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A GENERALIZATION OF NORMED RINGS

RICHARD A R E N S

1. Introduction. A normed ring is, as is well known, a linear algebra A over

the complex numbers or the real numbers with a norm having, besides the usual

properties of a norm, also the "r ing" property

1.1 . l l * y l l < 11*11 l l r l l

The generalization studied here is that instead of merely one norm defined

on A there is a family of them, each satisfying 1.1; but of course it is natural

to permit \\x\\ = 0 even though x -f 0, to which attention is drawn by prefixing

the word 'pseudo.'

The theory can be briefly summed up by saying that a pseudo-ring-normed

algebra A is an "inverse limit" of normed algebras. The main tool, which is

rather obvious, is the fact that for a given pseudo-norm V (we avoid the use of

the double bars since an additional symbol would still be needed to distinguish

the various pseudo-norms) those x for which V(x) ~ 0 form a two-sided ideal

Zy, and that V can be used to define a norm in A/Zy When A is complete some

questions, such as whether x has an inverse, can be reduced to the correspond-

ing question for the completion By of A/Zv. It is of course profitable to be able

to reduce questions to By because By is a Banach algebra, while A/Zy need

not be complete. However, it seems to be difficult to say in general what ques-

tions can be so reduced to the case of Banach algebras. (We have spent much

time vainly trying to discover whether the question of an element's having a

right inverse in A is reducible to the same question for the various By,)

When a pseudo-ring-normed algebra A has a unit, then the latter may not be

an interior point of the set of regular elements, but inversion is nevertheless

continuous on the set of regular elements. On the other hand, there are many

dense proper ideals. We devote some time to the topologization of the space of

maximal, nondense (and hence closed), left ideals. From this a "structure

space" of the topologically significant primitive ideals can easily be obtained,

although we do not pursue the latter topic.
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In the commutative case, for each I in L and x in A, one can define %(£)to

be a complex number, just as for the normed case. There is given a sufficient

condition that the x{ ) be continuous, and this leads directly to be a character-

ization, among pseudo-ring-normed linear algebras over the complex numbers, of

the space of continuous functions on a locally compact paracompact Hausdorff

space.

Except for the part having to do with the paracompactness, which depends on

the existence of a "locally-finite partition of unity," this paper was presented

to the American Mathematical Society in November, 1946 (Bull. Amer. Math. Soc.

Abstract 53-1-93). A forthcoming memoir of the American Mathematical Society,

being prepared independently by Dr. Ernest Michael [16], on the subject of

generalizations of normed rings, will treat many of these topics in greater detail.

2. Pseudo-valuations and pseudo-norms. A pseudo-valuation in a ring A is

a nonnegative real-valued function V satisfying

V ( x + y ) < V { x ) + V ( γ ) , V ( x y ) < V ( x ) V ( y ) , V ( - x ) = V ( x ) , F ( 0 ) = 0 .

If A is a linear algebra over the field K (the real or complex numbers), and we

have

V(λx) = |λ | V(x)

as well as the other properties, we call V a pseudo-ring~norm. In a topological

ring we shall call a pseudo-valuation continuous if the set on which V(x) < e

is open for each real e.

We shall call a ring A pseudo-valuated if there is a family I) of pseudo-

valuations such that V{x) = 0 for all V in I) only if x - 0. It is not hard to see

that A becomes a topological ring if the various translations of the sets on

which V(x) < e, where e is real and V ranges through I), are taken as a sub-

base [14] for open sets . A pseudo-valuated ring A is called complete when it is

complete with respect to the uniform structure defined by the various relations

V(χ-y) < e.

2.1. THEOREM. Let U be a neighborhood of 0 in a topological linear alge-

bra A. Then there is a continuous pseudo-ring-norm, V, such that U contains

the set on which V(x) < 1 if and only if U is convex and UU lies in U.

We leave the proof to the reader, except that we give a formula for V when

U is given:

V(x) = sup inf {r; r > 0, x C λrU\
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3. Quasi-inversion. In a ring Af y is a right quasi-inverse of an element x if

x + y + xγ = 0

[cf 12, 111, and Λ; is a Ze/ί quasi-inverse of y.

