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A THIRD ORDER IRREGULAR BOUNDARY VALUE PROBLEM AND

THE ASSOCIATED SERIES

GEORGE SEIFERT

1. Introduction. Certain problems in aeroelastic wing theory [l] give rise

to a third order irregular boundary value problem of the form given in equation

(1) below. Questions have been raised [1] as to conditions under which functions

have an expansion in terms of the associated characteristic functions. It is

shown in this paper that the general approach by L. E. Ward [2] in dealing with

a somewhat more specialized problem can be suitably modified to provide an

answer to these questions.

We are concerned with the differential boundary value problem

(1) L(u(x),λ) = a ' " (*) + p O O a ' U ) + (q(x) + λ)u(x) = 0,

n ( 0 ) = u' (0) = u " (1) = 0,

w h e r e p ( x ) = x ψ ί ( x 3 ) , q ( x ) - φ 2 ( x 3 ) , a n d ψ ι ( z ) a n d φ 2 ( z ) a r e r e a l f o r

real z and analytic on | z \ <_ 1. We seek conditions on f{x) such that it be

expansible in terms of the characteristic functions of (1) and its adjoint.

We shall first need a number of definitions and lemmas. Define:

i) δ 3 (ί) = eωχt t ω^

8t(t) = - S5(O,

where ωγ = - 1, ω2 = eπi/\ ω3 = e~πi/3;

ϊi) Δ ( Λ , ί, p) = p " 1 83[f}(x-t)] r{t) ~ δ 2 [ p U - ί ) ] p ( O

where r(t) = q(t) - p'(t), and the complex number p satisfies

p 3 = λ, |arg p | < τr/3;
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iii) the regions Sί and S2 of the p-plane by 0 £ arg p £ π/3 a n d - 77/3 £

arg p £ 0, respectively.

We shall be concerned with the integral equation

(2) Γ A(x,t,p)u(t,ξ,p)dt.
3p ξ

2. Lemmas. We shall use the following results.

LEMMA 1. Equation (2) has for fixed p a unique solution analytic in x and

in ζ on I x | £ 1 and \ζ\ £ 1, respectively, where x and ξ are complex vari-

ables. x

Proof. For fixed p , define

χ~ ξ)],

fj{x,
op s

, ί,

Then

\ f ι ( * , O \ <M,

\fi(x,ξ)\ =

Hence, by induction,

- — £X Δ(x,*,p)fι(t9 ξ)dt
όp s

\fj(x.t)\ <
MN'~ι\x-ξ\J'1

consequently,

Λ (ί,

MN fx \dt\ = MN\x-ξ\.

/ - 2,3,4,...);

where Z<;(Λ;, ξ) is analytic in # and in ξ in | x \ £ 1 and | ̂ | £ 1, respectively.

By direct substitution into (2), we see that w{x9 ξ) is a solution.

To show uniqueness, consider

lrΓhe variables x and ξ will always be considered real, unless otherwise indicated,
as here; in this case, as in subsequent cases, integration between complex limits, as
in equation (2), may be taken along a straight line in the complex plane.
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z(x, ξ) = u
x
(x, ξ) - u

2
(x, ξ),

where uί(x, ξ) and u2(x, ξ) are solutions of (2). Clearly z(x, ξ) must satisfy

the equation

V > ζ / — ~~ "^^^^ / /\ ( ί c t r ) z [ t f i cLt *

3p *ίf

and for real Λ; and ^, z(x, f) is easily seen to satisfy the system2

L(z(x, ξ), λ) = 0, z{ξ, ξ) = z'{ξ, ξ) = z"{ξ, ξ) = 0.

Hence z(x, ξ) = 0 identically in x for any fixed ξ, for real x and £;this implies
z (χj ζ) - 0 identically for complex ac and ξ and completes the proof.

LEMMA 2. For reαί x and ξ, (2) is equivalent to the system

(2a) L(u(x,ξ),λ) = 0, u ( £ , £ ) = u ' ( £ , ξ) = 0, u " ( f , f ) = 3 p 2 .

Proof. Substitution in (2a) of u(x, ξ, p) as given by (2) shows that the

unique solution of (2) is a solution of (2a). However, for fixed ξ and p, (2a)

also has a unique solution. Clearly, these unique solutions must coincide, and

our proof is complete.

