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INTERSECTION THEORY FOR CYCLES
OF AN ALGEBRAIC VARIETY

I. B A R S O T T I

Introduction. For a number of years intersection theory represented one of

the most debated subjects in the field of algebraic geometry; also one of the

main reasons for seeing in the whole structure of algebraic geometry an inherent

flimsiness which even discouraged the study of this branch of mathematics. This

situation came to an end when the methods of algebra began to be successfully

applied to geometry, mainly by van der Waerden and Zariski; in the specific case

of intersection theory, a completely general and rigorous treatment of the subject

was given by Chevalley [ 3] in 1945. This rebuilding of algebraic geometry on

firm foundations has often taken a form quite different from what the classical

works would have led one to expect. Thus it is not surprising that Chevalley's

solution of the problem has no evident link with the methods that, according to

the suggestions of the classical geometers, should have been used in order to

define the intersection multiplicity (for a sketch of these methods and sug-

gestions see, for instance, [4 ] ) ; rather, it is linked to the analytical approach,

and it is therefore a strictly 4< local" theory, thus having the advantage of pro-

viding an intersection multiplicity also for algebroid varieties. The method by

A. Weil [ 5] is another example of local theory.

The classical approach to the problem is illustrated in the introduction to [2]

(see "first approach"), and carried out in the present paper. After an introduc-

tion dealing with algebraic correspondences (§1) we study in §2 a particular

algebraic system related to any given cycle ^ of a projective space, namely the

system consisting of all the cycles obtained from % by projective transformations

of the ambient space, plus the "limit cycles" which must be added in order to

complete the algebraic system (and which would correspond to the degenerate

projective transformations). This system, called the homographic system of %

is used in §3 to obtain the principal results, namely Lemma 3.1 and Theorem

3.2. The wording of these results, as of the other results of §3, is complicated

by the fact that we do not restrict ourselves to varieties over an algebraically
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closed field, or to varieties in the sense of [$] ; the gist of them, however, is

the following:

Given the irreducible cycles ίj, g- of a projective space, let 3 be the "ge-

neric" element of the homographic system of %, and let P be an isolated com-

ponent (of the right dimension) of the intersection of the varieties § and £. Then

the number of those intersections of the varieties ^ and 3 which approach P

when 3 approaches % is, by definition, the intersection multiplicity of ίj and J

at P; this number does not change if % is allowed to vary in any "admissible"

algebraic system rather than in its homographic system; and finally, the number

is the same when % varies in any algebraic system, provided that then we al-

ready count each intersection of ^ and 3 with a certain multiplicity, to be com-

puted by means of an "admissible" system. Also, the same number is obtained

if ^, or both § and £, are allowed to vary.

The fact that we allow our varieties to be defined over an arbitrary field is

not just a refinement of debatable usefulness, but a plain necessity: in fact, the

general element of an algebraic system is never defined over an algebraically

closed field (unless the system consists of just one element).

This definition takes care of the intersection of cycles of a projective space;

the next step (carried out in §5) is the extension of the definition and of the

related results to the cycles of an arbitrary (irreducible) variety F. Should it be

possible to find, for any given cycle % of V, an algebraic system of cycles of V9

containing #, and playing the same role as the homographic system, then the

theory on V would not differ from the theory on a projective space; more gener-

ally, it would be enough to find another cycle £ which does not contain the inter-

section U in which we are interested, and such that $ + £ is contained in such

a general algebraic system. Now, it is well known that this is not the case in

general, but that one very wide class of cycles % through U which fulfill the

condition is the set of the cycles of V which are locally (at U) intersections of