The methods of normed rings can be adapted to establish the following con-

tinuity property of quasi-inversion.

3.1. THEOREM. Let R be the set of elements having right quasi-inverses

in a pseudo-valuated ring A. Let y be a left quasi-inverse of a limit point z of

R. For each x in R, select a right quasi-inverse x' of x. Then

3.2. y = lim x\
x-* z, xβ R

Proof. The expressions to be written down will seem to involve the assump-

tion that A has a unity element 1. However, such equations as we shall write

down can always be freed of this assumption by expansion and cancellation.

Now by hypothesis we have,

(1 + y) (1 + z) = 1 and (1 + x) (1 + * ' ) = 1

for x in R. Let u = z - x and v = x' — y. Then

{1 + z + u) {1 + y + v) = 1.

Multiplying this on the left by 1 -f y we obtain

3.3. v = (1 + y)uv + (1 + y ) u ( l + y ) .

Let V be a pseudo-valuation. Since

F ( ( l + y ) « ) = V ( u + y u ) < V { u ) + V ( y ) V ( u ) = ( l + V ( γ ) ) V ( u ) ,

we get

V { u . ) < ( 1 + V ( y ) ) V { u ) V ( v ) + ( l + V { y ) ) 2 V ( u ) .

If V(u)—» 0, then presently

V(u) < (1 \

and then
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V ( v ) < ( 1 + V ( y ) ) 2 V ( u ) ( l - ( 1 + V(y))V{u)Tι;

this shows that V (v) —> O

Since, in 3.1, 1 + x tends to 1 + 2 and 1 + x' tends to 1 + y, the continuity

of multiplication shows that (1 + %) (1 + # ' ) tends to (1 + z) (1 + y), so that

y is also a right quasi-inverse of z. For the sake of clarity we reformulate this

result for the special case of a pseudo-valuated ring with unity element.

3.4. COROLLARY. If Z is a left regular limit of right regular elements,

then z is also right regular, and right inversion is continuous at z.

A topological ring in which inversion is not continuous at 1, and which is

(consequently) not pseudo-valuated, is Lω [2, p. 629].

4. Expansions for quasi-inverses. With the hypotheses of 3.1, not only is

right quasi-inversion continuous at z, it is analytic, in a sense which we shall

not further define.

4.1. THEOREM. Let the hypothesis and notation of 3.2 be assumed. For

each x in R and each n, let

n

yn(χ) = Σ ( U + y M * - * ) ) 1 ' U + y ) - l .
i = 0

Then for any pseudo-valuation V and any x in R such that

V{x~z) < (l+V(y)T\

we have

lim V(y(x)-x')= 0.
ra->oo

Proof. Using u and v as in the proof of 3.2, we rewrite 3.3 as

4.2. ( l - ( l + y ) i » ) ( l + * ' ) - l + r

Let υn = yn(x) - x'. Substituting here the expansion for yn(*)> multiplying by

(1 — ( l + y ) « ) o n the left, and using 4.2, we obtain

If
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V(u) < r < ( 1 + V(y))"1,

it follows readily that

(l-r)V(vn) < (l+V(y))n+2 V(u)n+ι,

from which the conclusion follows,

REMARK. The infinite series obtained by setting n = oo in yn is of no use

in showing the existence of right-quasi-inverses even when A is complete, as

is done in the theory of Banach algebras. The reason is that a formal power

product series in A has something like a radius of convergence for each V, and

if these are not bounded away from 0 then the series may not converge in A.

5. Direct operators. Let L be an abelian group, and suppose there are de-

fined in L a number of real-valued functions P such that

P ( x ) > 0 , P ( 0 ) = 0 , P ( x - y ) < P ( x ) + P ( y ) .

A special case of this are the "pseudo-norms" of convex topological linear

spaces [ cf. 15]. Let I be any set of such P's defined in L. Then an endo-

morphism α of L into itself will be called fa-direct if for every P in P and each

positive e there is a positive d such that P {x) < d implies P (<X x) < e. The

implication of this requirement evidently depends on the size of the family P.

