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NOTE ON FOURIER ANALYSIS XXXI:
CESARO SUMMABILITY OF FOURIER SERIES

S H I G E K I YANO

1. Introduction. M. Jacob [1] proved that if the series

Σ \ a \ o \ n \ U \ OC ̂  x . )

converges then the trigonometrical series ^ ^ = 1 (an c o s n x + bn sin nx) is

summable (C, — Ot) almost everywhere. This result is equivalent to the pro-

position that if the series Σ ° ° = 1 (an cos nx + bn sin nx) is the Fourier series

of a square-in tegrable function, then the series ^°° = 1 (an c o s n + ^n s^n nx)n a

is summable (C, — a ) almost everywhere.

Considering the analogue of this theorem for integrable functions, we shall

prove here the following:

T H E O R E M I . 1 / /

aQ ™ A0(x) °°
(1) + y, (an cos nx + bn sin nx) = + V An{x)

2 ^ 2 ^

ί's ίAe Fourier series of an integrable function f(x), then the series

oo

(2) «o + Σ (an c o s Λ Λ ; + ^n s i n nx)τΓa (0 < α < l )

αnc? iίs conjugate series

( 3 ) ^ ( α n sin TIΛ; — 6Π cos nx)n a

f. A. Zygmund has pointed out to the author that Theorem 1 can be obtained
directly from known results.
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are summable ( C, — Cί) almost everywhere,

2. Lemmas. For the proof we need the following lemmas.

LEMMA l . //

(4) H(

n

a> (x) = 1 + Σ k'a cos fee, /£•> (x) = 2 k'a s i n kx

7 1 = 1 7 1 = 1

( 0 < α < 1 ) ,

then

( 5 ) |ff<β> ( * ) | < / ί β * β ~ ι , | / ^ α ) (x)\ < Bax
a~ι {0<x<π),

where Aa, β α > . . . are constants which depend only on α and which may be

different in different instances.

The proof of this lemma concerning the cosine series is given by Salem and

Zygmund [2], and the part concerning the sine series can be proved similarly.

LEMMA 2. // 0 < α < 1 and

then

(6)
e

ikx

A;=o

α - i
( u = 0 , 1 , 2 , •••

0 < | * | < 77).

Lemma 2 is a well-known result of M. Riesz. (Indeed, the constant on the

right side of (6) can be replaced by 2; however, the inequality in the above form

can easily be derived from Lemma 1.)

Let us denote the (C,-Oί)-means of the series (2) and (3) by Λ^α) (f x)

and N^a) (f x), respectively. Then, setting AΓα = 1 for k = 0, we have

Akί*)
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= 1 f_π f{x + t) —! cos kt at

2

π ~π

dt>

where

(7)

Similarly

(8)

where

(9)

NW (f;χ) = - / _ w fix + t) N<*> (t) dt,

( ί )

LEMMA 3. For 0 < α < 1, we have

(10)
0 < ί < 77)

Proof. From ( 7 ) , we have

i in/ 2]

(0 = c o s C 0 S

k=o

(11)
= Pn + Qn,

say. Using Abel's transformation, we get

(12) Pn =
1

A;=0
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By Lemma 1 we obtain

1
1̂ 1 1

(13)

< Knata'

ίn/2]-ί

\An-k I +A°-1 Λn-lnn-tn/2]

< A t
— a

Now, using Abel's transformation again, we have

(14) Qn =
A<n-«>

where

Thus

n-l

j * c o s

C O S

ΔAΓα= A " α - (jfc + l Γ

m< n
cos

k=[n/2]

(15)

[n/2] + l < m< π
Σ *«

+ n

Since

Σ 4-J?
 c o s kt

Σ Λn-h
-rikt

e"int Σ Ak~a) e ί k t

k=n-m
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we have, by Lemma 2,

(16) Σ <Ώ> cos kt
/c=o

Aa\l-

Therefore, from (15) and (16),

(17) \Qn\ £ Aat
a~l.

Combining (11), (13), and (17), we have the first inequality of (10). The

second inequality can be proved similarly.