V and of a cycle of the ambient space; and this, in turn, is always the case if

U is simple on V and the ground field is algebraically closed. As a conse-

quence, we define the intersection multiplicity of fc) and 3- at U on V only for the

case in which ^ and 3 are intersections, at t/, of V with cycles Y, Z of the

ambient space S; for this case the algebraic system containing % + £ (with £ not

passing through U) which can be used in order to define the intersection multi-

plicity is the system of the intersections of V with the elements of the homo-

graphic system of 3; it is not even necessary, however, to consider this system:

since the intersection of fc) and 3 i n S is already defined, the multiplicity of U

in this intersection can be assumed to be, by definition, the multiplicity of U in

the intersection of ^ and % on V. This is an outline of the content of §5, but
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one more detail needs to be mentioned here: it may happen, a priori at least,

that although # is not an intersection at U, it becomes such by a suitable bi-

rational transformation of V which is regular at U; this is taken into account

after Theorem 5.9. Finally, since we are using rational cycles, it must be re-

marked that such cases as the vertex of a quadric cone are naturally taken care

of by the theory: a line 3. through the vertex U of a quadric cone V is the inter-

section at U of V with the cycle 3/2 of the 3-space containing V, 3 being the

tangent plane to V along 3.

Bezout's theorem is proved in § 4 by means of one of the usual geometric

methods, namely by letting the two cycles degenerate completely into cycles

consisting of linear varieties only; other proofs of a more algebraic nature would

display the relations of Bezout's theorem to that property of the divisors which

is called the "product formula" by number theorists; the present proof, however,

offers the advantage of being extremely simple.

The main advantage of the present geometrical theory of intersections is the

fact that it can readily be applied to problems " i n the large" although through-

out this paper the local intersection number is stressed, the theory finds easy

and immediate application to the construction of the algebraic system determined

by two cycles over any connected component of their intersection which happens

to have a dimension larger than expected; in particular, the characteristic system

of an irreducible subvariety of a variety and its virtual degree could easily be

established. These topics, however, would find their natural place in a paper

dealing with algebraic equivalence.

1. Preliminary results. We shall use the same definitions and notations as in

[ l ] and [2], paying attention to the fact that some of the definitions or notations

of [ 1 ] have been modified in [ 2 ] . A few additional modifications or generaliza-

tions will be explained now. In [ 1 ] " c y c l e " meant "integral effective cycle"

(that is, with positive integers as coefficients); in [2] it meant "rational ef-

fective cycle"; it shall now mean "rational (effective or virtual) cycle". More

precisely, a cycle is an expression of the form

I = Σ atVιt
I = 1

where n > 1, the a^s are nonzero rational numbers, and the V^s are mutually dis-

tinct irreducible pseudosubvarieties of a pseudovariety over a field; 3 is unmixed

if all the F 's have the same dimension (called the dimension of the cycle). The

set of s-dimensional cycles becomes an additive group by addition of the zero

cycle 0 = OF for any s-dimensional irreducible pseudosubvariety V'. The above
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expression J V _ OJ Ft is called the minimal representation of %; any expression

OF is a minimal representation of 0. If V is an s-dimensional irreducible pseudo-

subvariety, the multiplicity of V in % is zero if V ^ Vι for each i or if 3- = 0,

and equals a{ if V = Fj. The cycle % is irreducible if n = α t = 1. The identifi-

cation, used in [l] and [2], of an irreducible cycle % = IV with the irreducible

pseudovariety F is no longer valid. If J \ _ α; F{ is the minimal representation

of the cycle % £ 0, then each F; is called a component variety of %, and each

lFj is a component of % the cycle ^ whose minimal representation is ^ - γ ty Wj

is pαrί of % iί m <n, and if it is possible to establish a 1 - 1 correspondence

j —» i(j) such that α-.x = 6., F ^ x = IFy for y = 1, , m; the only part of 0

is 0.