For example, if L is a convex topological linear space, and P is the class of

all continuous pseudo-norms in L, then a p-direct linear operator in L is neces-

sarily a scalar multiple of the identity.

There is another application of the idea of direct operators which we mention

in passing. Let L be a Banach space, and let £ be a Boolean ring (with unit)

of projections in L. For E in 8, we can define a pseudo-ring-norm P% by

PE(x)= \\Ex\\.

The result we wish to state is the following.

5.1. THEOREM. A bounded operator 0C in L is direct with respect to the

pseudo-norms Pj? if and only if (λE — Eθk for all E in c .

Proof. For each E in S, we have

\\E aχ\\ < CE 11 £ Λ; 11.
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Now l e t x= ( l - E ) y . T h e n

< CE \\E(1-E)y\\ = 0

for all y, or E a = E aE. Similarly ( l - £ ) α = ( l - £ ) α ( l - £ ) . Expanding

this and comparing with the former yields Ea - α £ , as desired.

Continuing with the general discussion, let us suppose that L is a linear

space, and that P is a fixed family of pseudo-norms. Let D^{L), or more briefly

D(L), be the family of P-direct linear operators in L.

5.2. THEOREM. The family D(L) is a linear algebra with unit element, and

the Vp, where

Vp(a) = sup P{0Lx) ,

form pseudo-ring-norms for D (L ).

We shall omit the proof, which is easy.

For our purposes, a linear space L with a family I of pseudo-norms P shall

be called complete if

a) P {x) = 0 for every P in P implies x = 0 and

b) whenever P (xμ — xv) converges to 0 for some directed set xμ in L, and every

P in P, there is an x in L such that P (xμ— x) converges to 0 for every P.

This definition obviously applies to ring-pseudo-normed linear algebras.

Concerning D (L) we may assert the following, again leaving the proof to the

reader.

5.3. THEOREM. // L is complete {with respect to the pseudo-norms P in

P ) , then D(L) is complete with respect to the Vp,

The purpose of the preceding discussion is to make possible the following

statement.

5.4. THEOREM. Let A be a linear algebra with unit element and a family

I) of pseudo-ring-norms such that F ( l ) = l for each V in I). Then A is iso-

morphiCy with preservation of pseudo-norms, to a subalgebra of D(B), where B

is A regarded as a pseudo-normed linear space with family I) of distinguished

pseudo-norms.

For the proof of 5.4 we represent each x in A by the operator that sends y in-

to xγ.
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6. Completeness of kernel quotients. Let A be a ring with a family I) of

pseudo-valuations, and suppose Vi9 , Vn belong to I). Then

V(x) = maxiV.ix), . . . ,Vn{x))

defines a pseudo-valuation in A. Those x with V(x) = 0 form a two-sided ideal

Zy, a kernel ideal of A (with respect to I) ). We could have limited our attention

to the case n = 1 by assuming that V C I) whenever Vl9 • , Vn C I), but it

is convenient not to assume this. The quotient ring Ay = A/Zy is a kernel

quotient, and V may be defined in it in an obvious way.

When V is a pseudo-ring-norm, Av is a normed ring.

The canonical homomorphism of A onto Ay is continuous when the topology

described in § 2 is used in A, and that defined by V is used in Ay. The com-

pletion in that topology of Ay will be denoted by Ay and called a completed

kernel quotient. In the ring-pseudo-norm case, the completed kernel quotients

are all Banach algebras.

We shall now give several examples to show that we have no right to suppose

that Ay is complete even when A is. In these examples, which are algebras A

of complex-valued continuous functions / on various spaces X, we presuppose

pseudo-ring-norms of the following type. Let K be a class of compact sets whose

interiors cover X. For each K in K let Vβif) be the maximum of | / ( ί ) j for t

in K (the topology in A is then the λ -topology, and X necessarily is locally

compact).

6.1. T H E O R E M . Let T be completely regular, and let C(T) be the ring of

continuous functions on T. Then C(T) is complete, and each C(T)yκ is com-

plete.

6 . 2 . THEOREM. Let H(D) be the holomorphic functions on an open set D

in the plane. Then H(D) is complete; but if K has at least one limit point,

then H{D)yκ is not complete.