LEMMA 3. Let u(x, ξ, p) be a solution of (2). Then3

a) u(x, ξ, p) = eω3P E(x, ξ, p)

provided \ p\ is large enough p £ Sίf x _> ξ;

c

b) u{- ω2x, - cύ2ξ, p) = - ω 3 u(x, ξ, p ) ;

) " " ( 1 , 0 , p) = p 2 eω*PM(p),

where | A f ( p ) | >; m > 0, provided

p = - ^ - L - 77e1^ (0 < θ < τr/3),

2Unless otherwise indicated, the prime will always denote differentiation with
respect to the first indicated variable.

3Functions of p and other variables which are bounded for \ p\ sufficiently large
will be denoted by E( ).
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for sufficiently large n.

Proof of a) . As in Lemma 2 of [3], p. 211, it follows that for p C Slt we

have

/ a \ ω3P(χ~ζ) r (ω2- ω3) p(χ-ξ) . t . Ί

u(x9 ξ, p) = e [ _ ω 3 _ ω 2 e 3 r +z(x,ξ,ρ)],

where | z (x, ξ, p) | < M for | p \ sufficiently large and x >_ ζ Hence

u{x,ξ,p)=eω3p{χ-t) E{x,ξ,p).

Proof of b ). Using (2), we have

u( - ω2x, - ω2ξ, p) = δ 3 [ - ω2p(x~ ^)]

1 /• ""^2 X
J e Δ{-ω2x, s, p) u(s,~ ω2ξ, p)ds

3p ~ω2s

= - ω 3 δ 3 [p(x-

But

J Δ v~ ω 2 *, - ω2t, p) u(-ω2t, - ω2ς, p)dt.
3p s

ω 3

, p ) = δ 3 [p(Λ; - ί ) ] r(t)
9

- ί ) ] ( - ω 2 p ( ί ) ) = ~ ω 3 Δ ( * , ί, p )

Hence

α ( - ω 2 ^ , - ω 2 ^ , p ) = - ω 3 δ 3 [ p ( « - ξ)]

fX
 Δ ( Λ , ί, p )

3p &

Multiplying this l a s t equation by — ω 2 , we have
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where

z(χ, ξ» p) = - ω 2 w(- ω2x, - ω2ξ, p ) .

But by the uniqueness of the solutions of (2), we have

- ω2u(- ω2x, - ω2ξ, p) = " ( * , £ , p ) ;

upon multiplication by - ω 3 , this gives b).

Proof of c ). We have, from (2),

ω3 p

399

tt"(l,0,p) = p 2 [ S t ( p )

(ω2 ~ ωs)p 2

1 + e

for p £ S1# Let p = x + i'y, and define Φ (p) and rn by

E2(p)

Φ(p) = 1 + e and
V3

respectively. With p = [3(r^ - x2)]ι/2, we have

I Φ ( p ) I > I 1 + e~P c o s ( V 3 " * ) | ,

provided p = rn e where 0 < θ < π/3, and will show that

— 1 Γn
e ~P cos (V 3 x) > for — < x < rn .

Since

cos (\/3 x) > 0 for rn ~ < Λ; £

it is clearly sufficient to show that

r- I Γn
e P cos ( γ 3 x) > for £ x < rn -

Accordingly, we note that for x in this interval, we have
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e'P I c o s ( V 3 x ) \ < — <
P

* -

1/2

for all n > N, provided N is sufficiently large. Taking N large enough we also

have

E2(p)
< — for p = rne

iθ
(0 < θ < τr/3).

Hence

E2(p)
> | Φ ( P ) I -

E2(p)

2 T T

This completes the proof of the lemma.

By the formal series for f(x), we shall mean the series

Σ akUk(χ) where ak = £ f{x) vk(x)dx / f uk{x) vk{x) dx,

in which uk(x) and vk(x) are respectively the characteristic functions of the

system (1) and its adjoint corresponding to the characteristic value λ&.