If U is a subvariety of a projective space S over k, two cycles ^, % of S

whose minimal representations are

= Σ

are said to coincide locally at U if either (1) no component of ί/ is a subvariety

of any F t of of any ί]^ , or (2) if, say, Vl9 , Vr and [Fj, , Ws are the com-

ponent varieties of t) and % respectively which contain some component of U,

then r = s, F/ = ff^ for i = 1, , r, and α; = 6/ for i = 1, , r; the cycle

Σ β, Ff . £ bj Wj
i = i 7 = 1

in case (2), or the cycle 0 in case (1), is called the U-part of #(oro/t ) ) ; the

radical rad ^ of % is the join of the component varieties of % if J ^ 0, and is the

empty variety if % ~ 0.

An algebraic correspondence is a cycle, not a pseudovariety. In the expres-

sions [D; F, G], ID; F, G], ( β ; F, G), D [ G ] , £>(G), Δ [ v ] , Δ ( v ) , the symbols

D and Δ are cycles, while the expressions themselves are pseudovarieties. In

the expressions \D; V, G }, ID; F, G }*, D{Gi, D ί G } * , Δίt ;} , Δ { v Γ , D and Δ

are cycles, and so are the expressions themselves. In the expressions e(Z)*/Z>;

F, G), e{D*/D; F, G)*, D is a cycle, D* a pseudovariety. In the expressions

ord 2, deg J, red % % can be either a cycle or a variety; in the expressions ins £,

exp £, h(%), % can be either an irreducible cycle or an irreducible pseudovariety.

It is thus evident that if t), % are cycles, then rad ^ n rad ^ is the variety

which is the intersection of the varieties rad fc) and rad % (point-set theoretic),

while t) n 3 has not been defined so far; and when it will be defined, it will be a
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cycle, not a variety.

Let F , F be variet ies over k9 F being irreducible, and let D be an unmixed

algebraic correspondence between F and F, every component of which operates

on the whole F ; let G be an irreducible subvariety of F , D an irreducible com-

ponent of [D; F , G ] . The symbol e{D*/D; F , G ) * has been defined (when it

exists) in [2] under the assumption that V and 0 be irreducible. We shall extend

it now to a more general c a s e . Let D be unmixed, and let D = 2L?. α; D; be i ts

minimal representat ion. Let v be a valuation of k{F) over k, of the same dimen-

sion a s G over k9 and whose center on F is G; let {x \ be the h.g.p. (homo-

geneous general point) of D(9 and denote by Ci(v) the complete set of exten-

sions of v to k{Dι) with respect to {%'*'! (see [2, § 3 ] ) . Assume dim D* =

dim D — dim F + dim G, and call τii(v) the number ( > 0 ) of elements of C({v)

whose center on D f is D*. If

£ . α, n, ( f ) i n s Z), [ F ] ( ord Z)* [ G ] Γ 1

does not depend on v9 this number will be denoted by

e(D*/D;V,G)* = e(D*/D; G, V)*.

Clearly, if D is another unmixed algebraic correspondence between F and F,

having the same dimension as D9 and if e(D*/D; V$ G) and e (D /D F s G)

both exist, then e(D*/aD + bθ'; F, G)* exists and equals

ae(D*/D; V9 G)* + be(D*/D'; F, G )*

for any pair of rational numbers α, b. As a consequence of statement 5 of Theor-

em 3.1 of [ 2 ] , we have the result: if vij{j = 1, 2, ) are the distinct elements

of Ci (v ) whose center on Dι is 0*, then

( 1 ) e(D*/D; V9GΫ = Σ ai[Γv : Γv] [Kυ : k{D*)] [Kv: k(G)Γι.

If D* has the dimension dim D - dim F + dim G, but it is not a component of

[D; V, G], then we set, by definition, e(D*/D; V9 G)* = 0. This is in accord-

ance with (1), since in this case no element of any Cι(v) has the center D* on D.

According to [2], instead of saying that e{D*/D; V, G)* = OC, we shall also

say that α is the multiplicity of D* in {D; F, G}*, even if { D; V, G }* does not

exist; this will be extended to the other expressions, like " # is part of \D; V,

G ! * " and similar ones.