6.3. THEOREM. Let BCiR^ be the ring of bounded continuous functions

on the real line. Then βC(i? t ) is not complete, but each BC(Rι )yκ is complete.

In 6.1, C(T) is well-known to be complete [ l ] ; %vκ consists of those

functions which vanish on K, and so C{T)yκ is naturally isomorphic to a sub-

algebra of C{K). By consideration of the Stone-Cech compactification, or

otherwise, one can extend any function continuous on K to all of T (as a matter

of fact, without increase of bound). Hence the subalgebra in question is all of

C(K) which is complete in its norm.
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Morera's theorem shows that H(D) is closed in C(D), and so it is complete.

Again Π{D)yj, is isomorphic to a subalgebra S of C{K). (Of course Z# con-

tains only 0.) This subalgebra is not closed, however, for we can select an

analytic function / holomorphic on K but with a singularity somewhere on D. It

is the uniform limit of polynomials on K and hence a limit of S in C(K), whence

S is not closed. We emphasize that this example shows that Zy may be 0 alone,

while the topology of Av is not the same as that of A.

Finally, 5C(/? 1 ) is not complete since it is dense in C(Rι); but each

BC{Ri)yκ is complete for the very reasons given for 6.1.

7. Right inverses. In a later section we want to show that each maximal

ideal of a commutative complete pseudo-valuated ring A is a ''divisor*9 of some

kernel ideal Zy. The following theorem together with Gelfand's principle yields

this result. It obviously implies that, if A is complete, an element x which has

a (two-sided) quasi-inverse in each Ay (the completion of Ay) has a quasi-

inverse in Ay since a two-sided quasi-inverse is a unique right quasi-inverse.

We have not been able to drop the requirement of " u n i q u e " in 7.1, since there

seem to be difficulties in combining the various right inverses which are sup-

posed to exist. If it should be in fact impossible to prove 7.1 without the word

"unique," then this would be the first indication of a serious divergence be-

tween the theory of pseudo-valuated rings and that of normed rings, after which

it is patterned.

After Theorem 7.1, we present a theorem like 7.1 in which the word " u n i q u e "

is omitted, but there are other hypotheses which are by no means always ful-

filled.

7.1. THEOREM. Let x be an element of a complete pseudo-valuated ring A.

Then x has a unique right quasi-inverse in A if and only if its image in each

completed kernel quotient has a unique right quasi-inverse there.

Proof: There is no loss in generality here in supposing the class D of

pseudo-valuations to contain

V(x) = max ( F , ( * ) , . . . . Vn(x))

when it contains Vl9 ••• , Vn. Let Xy be the image of x in the kernel quotient

Ay, and let Yy be the right quasi-inverse of Xy in Ay. For each positive in-

teger n9 one can find an element yγ^ n m A such that its image Yyn™
 AV is

close to Yy :

V(YVyn-Yv) < l/n.
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The index-pairs V, n on these yτ/ may be partially ordered by setting ( U, m) <

( F, n) whenever m < n, and U(z) < V(z) for all z in A (this latter we ab-

breviate U < V). When V < V, we have Zv C Zy\ moreover we have a natural

mapping (of bound 1) of Ay into Ay, and hence we can act as if an element

originally introduced as belonging to Ay (such as Yy) also belongs to Ay. As

a matter of fact, with this convention, we have Yy - Yy when U < V because

Yy is clearly a right quasi-inverse of Xy in Ay, and this was supposed to be

unique. Making use of this fact, we shall show that ! yy n \ forms a Cauchy

system. Let U belong to I), and suppose V, W > U. Then

1 1
< — + — .

m n

Because of the assumption made at the outset about max (Vi9 V2) belonging

to I) with Vχ and V29 the indices form a directed set; and the yy n form a Cauchy

directed system, which must converge to a y in A since A is complete. A calcu-

lation similar to that just performed shows that

V(xy + x-\-y)-0

for all V, whence y is a right quasi-inverse for x, as desired. This proves 7.1.

