) > 0 for some e > 0. Hence

y 3 C δ ( ω ) . Finally we see that

Φ(λ,y3) = exp[./ i

θ°#] £
(Φ(λ,y 4))n

n\
\

where y4( ξ) = 0 for 0 < ξ < 1 and y4 ( ξ) = φ (ξ) - φ (1) for ξ > 1. In other

words,

and in particular y3 (σ) >̂  exp[ — J* c?^3 y4 (σ). Since y3 C S(ω), it follows

that y4 G S(ά7), and hence that

J exγ>[ω(ξ)]dφ < oo.

We summarize the results of this section in the following theorem.

THEOREM 3.3. // 0C(ί, ξ) is a semigroup of elements in 6 ( ω ) satisfying

the condition (25), and ω(ξ) satisfies (A*), then for R(λ) £ ωo we have

(33) Γ ι logΦ[λ,α(ί, •)] = rnλ + jΓ β ° (exp[(λ-ω 0 ) f ]- l )^(έ : ) + β»

where m >_ Q, a is real, and φ(ζ) is a monotone nondecreasing function such

that

f ζdφ < oo and J exp[ω(£) - ωoξ] dφ < oo.

Conversely, if Φ[λ, 0C(ί, •)] satisfies (33), ίλeπ α(ί, •) G S(ω) and satisfies

(25) for any ω(ξ) satisfying (h).

Before we conclude this section, a remark is in order about the continuity

of the semigroup α(ί, ). If we consider /4 ,£ v to be a semigroup of operators

on Q (ω), then the strong convergence of these operators to the identity operator
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as t—> 0+ implies, by Theorem 2.3, that the continuity hypothesis (25)- (in)

and - (iv) will be satisfied by 0ί(ί, )• We shall show in Corollary 4.1 that the

converse is likewise true.

4. Semigroups of transformations. In this section, we shall make use of

the Banach algebra 6 ( ω ) to develop an operational calculus for the infinitesi-

mal generators of semigroups of transformations on a Banach space to itself.

Hille [4, Chap. 15] first introduced such a calculus. The novel feature of the

present discussion is that this calculus is used to obtain other semigroups of

transformations, and as a consequence to obtain other infinitesimal generators.

This method of generating new semigroups has previously been considered in a

general way by N. P. Romanoff [lO] and in connection with stochastic processes

by S. Bochner [2].

Let X be a complex Banach space, let (§r( X) be the algebra of linear bounded

transformations on X to itself, and let T(t) be a semigroup of operators on

[0, oo) to S(X) (see [4]) satisfying the following hypothesis:

(H)
( i ) T ( t x + t2) = T{tx)T{t2) f o r * ! , t2 > 0, Π 0 ) = /;

(ii) lim T{t)x = x for all % G X.

Such a semigroup of transformations will have a closed linear infinitesimal

generator A with domain 2) (/4) dense in X. It can be shown [4, Theorem 9.4.1]

that T{t) is then strongly continuous for t >. 0, and hence that | | ! Γ ( £ ) | | * s

lower semicontinuous. It is clear that the subadditive function

(34) ω(£) = l o g | | Γ ( £ ) | |

satisfies the conditions (h) and may be used to define a Banach algebra of the

type S(ω). For 0ί(£) C 6(ω), the relation

(35) Θ(α)*Ξ f°°T(ξ)xdθL(ξ)

defines a linear bounded transformation in S(3C). Further, it is easily seen that

Θ ( e ) = /,

(36)
Θ(α * β) = Θ ( α ) Θ ( / 3 ) ,
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Hence Θ(θC) is a continuous homeomorphism of 6 ( ω ) into S(3£) which takes

the unit e into the identity /. This mapping can be thought of as defining an

operational calculus for the infinitesimal generator A of T(t) (see [4] and [9]).

Suppose now that d(t9 •) £ 6 ( ω ) form a semigroup of set functions such

that A»t v considered as operators on Q (ω) satisfy the postulates (H) Then

(37) S(t) = θ [ α ( ί , . ) ]

is clearly a semigroup of operators on 3£ to itself by (36). We show next that

S(t) converges strongly to / as t —» 0+. For this purpose we need the following

lemma.