3. Proof of Theorem 1. We proceed now to the proof of Theorem 1. From

(7), we have

dt

By virtue of Lemma 3, we get

|/V<α> (f;x)\ < Aaf_l\f(x + O | | ί | α " 1 dt,

whence

J Γ s u p | / V < α > (f;x)\ dx < A a J Γ dx f _ π \f(χ + t)\ I t l * " 1 dt
n π

(18) \ f ( x + t ) \ d t

Similarly we have

(19) sup

\f(x)\ dx

dx < Ba £ \{{x)\ dx.

From these maximal inequalities we can easily deduce the conclusions of

Theorem 1. For example, we can proceed as follows. Let e > 0 be arbitrary, and

let f(x) - fι (x) + f2 (x)i where f\{x) is a trigonometrical polynomial and

J | / 2 ( Λ ; ) | dx < e/2Aa, Aa being the constant which appears in the right
~"TT
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side of (18). By / (x) we denote the function defined by ] ζ ^ = 0 An{x)n α (this

series converges almost everywhere); then

(20) /*(*) = /*(*) + /•*(*),

where f*(x) and /2*(#) are determined by /\ (x) and f2 (x), respectively, in the

same way as / (x) is determined by f{x)

From (18) we have

(21) J_l sup |/V<«) if2ix)\ dx < A a J_l \fa(x)\ dx < e / 2 ,

and a fortiori,

(22) J_l \f*(x)\ dx< e/2.

From

(23) /V<α> (/;*) - /*(*) = N^ (fιiX) - f*(χ) + Nf> (f3ix) - f*(x)

we get

(24) l i m s u p 1/V<α> ( / , * ) - f * ( x ) \ < s u p | N^ {fa;x)\ + \f*(x)\,
n—* oo n

whence, by (21) and (22),

(25) jΓlimβup |^ α > (f x) - f*(x)\ dx < e/2 + e/2 = e.
n—*oo

Therefore it follows that /V<α) (/,x) —-> f*(x) almost everywhere; this implies

the validity of the first part of Theorem 1. The proof for conjugate series is

analogous,

4. On multiple Fourier series. Theorem 1 can be extended to multiple Fourier

series. For simplicity we shall state the result for the case of double Fourier

series.

Let f(x,y) be an integrable function periodic with period 2 77 in each vari-

able, and let its Fourier series be

(26) f(χ,y) ~ Σ AmΛ*>y),
mth=o
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where

A00(x,γ) = — α 0 0 , AOn(x,γ) = — (aQn cos nγ + bOn sin nγ),
T* Zt

1
Amo\χ>y> = " " (αmo c o s m * + /̂no s*n m ^)>

(27)
i m n ( x , y ) = amn cos mΛ; cos 717 + bmn cos m% sin nγ

and

(28) αmΓι = J l / /(Λ:, 7) cos mΛ; cos τιy ώcίy (m, /ι = 0,1, 2, ) ,

and similarly for bmn , c m π and c?mn .

We shall say that the double series ^ ^ w = Q Amn is summable (C,(X,β)

if the ( C, α , /S )- means

-̂  m n

L* Z* m-/ π-/c //c
7=0 £=o

of ΣAn

Undei

THEOREM 2. If f(x,γ) is integrable, then the series

lmn converge.

Under these definitions we have:

(29) 2 Amn(x,y)m~an~β (0 < α < 1, 0 < jS < 1)

is summable (C, — (X, — β) almost everγwhere. A similar result holds for its

conjugate series.

Proof. The (C, - α, - β )-means ^ ^ β ) (f;x,γ) of the series (29) can be

written as follows:

(30) ^ β ) (f;χ,y) = — J Γ /_" / ( * + u, y + t;
- -77 v ~ 7 7

7Γ2
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where Λ^α* (t) is the same as in (7) Following the line of proof of Theorem 1,

we obtain the result.

5. On the capacity of sets. Generalizing a result of A. Beurling, Salem and

Zygmund [2] proved the following theorem:

// the series

oo

Σ K2 + K) »α ( 0 < α < 1)
n=\

converges, then the trigonometrical series ^ n ^ i (α Λ cos nx + bn sin nx) is

convergent except possibly on a set of (1 - &)— capacity zero.