Let A be a pseudo-valuated ring, and suppose that for each V in U there is

selected an element uy of A such that

7.2. for each W in I) there is a finite set l)^ such that W(uy) Φ- 0 only for

those V which belong to l)jp, and W(uy) < 1;

7.3. W (γ -2^yuy) - 0, the sum being extended over all V in Xίψ

7.4. for a fixed V, we have W {uy) φ 0 only when W belongs to \Jy

Then we shall call uy a locally finite partition of unity.

The partial sums of the series 2*uv clearly form a Cauchy system, so that

when A is complete the existence of a locally finite partition of unity ensures

the existence of a unity element, and makes it possible to talk about inverses

rather than quasi-inverses.

We can exhibit nontrivial examples of such partitions.

7.5. THEOREM. Let C(X) be the ring of continuous complex-valued func-

tions on a locally compact, paracompact [see 8] Hausdorff space T. Then a
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family r of pseudo-norms can be defined in C(T) so that the ring D (C (T)) of

direct operators in C(T) pseudo°normed as in 5 .2, possesses a locally finite

partition of unity, and is complete.

Proof, According to the hypothesis we can obtain a neighborhood-finite

family ί G } of open sets which cover X and whose closures are compact.

Using Theorem 6 of [8] and the method of Bourbaki (partition continue de

Γunite) we construct a family of continuous real-valued nonnegative functions

fG, where fG(t) 41 0 only for x in G and 2*fGit) = 1. As pseudo-norms in C(T),

take

PG(f) = sup | / ( ί ) | .
te G

The topology thus obtained is the A -topology, in which C(T) is complete, and

hence D(C(T)) is complete. The operators uv defined by uy(f) = fGf, where

V = VpG (see 5.2), are surely direct. Now let G, H belong to ί G !, and let V9 W

be VpG9 Vpij respectively. Then W (uy) -f 0 only if H is one of the finitely many

sets of i G } which meet the compact closure of G, and only if G is one of the

finitely many sets of G which meet the closure of H. Except for details, this

proves 7.5.

7.6. THEOREM. Let x be an element of a complete pseudo-υaluated ring

A possessing a locally finite partition of unity. Then x has a right inverse in

A if and only if its image in each completed kernel quotient has a right inverse

there.

Proof, We adopt the notation of 7.2-7.4. We do not suppose that the class

I) here is closed under the maximum formation mentioned in the proof of 7.1,

because this would require a complicated reformulation of 7.4. For each V in

I), define F ι ( z ) = max W(z) for all W in l)y, and suppose V itself to be ad-

joined to l)p/. Let Xyγ be the image of x in Ay , and let Yy be a right inverse

of Xy in Ay . Select yv in A so that if YyyU is its image in Ay 9 then for

n - 1, 2, , we have

7.7. (Vγ(x) + 1) Vx(Ύy9n - Yv) < 2"n'1.

By the local finiteness, yn =2*vyy nuy converges. Let W belong to "Uy. Then

Since this sum needs to be extended only over the V in \Jψ9 and since then W
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lies in l)j/ so that W <_ Vl9 we have from 7.7 that the left member is less than

2~n times the number of elements in U^. Hence the sequence of yn is Cauchy

and converges to some γ in A. Now

W(xy- 1) = lim W(xyn - 1 ) ,

and

χyn ~ l = Σ(xyVtn - l)uv ,

so that

7.8. W(xyn - 1 ) < Σw(xyVtn-l),

where this sum needs to be extended only over the V in l)^. But then in each

case W belongs to l)j/, and so $ <_ Vι and

W(xyy>n-l) < Vι(xyv>n-l) = V^, Yv>n - XVι Yv)

< Vι(x)V1(Yv>n-Yv) < 2-""1.

Since 7.8 involves only a fixed finite number of terms of this sort, we conclude

that W (xyn - 1) tends to 0, whence xy = 1 as desired.

8. Ideals. In topological rings, naturally the closed ideals play a more

important part than the others. Much of the success of Banach algebras is due

to the fact that maximal (that is, maximally proper) ideals are closed. The same

is true for pseudo-valuated rings with only a finite set of pseudo-valuations.