LEMMA 4.1 Let Aan be a sequence of operators on Q(ω) which converge

strongly to O Suppose G(ζ) £ Q (ω)* is such that

(38) lim sup \G(ξ+ 8) - G{ξ)\ e x p [ - ω ( f ) ] - 0.
g_»0+ ξ >_0

Then

(39) lim f°°G(ξ)dan(ξ)- 0.
7Ϊ-K5O 0

By hypothesis,

πHm /o~ G{ξ) [fj f(ξ- u)dθin(

for each / £ ? ( ω ) . By the Fubini theorem,

If we choose /g (ξ) = δ""1 for 0 £ ξ <_ 8 and = 0 elsewhere, then

for each 8 > Oasn —> oo. On the other hand, by (38),

δ " 1 fu

U+SG{ξ)dξ- C ( u ) | < e x p [ ω ( u ) ] e ( δ ) ,

where €(δ) —>0 with δ . Hence
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αnί.O- jfGUWMa)! < llαjl

which converges to zero as δ —» 0 uniformly in n. It follows that the order of

limits may be inverted and hence that (39) is valid.

It is clear that G(ξ) = x*[T (ξ)x~\ satisfies the condition (38) and belongs

to Q (ω)*. Further, by hypothesis, the A,t . \ converge strongly o n G ( ω ) t o

Ae = / as t —> 0+. Hence, by the lemma,

lim * * [ S ( ί ) * l - Hm f°° x*[T(ξ)x]da(t, ξ) = * * ( * )
ί - o + t-κ>+ J°

for all Λ; £ X and #* £ X*. The desired strong convergence now follows by a

theorem due to Hille [5, p. 93, footnote]. This concludes the proof of the follow-

ing result.

THEOREM 4 . 1 . // T(t) is a semigroup of operators on X, and CX(ί, ) C

6 ( ω ) is a semigroup of operators on Q ( ω ) ( ω ( ζ) = log | j T{ ξ) \\ ), both satis-

fying the postulates ( H ) , then S ( ί ) = Θ [ θ C ( ί , •)] *>s again a semigroup of oper-

ators on X satisfying ( H ) .

If we limit ourselves to semigroups in S ( ω ) of the type studied in §3, we

are then able to obtain a representation for the infinitesimal generator of the

semigroup S ( ί ) = Θ[(X(ί, •)!• To this end, we now prove a generalization of

a theorem due to K. Yosida [ l l , Lemma 2].

THEOREM 4.2. Let 3ϊ be a strongly closed abelian subalgebra of ( S ( X ) .

For each integer n, let Sn(t) be a semigroup of transformations in 3ϊ satisfying

( H ) with infinitesimal generator Bn. We further assume that lim^^cxj ^n(x) =

B'(x) for a dense subset 2) C Γ\?)(Bn)9 and that there exists an M < oo such

that \\Sn(t)\\ £ M for t C [0 , 1 ] and all n. Then the Sn(t) converge strongly

to a semigroup of transformations S(t) in 3ί satisfying ( H ) with infinitesimal

generator B D B'.

In the proof of this theorem we make use of a technical device due to Dunford

and Segal [3]. For x C 2) C Π 5)( Bn ) it is easy to verify that Sn {t - Ί)Sm (Ί)x

is strongly differentiable with respect to T. Hence

Sm(t)x -Sn(t)x= J* i - [Sn(t- τ)Sm(τ)χ]dτ

= ίtSn{t-τ)Sm(τ)[BmX- Bnx] dτ.
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I t f o l l o w s f rom o u r h y p o t h e s i s t h a t \\Sn (t)\\ £ M ι + ί , a n d t h u s t h a t

Since the Bn(x) form a Cauchy sequence, so do the Sn (t)x. We define the limit

to be S(t)x. Now for x C 2), S(t)x is the uniform limit of continuous functions

in every finite interval, and hence is itself continuous. Further, since 2) {s

dense in 3C, and because of the uniform boundedness of the | | S Λ ( ί ) | | for each

t, it follows that Sn(t)x —>S(t)x for all x G 3C and that | | S ( ί ) | | < Mιn.

It is a simple matter to verify that the S ( t ) form a semigroup of transformations.