Let ]Γ. a{ V: be the minimal representation of an unmixed cycle ^ over k. If

K is an extension of k9 and F/y (/' = 1, 2, •••) are the distinct components of

( V.)κ, the extension of t) over K has been defined in [2] to be
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§K = Σ Γ

 ai e x P

the exponent of Fty being independent of /. This had the advantage that ^t,y § =

^t,y §κ>
 a n d that deg φ = deg fc)^.. We shall often need, however, to consider

the cycle

ίj '= £ . . α* i n s ^ ( i n S ̂ / Γ l FV J

this, as remarked in [2, § 1 ] is an alternate definition of the extension of a

cycle. The cycle fc)' shall be called the modified extension of ^ over K, and no

special symbol will be used to denote it. We have ord *$' - ord fc). Let finally %)

be a cycle over K. We say that § is a partial extension of t) over K if |) = ^ ^. ,

where each component variety of %). is a component of (Vi)κ, and α; ord J/; =

ord?)..

LEMMA 1.1. Le£ D, D*, F, F, G, A: have the same meanings as in formula

(1). Let F be birationally equivalent to F$ and such that if G is any irreducible

subvariety of F which corresponds to G, and which has the same dimension as

G, then Q(G/F) C Q(G /F ). Let D be the algebraic correspondence between

F'and V such thatϋ'\F'\* =D{F\*; for each G''let £>*, D*, . . . be the pseudo-

varieties which correspond to D and such that I D * operates on G , and assume

F/ to be such that e (D*/D';V,G')* exists for each G'and each i. Then e(D /D;

V) G ) exists if and only if

α =
. e(D*/D';V, G')* ord (ID*)

does not depend on G'; that is, if and only if Z^ e(D*/D V, GO* D* is a

partial extension of a fixed multiple of ID* over k (G') for any G' In such case,

we have

e(D*/D;V,Gf = α(ord( lD*)[G])~ ι .

Proof. The proof of this lemma is an immediate application of (1), since the

varieties G' are the centers on F ' of the valuations v of formula (1).

COROLLARY. Maintain the notations of Lemma i.7$ and let \ ζ\ be a set of

parameters of Q (G/F ); then \ζ\ is a set of parameters of each Q(D*/Dι). If

e(U /D; V, G ) exists, it equals

Σ . α; e(Q(D*/Di);ζ) e (Q(G/F) ζ)~ι.

Proof. In Lemma 1.1 choose for F ' a normal associate to F, so that each

e(D*/lD t ' ; F, GO* exists (by statement 1 of Theorem 5.3 of [2]) and equals

e(^(D*/D { '); ζ) e(Q(G'/F'); ζ)~ι. As a consequence of the lemma we then

have
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e(D*/D; V, G)* = £. . α, β(ρ(Df/θΓ); ζ) e{Q{G'/F'); ζ)~ι x

o r d ( l D * ) [ G ' J ( o r d ( l Z > * ) [ C ] ) " x

for any G'. There are finitely many varieties G' in this case, and we shall denote

them by G {9 G , ••• , while the D*'s which operate on Gm shall be denoted by

D*( ) W hD*mj(j = 1, 2, . . . ) . We have:

Σ m ; C ; ord ( 1 0 * ) [ G ]

- Σ , »i Σjm eMD*mί/D;); ζ) αrd ( I D ; . ) E G ; ] [ * ( C ; ) = * < G ) ] ,
j m

or also

e(D*/D; V, G)* £ e{Q(G'/F') ^ ) [ A ( G ' ) : *

= Σ , »i Σ / m e(Q(D*mj/D;); ζ)[HD*m.): k(D*)].

Now, by Lemma 2.2 of [ 2 ] , we have

Σm e{Q(G'm/F'); ζ)[k(G'm): A(G)] = β ( ρ ( G / F ) ; 4)

and

Q.E.D.