LEMMA 4. The sum of the first n terms of the formal series for f(x) is given

by

ΔTTl ' n L

u(χ,0,p) f l

2πi X L " ' u " ( l , 0,p)

where σ(x) = J f(ζ) u(x, ξ, ρ)dξ, and γn is the arc of the p-plane given by

2n + 2 -a
p = π eιθ, - τr/3 < θ < ιr/3,

V3"



A THIRD ORDER IRREGULAR BOUNDARY VALUE PROBLEM 4 0 1

the p integration proceeding in a counter-clockwise direction.

We omit the proof of this lemma, as its details almost duplicate the discus-

sion in [2], pp. 424-426- We point out, however, that Lemma 2 is required in

this proof.

LEMMA 5. The function σ{x) defined in the previous lemma satisfies the

equation

(3) σ(x) = fo

X f(ξ) S3[p(x-ξ)]dξ - - L jT* Δ(*. t, p) σ(t)df,

furthermore, σ(x) is its unique solution, is analytic on 0 £ x < 1, and can be

put into the form

σ(x) = u(x,09p) Ψχ(p) + Ψ a ( * , p),

where

3/(%) EΛX> p)
Ψ 2 ( * , p ) = - + , E?(x,p) = p2 E2(x,p),

P p 2

provided f{x) = x2 φ{x3), where φ(z) is analytic on j z\ _< 1 .

Proof. Using (2) in the expression for σ{x), we obtain

1

= f* f(ξ) 83[p(x-ξ)Uξ- ^- f0

X ΔU,t,p)σ(ί)Λ

on changing the order of integration in the second integral. Uniqueness of the

solution σ{x) can be shown in the usual manner. (See tke proof of Lemma 1.)

We next substitute u(x, 0, p) Ψi(p) + Ψ2(#, p) into (3) for σ(x), and obtain

u{x,0,p)%(p) + Ψ 2 (* .P) = f *

- f* Δ(*, ί, p) w(ί, 0, p)c?ί / * Δ(Λ;, ί, p) Ψ2(ί, p)dt,
3p ° 3p °
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Using (2) with ^= 0, and subtracting the term u(x, 0, p) Ψi(p) from both sides,

we obtain

(4) %{χ,p)- f* f(ξ) δalpix-ξndξ-V^p) 83(px)

- — fo* Δ(Aί, t, p) %(

On integrating by parts twice, we obtain

Γ f(ξ) 83[p(x- ξ)]dξ = ¥ t l + p~2 f* f"(ξ) 82[p(x-ξ)]dξ
P 0

= - ^ + P"2 δ 3 (px) fy f"(ξ)eP£ dξ + £ 3 f"(ξ) ert dξ,
P °

where y is a complex number to be determined later, and

fX F(t)dt -ω2e
ω2pX J"2* F(t)dt

pX Sω3% F{t)dt.

It is in this step that we use the form of f(x) as stated in the hypothesis of

this lemma; for the details, see [2], pp. 428-429.

We also have

fo

x A(χ,t,P) ψ 2 ( t , p ) Λ - i j£* ί , [ p U - 0 M 0 V2{t,p)dt

jf

δ 3<P*) *y t n

y r(t)ePι Ψ2(ί, p)dt + £ 3 r{t)ePι Ψ2(ί, p)dt
P

δ3(px) fX

P(t)ePtΨ2(t,p)dt+
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= 8
3
(px) fj R{t)eP

t
Ψ

2
(t,p)dt+ £

3
/?(ί)e^ Ψ

2
(t,p)ώ,

where R (t) = r( t )/p + p( ί ) , and where we have made use of the properties

of p(t) and r(t), and the fact that, from the form of Ψ 2 ( ί , p) in terms of u(x,

0, p) and Lemma 3, part b, we have

Ψ 2 ( - ω 2 ί , p) = - ω 3 Ψ 2 U, p ) .

Putting these results into equation (4), we obtain

δ 3

T 7

(px)
' •

3 / (0

w-ij 're

1 ry

+ 3p" Jo

eP
ι dt - — £ 3 R (

)ePt dξ

{t)ePt Ψ2(ί, p)dt

t)ept Ψ2(ί, p)t/ί.