We shall here prove the L t — analogue of this theorem.

THEOREM 3 Under the same assumption as in Theorem 1, the set E of the

points where the series (2) is not summable (C, — OC) is of (1 — CC) — capacity

zero. A similar result hold for the conjugate series (3).

REMARKS, ( a ) Theorem 1 is, of course, implied by Theorem 2. (b) For

the notion of capacity and other definitions, the reader is referred to the paper

[2] of Salem and Zygmund.

To prove Theorem 2 we need the following lemmas.

LEMMA 4. / /

= y n c o s nχy J v ^ ) = X n sin nx ( 0 < OC < 1 ) ,

then

f](a-) (^) ^ Λ;α~x / ( α ) (Λ;) ^ xa~ι (x > + 0 ) .

This is known (see, for example, [3; p 116]).

LEMMA 5. // a set E is of positive α -capacity (0 < OC < 1), then there

exists a positive distribution μ concentrated on E such that if the Fourier-

Stielties series of μ(x) is denoted by

1
dμ(x) ~ / + V ( CCn cos nx + βn sin nx),

2π J~t
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then the series

^ (QLn QOS nx + βn sin nx) n~ι*a

n-i

and its conjugate series

oo

]Γ ( an sin rc% - βn cos rcΛ;)rc~ι+α

are the Fourier series of bounded functions.

Lemma 5 is due to Salem and Zygmund [2j.

To prove Theorem 3, let us assume that the set E is of positive (1 — OC)-

capacity. Then by Lemma 5 we can find a positive distribution μ concentrated

on E such that if

1
dμ(x) ~ + Σ (®>n c o s n x + βn s ι n nx) >

2 τ τ » = i

then the series Σ°°= ( &n c o s nx + βn s ι n nx)n a is the Fourier series of a

bounded function.

Since it is easy to verify by Lemmas 1 and 4 that

(31) \N^ ( 0 | £ Λ ta~ι < Λα//(α> ( 0 + Ba,

we h a v e , by (17),

U Z J | ;v n 1 / , Λ ) | < — I | / ( ί ) | /v; ; (Λ; - 0 | at
7T

Integrating both sides of (22), we have
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y sup \N^ (f-,x)\ dμ(x)
n

(33) < Λaf2π d μ { x ) fπ | / ( ί ) | / / ( α ) (x - t ) dt + B a f
π \f(t

< ^α / π | / ( 0 | Λ Γ27T ff(α) (^ - 0 dμ{x) + Ba fπ | / ( ί ) | dt.

By a well-known theorem, the Fourier series of

π °

is

1 + 2_, ( ^"Π cos nί + βγi sin n£) rι ,

which is the Fourier series of a bounded function. Iίence for almost all t we have

I / o

2 7 7 / / W (x - t) dμ(x)\ < A/(μ),

M{μ) being a constant depending only on the distribution μ. Therefore, from

(33), we have

fo s u p | Λ ' f > ( / ; * ) | d μ ( x ) < A J l ( μ ) /_" | / ( 0 | dt + B a f^ \ f ( t ) \ d t

(34)

< Ca(μ) J^ \((x)\ dx,

where C α (μ) is a constant depending only on CC and on the distribution μ.

Using this maximal inequality (34) and following the proof of Theorem 1,

we s e e 2 that

2We must first prove that the set of points where the series ^ ^ = 0 An(x) n α does

not converge is of μ-measure zero. This can be done by the maximal inequality

f 2 7 T s u p I 1 A k ( x ) k a \ d μ ( x ) < A { μ ) Γ \ f { x ) \ d x ,
J0 n jt=o π

which is a simple consequence of (34), by the same argument as in [3? p 254] .
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/o

27T lira sup |/V<α> (f,x) - f*(x)\ dμ{x) = 0,
n —*oo

which implies that E is of μ-measure zero, contrary to the hypothesis that μ is

concentrated on E9 ( jL dμ(x) — 1).

For the conjugate series (3) an analogous argument can be applied, and

Theorem 3 is proved completely.
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