Also S(t)x is strongly continuous on the dense set 2), for t >. 0 and | | S ( ί ) | | <̂

Uι ι implies that S(t) is strongly continuous on X for t >_ 0. Thus S(t) satis-

fies (H). Finally, f or x G 2) we have Sn(t)x = x + / * Sn{ξ)Bnxdξ and

Sn(ξ)Bnx —> S{ξ) B'x pointwise and boundedly. Hence

S ( f ) * = x+ JQ

tS(ξ)B'x dξ.

Thus, for x G D we have d(S(t)x)/dt = B'xy and hence 2) C 2)(β) and

Bx = B'x for* G S>.

We shall hereafter consider only semigroups of functions 0C(ί, ξ) (of bounded

variation in every finite interval) whose Laplace transforms Φ[λ, 0C(ί, )1

take the form

(40) ί"1 logΦ[λ, α(ί, •)] = mλ + jΓ°°(exp[(λ- ωo)ξ] - l)dφ(ξ)+ a

(R(λ) < ω0),

where m >̂  0, a is real, and φ(ζ) is a monotone nondecreasing function such

that

J ζdψ < co and J* exp[ω(f) — ω0 f] dψ < oo.

By Theorem 3.3 we see that α(ί, •) G δ ( ω ) and satisfies (25). The converse

will likewise be valid if ω(ζ) satisfies (32) in addition to the conditions (h).

THEOREM 4.3. Suppose that T(ξ) is a semigroup of transformations satis-

fying (H), that ω(ξ) = log | | Γ ( £ ) | | , and that α ( ί , •) is a semigroup of ele-

ments in 6 ( ω ) having Laplace transforms of the type (40). Then the semigroup

of transformations S(ί) = Θ[cx(ί, •)] satisfies the hypothesis (H), and the
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domain of its infinitesimal generator B contains 2)(/4) For x C 3 ( ^ ) we have

Bx = mAx -\- J°° [exp ( ~ ω 0 ξ) T{ξ)x - x] dψ + ax.

Let 0Ce(ί, •) be defined as above by means of the same m and α as £X(ί, )ι

but with φ€{ξ) = ψ(e) for ξ < e and φ£ (ξ) = ιfj(ξ) for ξ > e. Then, by

Theorem 3.3, 0C€(ί, •) is likewise a semigroup in 6 ( ω ) satisfying the conditions

(25). In the notation of §3 we have

llOeU ) I L - | | j8 e (t, )|fc = exp(αί) | | γe (t, . ) 11- ,

where ω{ξ) = ω(f) - ωof, and

Γ 1 logΦ[λ, y β (ί, •)] = »»λ + / e ° ° (expUa - l)dφ.

Arguing as in Theorem 3.1, we see that

Γι log (11 ye ( ί, . ) | f c ) < ω(m) + ( j ^ 1 (Aff - 1) dψ +

+ f~ [exp ΰ(ξ) - l)dψ.

Hence for some K > 0 we have | | θ t € ( ί , ) I U £ e x p ( X ί ) independent of e > 0.

Now φ€ C S ( ω ) . Hence

yβ'(ί, •) B exp(-ί

r,τι*

n=0

is continuous with respect to t in the S(ω) topology, and a fortiori in the strong

topology over Q (ω). Since the shift semigroup1 emt is likewise strongly con-

tinuous, the result holds also for their product γ£ (tf .) = y^(ί, .) * emf We

next set

S * ( O * = fo°° T(ξ)xd0Le(t, ξ) = exp(αί) ĵ °° exp ( - ωoξ) T( ξ )x dγ£(t9 ξ),

so that Se (t)x i s given equivalently by

x T h e s h i f t s e m i g r o u p i s d e f i n e d b y ( ^ β O T t / ) ( ^ ) = / ( ^ ~ ^ ί ) ί h e r e e m t ( ξ ) - 0 f o r
< mt a n d = 1 f or f > mt.
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exp(at) f " exj>{-ωoξ)T{ξ)detm{ξ) fQ°° exp ( - ωoξ) T(ξ)xdγ^ t, ξ)