We now maintain the same notations, and assume that V is irreducible and

that each component of D, as well as I D * , operates on the whole V. In this case

e{D*/D; V, G)* does not actually depend on Z), but depends only on D\ V {*, by

the above corollary, since Q(D*/D() contains k(V). Accordingly, if Δ denotes

D{ Fί* and Δ* denotes ( I D * ) [V], we shall denote e(D*/D; V, G )* also by

e ( Δ /Δ) . We remark that Δ can be described as a component of the inter-

section of rad Δ and G^(]/) such that 1Δ operates on the whole G. Let Δ t ,

Δ , ••• be components of rad Δ n Gjc(y) such that each 1Δ. operates on the

whole G. If OCj = e ( Δ * / Δ ) * exists for each i, we shall say that 2^. Ct; Δ* is part

of the intersection G' n Δ of G' with Δ, G' being the modified extension of 1 G

over k{V). Notice that the symbol n now links two cycles, so that no confusion

may arise with rad Δ n rad G\ This notation, as will appear later, is in agree-

ment with the general intersection theory.

LEMMA 1.2. Let K be an algebraic function field over k, Δ an algebraic

correspondence between K and an irreducible variety F over k, every component

of which operates on the whole F. Let K' be an algebraic function field over k
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containing K, and Δ ' the modified extension of Δ over K'. Let G be an irreducible

subvariety of /% Z and Z' the modified extensions of lG over K and K' respec-

tively. Let Δ be a component of rad Δ n rad Z, such that 1Δ operates on the

whole G, and let Δ̂ . (i - 1, 2, ) be the distinct components of Δ^' ; then each

Δ is a component of rad Δ ' n rad Z ' y am/ each I Δ J operates on the whole G.

The multiplicity e ( Δ /Δ) exists if and only if e( Δ /Δ ' ) exists for some i> in

which case this exists and is the same for each i. If this is the casey then the

modified extension Λ* ' of e{ Λ*/Λ)* Λ* over K ' is part of Z ' n /\'.

Proof. Obviously each Δ is a component of rad Δ ' n rad Z ' , and dim Δ =

dim Δ* for each i. Therefore, if Δ* has the dimension dim Δ + dim G - dim F, so

does Δ , and conversely. The contention which needs to be proved is the last

one. Now, if K' is purely transcendental over /(, also this contention becomes

obvious, since in such a case there is exactly one Δ*. We shall therefore assume

K' to be an algebraic extension of K. Again, a well-known artifice makes it

possible to prove the last contention if it is known that it holds true for each K'

which is normal over K. Hence we restrict our attention further to the case in

which £ ' i s normal over K (the word "normal" does not imply separability).

Under these assumptions, let v be a valuation of k(F) over k of dimension

equal to dim G, and whose center on F is G. Clearly we may further assume Δ

to be irreducible. Let then w be an extension of v to Λ (rad Λ), having the

center Δ* on rad Δ; let Δ ' ( i = 1, 2, •) be the component varieties of Δ', and

let w' be an extension of w to £ ' ( Δ p , whose center on Λ ' will therefore be,

say, Δ*. Each automorphism σ of the Galois group ® of K' over K can be in-

terpreted, in a natural way, as an operator which transforms, isomorphically and

transitively, the fields / ^ ( Δ p into each other. Then σw' has a meaning, and

when σ ranges in @, σw* ranges among all the extensions of w to K ' ( Δ p , for

each i, while the centers of these range among all the Δ . As a consequence,

[Tσw': Vw] and [Kσw': Kw] are the same for each σ. The ramification theory

gives then

n being the number of distinct extensions of w to £ ' ( Δ p whose center on AJ is

Δ*, and m being the number of distinct σΔ* which are subvarieties of Δ^. Now,

let a{w) be the sum of all the expressions [Γw»: Γw] [Kw»: ft'(Δ*)] when

w" ranges over the distinct extensions of w to i £ ' ( Δ p whose center on ΔΓ is

Δ*, and i = 1, 2, •• . If m' denotes the number of distinct Δ^-which contain Δ*,

from what precedes we obtain

a(w) = nm'YTw,: Γ j [Kw.: K'(Δ*)]
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= m'[K'(Δ[)ιK(radΔ)] m-ι[Kw:K(\*)][K'(A*):K(A*)]~ι.