However, it is not true in general. For example, if in the case of the ring in

6.1, when T is not compact, the ideal of functions each vanishing outside some

compact set is swelled (by Zorn's lemma) to a maximal ideal M, then this ideal

is certainly not closed. For every closed ideal in C(T) can easily be shown

to consist of all functions vanishing at a suitable point of T, and for each t of

T there is an / in M which is not zero there. This ideal is consequently dense

in C(T).

Our idea is to reduce certain parts of the ideal theory (and at some future

time, of the representation theory) of pseudo-valuated rings to that of the com-

pleted kernel quotients, in which some of the techniques of Banach algebras

can be applied. For terms used below but not defined, see [ 11].

8.1. THEOREM. In a pseudo-valuated ring, every nondense left and/or

regular and/or two-sided ideal L is contained in a closed left and/or regular
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and/or two-sided ideal N which contains a kernel ideal.

Proof. Let L be a nondense ideal. Then there is a u in A9 a V in I), and a

positive e, such that V(u- x) < e implies x ^L L. Let M be the sum of L and

the kernel ideal Zy Let x £- M. Then x = γ + z, y £! L, and 2 £! Zj/. Now

e < F ( a - y ) = V ( u - x + z ) <^ V ( u - x ) ,

whence u does not belong to the closure N of Λί Hence /V is the desired ideal.

However, if L is regular with relative right unit v, we must show that there is

a relative right unit modulo /V. But υ itself can obviously be chosen for this

purpose.

8.2. COROLLARY. Every nondense maximal {two-sided) or maximal left

ideal is closed and contains a kernel ideal.

9. An abstract approach to structure spaces. We note that the ideas of Stone

and Jacobson can be generalized to topologizing suitable subsets of partially

ordered systems. In what follows one may think of J a s the class of ideals of a

ring, 3, the two-sided ideals, and £, the maximal left ideals.

Let % be a partially ordered set, 3 a subset of % which forms a complete

lattice with greatest element A, and L an arbitrary subset of (j<. We want to de-

fine a closure operation in <C. For 31 C <C, let

i ( l ) = sup ί α; α C 3, α < I for every I in 1 } .

For α in 3, let

u ( α ) = ί t ; t C £ , I > a\.

One can easily verify that

9.1. u(sup α α ) = Π u ( α α ) .

For ! c ϋ , the closure I shall be ui(ffl).

The next three propositions, whose proofs are omitted, mention all the clo-

sure axioms needed for a topological ( T-) space; Λ is the void set:

9.2. Λ = Λ if and only if A has no upper bound in L.

9.3. 1 C I ; S C 5Γc implies Έ C U; and ϊ = ϊ .

9.4. ( 5 O ί u ? l ) C ϊ ! u 5 ί l holds generally in <C provided for each I in £ , the in-

equality l > α Λ f) implies ί > α or I >̂  f> .
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9.5. THEOREM. // the conditions of 9.4 and 9.2 are satisfied, £ becomes

a T-space.

As remarked by Jacobson, £ need not be a Tί-space, nor a J 2 " s P a c e even

when it is a Z^space. As a matter of fact, it need not even be a 70-space,

but this defect is smaller than the other two, for it may be "removed*' by a

process of identification.

These spaces <L often have compactness properties.

9.6. THEOREM. The set u ( α ) is compact if and only if given <Xa in 3 with

aa _> α such that every finite collection has an upper bound in £, then the en-

tire collection has an upper bound in L.

10. Application to rings. Now let A be a ring and let 3 be the class of tv/o-

sided ideals. Let <b be a class of ideals of A each of which is either

10.1. prime and proper,

10.2. maximal left, or

10.3. primitive.

Then the condition of 9.4 holds (case 10.3 was considered by Jacobson, and

the others are obvious), and £ becomes a space of 9.5.

The special case in which £ consists of the maximal left ideals is interest-

ing. It is fairly easy to see that ί ( i IS) is always primitive and that we thus

obtain an open continuous mapping on Jacobson's structure space.