= exp[(α - ωom)t] T(mt)S^ {t)x,

where

;{t)x = J Γ e x p ( - ωoξ) T(ξ)xdγ'e ( t ,

Since γ^ (ί, £) is uniformly continuous in S ( ω ) , S^(t) is likewise uniformly

continuous, and hence dS£(t)/dt exists in the uniform topology. Thus

B'€ x = / o ~ [exp ( - ωo<f) T( ξ)x - x]dφ€(ξ)

and S ( Z ? g ) = 3£ Since S€{t) is the product of two commutative semigroups

both strongly convergent to the identity as t —» 0, the same is true of S€ ( ί ) ;

and further, for x G 2 > U ) ,

Thus S ( S € ) 3 S)(i4), which is dense in X. Finally, for * G S ( i l ) ,

exp( - ωot)T(t)x- x = exp ( - ω 0^) / T{ξ)Axdξ + ( e x p ( - ωot) - 1 ) * ,

and hence | | exp ( - ωot) T(t)x - x\\ = 0 ( 0 as t —>0. It follows that

β€'* = / e ~ [exp(~ ωo<f) Π £ ) * - * ] <ty

f ~ ~ x ] d ψ ^ B'x,

and that

B€x —>Bx = mAx + J [exp( - ωoξ) T(ξ)x - x]dψ .
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F i n a l l y , | | S € ( ί ) | | < II0Ce ( ί , ) |\ω < e x p {Kt). I t n o w f o l l o w s from T h e o r e m

4 . 2 t h a t t h e r e e x i s t s a s e m i g r o u p of t r a n s f o r m a t i o n s U ( t ) s a t i s f y i n g ( H ) a n d

w i t h i n f i n i t e s i m a l g e n e r a t o r B s u c h t h a t S e ( t ) x — > V ( t ) x for a l l x C X . I t

r e m a i n s t o s h o w t h a t U ( t ) = S ( t ) .

L e t u s a p p l y t h e r e s u l t o b t a i n e d t h u s f a r t o 36 = Q ( ω ) a n d { T ( t ) f ) ( u ) =

f ( u — ί ) . T h e s e m i g r o u p T ( t ) s a t i s f i e s ( H ) . N o w w e k n o w t h a t t h e i n t e g r a l

fo°°T(ξ)fda€(t, f ) = fo

Uf(u-ξ)dae(t, ξ)

converges in X to U(t)f. On the other hand, it follows from Lemma 2.2 that

limg^o 0C€(ί, ξ) = CC(ί, £) for each point of continuity of Oί(ί, £). Thus if

/(M) is continuous and differs from zero only on a finite interval then

fo

uf(u - ξ)dθLe(t, ξ) -^jf"/(« - ξ)da{t, ξ)

pointwise and hence in norm. Since this is true on a dense subset in Q(ω), and

since ||θCe(ί, ) | | £ exp(Kί), it follows that Aa€(t, •) converges strongly to
Aa(t, •) Finally, if we apply Lemma 4.1 once again with

x*[T{ξ)x]CZ(ω)*,

we obtain

x*[Se(t)x]^>f~x*[T(ξ)x]d0L(t,ξ).χ*[S(t)x].

It follows that S(t) = ί/(ί). This concludes the proof of Theorem 4.3.

As a corollary we obtain a partial converse to Theorem 2.3.

COROLLARY 4.1. // α(ί, •) is a semigroup of elements in G(ω) satisfying

(40), then Aa(tf. ) converges strongly to the identity over Q(ω) as t —»0+.

I n t e r m s of t h e p r e v i o u s t h e o r e m , w e s e t 3£ = Q ( ω ) a n d ( T ( t ) f ) ( u ) =

/ ( u - t ) , a r i g h t t r a n s l a t i o n i n Q ( ω ) . T h e n

S(t)f= ζ°T{ξ)fda(t,ξ)= fo

Uf{u-ξ)d*(t,ξ) = Aa(tt.)f.

Hence by Theorem 4.3, ^ α ( ί , •) converges strongly to the identity as t —»0+.

We conclude this section with a discussion of the spectrum of the infini-

tesimal generator B of the semigroup S ( t). We shall need the following lemma.
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LEMMA 4.2. Let (X(ί, •) be a semigroup in 6 ( ω ) such that the operators

Aa(t9 •) o n C ( ω ) satisfy the hypothesis (H) and let ω ' ( 0 = log | |θ ί( ί , ) | | .

Suppose further that G(ξ) C Q ( ω ) * satisfies the condition (38). 77&erc /or

g(O €1 Q (ω') we

(41) j Γ g ( t ) [ j Γ G ( f ) % α ( t , £)] ώ = /o°° C(f)rf f ( j Γ " g ( t ) α ( t ,

converges in the strong topology over Q ( ω ) .