Now, there is the relation

m x number of distinct Δ. = m' x number of distinct Δ

that is,

rn'rn'1 = redΔ r e d Δ * ( r e d Δ ^ r e d Δ * ) " 1 ;

on the other hand,

and l ikewise for [ K\A\): K(rad A)]. Hence

(X(w) = ins Δ [ i n s Δ * ( i n s Δ i n s Δ * ) " 1 [Kw

If we denote by β(v) the right side of formula ( 1 ) , which would equal

e(A*/Δ)* iϊ it were independent of v when C(v/F) = G, and hy γ(v) the simi-

lar expression for e ( Δ * / Δ ' ) * , then we have the relation:

γ(v) = Σw i n s Δ ( i n s Δ ^ ) " 1 Όi{w) [ΓW'.ΓV] [Kvι k(G)Γι

= ins Δ*(ins Δ*)-1 ΣW[ΓW:ΓJ [£„: £(Δ*)] [Kυ: k(G)Γι

υ

= ins Δ * ( i n s Δ * ) ~ ι β{v),

where w ranges over all the extensions of v to K(rad Δ) whose center on rad Δ

is Δ . This proves that γ(v) is independent of v if and only if β(v) has the

same property, and, because of (1), also proves all the statements of Lemma 1.2.

Q.E.D.

THEOREM 1.1. Let D be an unmixed algebraic correspondence between the

irreducible variety F over k and the variety V over k> every component of which

operates on the whole F. Let P and G be irreducible subvarieties of Fy P also

being a subvarietγ of Gy and let D' be a component of [D; V, P] such that

e(D'/D; V, P)* exists. Let D*9 £>*, ••• be the components of[D; V, G] which

contain D ' then

dim D* = dim D - dim F + dim G .

Assume e (D ./D V, G) to exist for each i, and set

D* = T e(D*/D; V,G)*D*.

Thene(D'/D*; V, P )* exists and equals e(D'/D; V, P )*.

Proof. If r = dim D., then we have dim D' > r — dim G + dim P . Since
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dim Z)' = dim D - dim F •+ dim P , it follows that r < dim D - dim F + dim G9 and

therefore the equal sign must hold. This proves the statement concerning the

dimension. We shall give a proof of the main result under the assumption that D

is irreducible; the proof in the general case would proceed exactly in the same

way.

Let v be a valuation of k(F) over k, of dimension equal to dim G, whose

center of F is G, and let «;[ be a valuation of Kv over k9 of dimension equal to

dim P, which compounded with υ gives a valuation of k(F)9 of dimension equal

to dim P, and whose center on F is P . Let u be the valuation of k(G) CKV in-

duced by w[9 and let w\9 w29 be the distinct extensions of u to Kv. Denote

by Wi the valuation of k(F) which is compounded of v and w'9 so that C(wι/F) =

P. For each i9 let υιχ9 Vy29 be the distinct extensions of v to A: (rad D) having

the center ϋ* on rad D, and let u , u. , be the distinct extensions of u to

&(/)* ) having the center Ό' on D*. For given i9 j9 r> /, let w^ rs (s = 1, 2, )

be the distinct extensions of u. to Λ^.. which induce wί in Kv, and call M;,..
IT IJ ί tlJT S

the valuation of k ( rad D ) compounded of f . , and w,'. . For a given /, the u;,..