In topological rings, £ may be chosen to contain only closed ideals, while

3 may be chosen as before. This does not adversely affect the fulfillment of

the closure axioms, but naturally when the class of ideals in £ is restricted,

limit points are lost and compactness is affected. Indeed, even when A is com-

mutative and has a unit, £ may be noncompact (see 8.1). Hence we prove the

following about pseudo-valuated rings.

10.4. THEOREM. Let £ be the class of nondense maximal left ideals, and

3 the two-sided ideals, of a pseudo-valuated ring A. Let & be a regular member

of 3, and let Zy be a kernel ideal. Then u (Ct) n \i(Zy) is compact.

Proof. Without loss of generality (see 9.1) we may suppose Ct D Zy, and

thus u ( α ) C u(Zy). Now let αα D α. Suppose that for <xi9 , Cln there is

an I in £ containing the αα^ for i = 1, , n. Let B = A/a, pseudo-valuated by

means of V, Since d is regular, B has a unit, and I does not map onto B. The

multiplicative properties of V ensure that the closure of the image of I is also



468 RICHARD ARENS

an ideal in the completion β. Thus the images of α α , «« , α α generate a

proper left ideal in B. Hence, by the argument of Banach algebras (cf. [ l l ] ) ,

the images of the α α all fall into one (closed) maximal left ideal of B. The

inverse image of this in A provides a bound for the α α , and so 9.6 applies,

finishing the proof.

As in an earlier section, we can go further with the assumption of a locally

finite partition of unity.

10.5. LEMMA. Let £, 3, and A be as in 10.4. Let A have a locally finite

partition of unity, { uy }. Let Gy be the {open) complement of u(dj/), where

(Xy is the two"sided ideal generated by uy. Then Gy does not meet u ( Z ^ ) for

W not in Uy.

Proof. Clearly uv C Zψ when W £ \JV. Hence ay C Zψ, and so

u(Cty) D u ( Z ψ ) ,

from which the conclusion follows.

10.6. THEOREM. Let £, 3, A, and Gv be as in 10.5. Then each Gv has

a compact closure in £, and the Gy form a star-finite open covering of £, which

is consequently a paracompact* locally compact space.

Proof. By 8.2, the u (Zy ) cover £, and so Gy must be contained in the

union of those finitely many u ( Z ψ ) for which Ψ belongs to Uy, and this union

is compact by 10.4. (Recall that A has a unit.) Now suppose that Gy and Gψ in-

tersect in a nonvoid set. They must intersect in a point of some u (ZJJ ), whence

U G l)y, U C l)y. For V fixed, this rules out all but a finite set of possibilities

for W. This shows that the Gy form a star-finite system. Now let t belong to

£ . Then for some V, we have uy ψ. I ; for otherwise we would have 1 C I since

the latter is closed. Then I C Gy. Hence the Gy cover £, and £ is therefore

locally compact.

Now let an arbitrary open covering C of £ be given. For each V select a

finite number of these open sets to cover Gy, and cut these sets down so that

they lie in the union of those Gψ which meet Gy. The class of sets so obtained

is easily seen to form a neighborhood finite refinement of C. This completes the

proof of 10.6.

11. Characterization of the ring of continuous functions. We are now in a

position to characterize the ring A = C(T, K) (K is here the complex field),

*In the generalized sense obtained by removing the stipulation of Hausdorff separa-
tion from Dieudonne's definition.
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where 7 is a locally compact, paracompact Hausdorff space, as a pseudo-ring-

norm ed ring in which the topology is that of the A -topology. From 7.5 we say

about C ( X, K) that

11.1. it has a locally finite partition of unity; and moreover, if x* is defined

by x * ( 0 = x{t), then

11.2. it has a semilinear operation * such that (λx + yz )* = λx* + z*y*,

#** = x, and

11.3. V(xx*) > ky V(x) V(x*)9 where kv is some positive number, for each

V in I).

In C{X,K), all the kv = 1.

The main theorem is a converse of these observations.

11.4. THEOREM. A commutative complete pseudo-ring-normed linear algebra

A over the complex numbers K satisfying 11.1, 11.2, 11.3 is equivalent to a

C(T, K), where T is a locally compact, paracompact Hausdorff space which is

homeomorphic to the space <C of closed maximal ideals of A, topologized as in

10.6.