For / C Q ( ω ) , 0C(ί, ) * / i s continuous for ί >̂  0 in the Q ( ω ) topology.

Hence the integral of g(t) times a bounded l inear functional on CC(ί, • ) * / i s

equal to the functional on ( f°° g(t)(X(t, )dt)*f; that i s ,

= jΠg(t) [f"G(ξ) (f~f(ξ-u)dua(t, uήdξjdt.

Fubini's theorem permits the interchange of the u and ξ integrations, so that

(42) jΓ [fJ°G(ξ)f(ξ-u)dξ] du(ζa

g{t)a(t,u)dt)

" Γg{t) [Γ (Γ G^f(ξ-u)dξ)dua(t, «)] it.

Again we set / g (ξ) = δ " 1 for 0 £ ξ £ δ and = 0 elsewhere. Then, as in Lemma

4.1,

| G ( f ) / 8 ( f - u ) ι / ί - G ( u ) | < e x p [ ω ( u ) ] e ( δ ) ,

where e ( δ ) — » 0 with δ. Hence, taking the limit in (42) as δ —»0, we obtain

(41).

THEOREM 4.4. Given the semigroup of operators T(t) satisfying ( H ) with

infinitesimal generator A, let Σ ( ^ 4 ) be the spectrum of A and letX(B) be the

spectrum of the infinitesimal generator B of the semigroup S ( ί ) = Θ[θC(ί, • ) ] •

If the Laplace transform of α ( ί , •) satisfies (40), then
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where

Φi(λ) = mλ + J ^ ° ( e x p [ ( λ - ωo)ξ] - l)dφ(ξ) + a.

In the proof of this theorem we make use of material developed in an earlier

paper [9]. It was there shown that if λ0 £ Σ(/l) and α C 6(ω), then

Now let R(B; \) be the resolvent of β, and set ω ' ( 0 = log. ||θC(ί, ) | | Then

for R ( λ ) > ωo = inf ω'(t)/t, we have [4, Theorem 1L6.1]

R(B, λ) = ζ° exp(-λt)S{t)dt.

Hence for Λ C Ϊ and x* C 3G* we obtain

x*[R{B ,λ)x] = jΓ°°exp(-λ<) [f"x*[T{ξ)x]dξa(t, ξ)]dt.

We now apply Lemma 4.2 with

G(ξ) = x*[T(ξ)x] C Q ( ω ) * and g{t) = exp(- λt) C δ (ω')

The right side of the above equation can then be written as

fo°°x*[T(ξ)x]dξ

where

J ° ° exp(~λί)0C(ί, •) c?ί Ξ / ° ° e x p ( - λ ί ) ^ α ( ί > .)dt

converges in the strong operator topology in S(ω) over Q(ω). Since this holds

for all x C X and x* £ 3E*, we have

i?(β;λ)= fo°°T(ξ)dξ [ jΓ~exp(-λt)α(t, .)

It follows, for λ0 C Σ (A ) and R (λ) > ωό, that
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J ^ e x p U o f ) ^ [ j Γ ° e x p ( - λ ί ) α ( ί , •)<

Now if μ = C ( ω ) * , it follows from general integration theory that

e x p ( - λ ί ) C ί ( ί , ) Λ J * / } = SO°° e x p ( - λ ί ) μ[θi{t9-)*f]dt

for all / C C ( ω ) . In particular, let μ(/) = /°° exp (λ o £) f(ξ)dξ, where

R(λ 0 ) < 6^; thenμ(α*/) = Φ(λ, α) μ(/). Hence,°

exp(- λ ί ) α ( ί , )

= j^°° exp(~λθΦ[λ 0 , α(ί, •)] μ(f)dt.

For some / C C(ω) we have μ(f) Φ 0, so that

= j Γ β O e x p ( - λ 0 Φ ( λ 0 , α ( ί f . ) ) Λ - U - Φ ^ λ o ) ] " 1 .

We conclude that

[ λ - Φ 1 ( λ 0 ) ] " 1 C Σ [ / ? ( β , λ ) ] .

It now follows from Theorem 3.1 of [9] that Φί ( λ 0 ) G Σ(J5).
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