This equation will certainly be satisfied if

(5) Ψ 2 ( * , p ) - ^ ^ + — £3 i"U)ePtdt+ —
P p 2 3p

and

-1- fj R(t)e^ Ψa(ί,

The proof of the existence of a unique solution ^2(χ9 p) °ί (5) will follow

along the lines of the corresponding proof in [2], provided we can show that

an expression of the form | £ 3 F(t)ePt dt\ is bounded for complex p and 0 _£

x £ 1 whenever | F (z ) \ is on | z \ £ 1 and we take y = - e~ι a r g p. For we have

^ x \F(t)\

F ( O | | e ^
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f* \eP'\ \dt\

'ω2X \ePι\ \dt\ + \eω3pX\ f ' 0 * * ^ \ d t \ ] ,

f

+ \eω2pX

where | F ( z ) | < μ on \z\ £ 1; and since each integrand in this last ex-

pression assumes its maximum at its upper limit, we have

I £ 3 F(t) ePι dt\ < 6 μ .

We omit the rest of this existence proof. (See [2], pp.429-430.)

For the asymptotic form of Ψ2(#, p), we substitute

3/(*)
Ψ2U, p) = + v(x, p)

P

into

(6)

For

m *

(5). We

fixed p

1

<

obtain

let m =

+ Ί 7

1

p2

-

max
0<*<i

( « , t

L
- < -

|v(x, p

— +

R{t)ePι

) | then

5)]e^Λ |

2 '

3/(t

P

+ 3 |

)
- H

p |

. , ]

provided | p | >̂  2μ2, where | £ 3 R(t)ept dt\ < μ2 Hence for such p we have

m < 2μχ/ I p I 2 , and it follows that v(#, p) = p*"2 Ex (x, p ) .

It remains to show that v"(x, p) = E2 (x, p). Differentiating (6), we have

(7) v'{x,p) = - i | £ 2 [ / ' ' ( 0 + R(t)f(t) + — Ex{t, p)]ePl dt\

E3(x, p)
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where

Γ F(t)dt- ω3e
ω2pX

and we have used the fact that

\ E ί ( - ω 2 x > p ) \ p2 Ψ 2 ( ~ ω 2 * , p) -
3/(-ω2%)

- P 2 ω 3 Ψ 2(*. p) - = \Ex{x,

< m2 .

We can also show, as before in the case of the £ 3 operator, that if | F (z) \

on | z | < 1, then | £ 2 F ( ί ) e ^ ί Λ

Differentiating (7), we obtain

—
3p

where

Z.F(t)dt
1

Γ F{t)dt+ eω2pX f~"2X F(t)dt
Jy Ίy

+ e " 3 ^ / " ^ F ( ί ) ώ ,

and we have used the fact that | E[ (- ω2x9 p) | = | £ί (̂ > p) | and that

E[{χ,p)\ = | p ^ ' U , p ) | < | p | M

for [p[ sufficiently large.

Hence v" (x, p) = E2 (x> p) s ince again | F ( z ) | £ μ for | z | £ 1 implies

I £j_ F(t)ept dt\ £ m l f and the proof of the lemma is complete,

3. Theorem. We proceed now to the proof of the following theorem.

THEOREM. // f(x) = x2φ(x3), where φ{z) is analytic on \z\ < 1, the

formal series for f(x) converges uniformly to f(x) on 0 < x < 1.
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Proof. Since, for real x and ξ, u(x, ξ, p) is real for real p, by the principle

of reflection we have u{x9 ξ9 p*) = [u(x9 ξ9 p)]*. This implies that the inte-

grand in the expression for In(x) given in Lemma 4 takes on values for p on

)/ = γn n Sx which are the complex conjugates of those it takes on for p on

γ£ = γn n S2 It suffices, then, to consider only the p integration over )/. De-

noting the result by !£ (x), we have, by Lemmas 4 and 5,

liM - ΰi k u(x, 0, p)
, P)

u(x, 0, p)

u " ( l , 0, p)
«"(1, 0, p)

and since, by Lemma 3, parts a) and c), we have

«U, 0, p) M

IPI

for p on y£ and n sufficiently large, we obtain

) E(x,P)

2

where

lim eή(x) = 0

uniformly in Λ This proves the theorem.

At the expense of brevity, this theorem clearly could be generalized to prob-

lems involving somewhat more complicated boundary conditions and somewhat

weaker analyticity conditions on f(x), p(x), and q(x); in connection with the

latter contention, see [2].
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