Proof, Since each closed maximal ideal contains some Zy, the corresponding

residue class ring is a normed field, which must be the field of complex numbers

K. For I in <C, define x(ί) = a if # — α 1 belongs to C. Now Av is isomorphic

to a subset of C(Xy, K) by Theorem 1 of [4], which is essentially the Gelfand-

Neumark lemma. It follows that

11.5. k2

v V(x) < s u p | * ( t ) | < V(x), x*(l) =

ίeu{Zy)

Let p , p , be a sequence of ordinary polynomials with real coefficients

such that

\pm(a)- \a\\ <Tm

for a any real number with \a\ <_ m. T h e s e can be constructed by Weierstrass '

approximation theorem. It follows from 11.5 that if x = x* in A, then pm(x) i s

a Cauchy system, and for the limit y we surely have \x( l)\ = y (I) ίor each I in

<C. Denote this 7 by | x \.

We must now establ ish that x( ) is continuous on £ . Let ( C C. Since A

has a unit we may suppose that x( I ) = 0. We may also suppose that x — x*.
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From the possibility of taking absolute values, it follows that

belongs to A, and it has the value 2 at I . Now let <x be the principal ideal

generated by y, and suppose m £ u ( α ) . Then y(m) = 0, so that m ^ I . Sup-

pose that | % ( m ) | > 1 for some m in «C. Then y(m) = 0, or m £ u( α). Hence

the complement of u ( α) is a neighborhood of I on which the absolute value of

value of x( ) is less than 1. In view of the possibility of scalar multiplication,

this shows that x( ) is continuous.

We next show that the topology of A is the same as the A -topology for the

corresponding functions. If K is a compact subset of <C, it is contained in fi-

nitely many of the Gy of 10.6, and by 10.5 it is contained in the union of some

finite class of U(Zj/) 's . Hence convergence in all pseudo-norms implies uniform

convergence on K by 11.5, hence in the A -topology. The other way around is

simpler, depending on 11 5 and the fact that each u{Zy) is compact. An appli-

cation of a generalized form [5, p 765] of Kakutani's method for the Stone-

Weierstrass theorem completes the proof of 11.4.

One could go on to generalize the numerous variations of the Gelfand -

Neumark lemma involving only real scalars, or quaternions, and so on, but the

method of reducing these questions to the corresponding case of normed rings

is now clear. The purpose of the partition of unity is of course to enable one

to disclose the topology of A as the ^-topology, and thus has no nontrivial

counterpart in the "normed" theory. If that part of the previous proof which in-

volves the Gy is ignored, we obtain the following:

11.6. THEOREM. A commutative complete pseudo-ring-normed linear algebra

A, with unit over the complex numbers satisfying 11.2 and 11.3, is isomorphic

to a C(T, K)9 where T is a completely regular space homeomorphic to the space

of closed maximal ideals, and such that the topology of A corresponds to some

topology in C{T, K) which has at most the open sets of the k-topology.

This result, while perhaps more easily applicable, is not " a characterization

of those C( T, K) with a topology t <^ k," since such C( T, K) do not need to

be complete. In [6, p. 234] there is exhibited a space T in which all compact

sets are finite (although not always open as the next sentence in that paper

should have said). Consequently, the completion of the space C(T, K) in any

topology t which is _< k includes discontinuous functions.

When 11.3 does not hold, we have no way of knowing that the functions x ( )

are continuous on <C; in fact, even in the norm case they are sometimes not
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continuous (cf. Gelfand and Silov). Of course, one can force them to be con-

tinuous by abandoning the topology in L and introducing a new one ad hoc, de-

fining just enough sets to be open so that they are continuous. The result is a

completely regular space, and in it we can make this statement:

11.7. THEOREM, Let A be a commutative complete pseudo-normed linear

algebra over the complex or real numbers. For each % in A, define a function

x( ) on the space of closed maximal regular ideals. Then x has a quasi-inverse

in A if and only if x(ί) ^ — 1 for each t in L .

The proof follows from the preceding remarks, Theorem 7.1, and 8 2.
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