are all the dist inct extensions of w^ to k (rad D ) which have the center D ' on D;

therefore formula (1) gives

e(D'/D;P,V)*[Kw>:k(P)] = Σ- r ίΓw Γ ^ H V :k(D')];
I ιJΓS lijrs I lijrs

now,

Wlijrs Wί Vij Wlίjrs I

so that

e(D'/D;P, V)* [KW / ' : K t t] [iKtt: k(P)] [ Γ ^ : Γ α ]

= Σ [ Γ , : Γ J [Γw,; : Γw ] [ΓUm : Γ j [X^;.. : Ku, ] x
^^ijrs ij lijrs ir ir lijrs ir

We now sum with respect to I, and use the formulas

Σ IK^: KjiΓ^ .Γu] = [Kv: tc(G)]

and

lijrs ir lijrs ir ij

obtaining
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e ( D ' / D ; P , V)* [ K u : k { P ) ] [ K v : k ( G ) ]

= Σ ( Σ . t Γ w :ΓV][KV :k(D*)])(Σ[Γu : Γu] [Ku. : k ( D ' ) } ) .

This proves Theorem 1.1, since

e ( D * / D ; G , V ) * [ K v : k ( G ) ] = £ . [ I \ , : Γ V ] [ K V : k ( D * ) ] 9 Q.E.D.

It is hardly worth mentioning that if w is a valuation of k{F) compounded of

a valuation v of k {F) and a valuation u of KV9 then

ΔUl* = (ΔM*)U!*;

the proof of this fact is an immediate consequence of the obvious relation

Δ{ιo i = (Δ{ι;}) { a}. Another result which will be used later is the following:

If Δ is an algebraic correspondence between the algebraic function field K over

k and the variety V over k, let &' be an extension of k, K' a composite of K and

k' over k (that is, the quotient field of the homomorphic image of K x h' over k

modulo one of its prime ideals), Δ ' t h e modified extension of Δ over K', so that

Δ ' is an algebraic correspondence between K' and F ' = V^,. If v is a valuation

of K over k, v' any extension of v to K' over k\ then Δ'{ v'}* is the modified

extension of Δί v \ over Kv* . This fact also is derived from the analogous result

concerning Δ{t>}, namely: if Δ ' = Δ ^ , , then Δ'{t/} is the extension of Δ{v}

over KV'.

Finally, the extension of the meaning of e(D*/D; V, G) to the case in

which D is reducible, and in particular the corollary to Lemma 1.1, affords a

generalization of the reduction theorem (Theorem 5.4 of [2]) in the following

sense:

THEOREM. 1.2. In the statement of Theorem 4.2 of [2], let us replace the

assumption of the existence of{D; Vj> W( \ and \D^; Wj, Wι \* by the following

assumption:

e{D^/D; Vj, Wi )* exists for each hy i,

and if

D < £ > = Σ

then e{V/D^ι); Wj, W^ ) exists for each i. Let us replace, moreover, the as-

sumption that D is irreducible by the assumption that D is unmixed. Then

e ( U/D{i); Wj, Wi )* does not depend on i.

2. The homographic system. An irreducible algebraic system S of integral
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effective cycles is in one-to-one correspondence with the irreducible variety G -

G(E ) (see [ l ]) ; therefore we shall apply to E the language adapted to varieties.

For instance, if G is a variety over k, we shall write A:(E) in place of k(G),

M(S ) in place of M(G) (this denotes the set of the places of G; see [ l ] ) ; the

cycle Δ = Δ((5) shall be referred to as the general element or general cycle of

ε.
A linear variety is an irreducible variety L over a field k such that ord L = 1,

or, equivalently, such that deg L = 1. From the definition of order or degree [1,

§ 2; 2, § 1 ] , it appears that an r-dimensional irreducible subvariety V of the pro-

jective space S = Sn{k) is linear if and only if φ{V/k[X]) has a basis con-

sisting of linear (i.e. of degree 1) forms in the X's \X\ being the h.g.p. of S;

and a minimal basis will consist then of n-r linear forms. After an obvious identi-

fication, it also follows that a linear variety is a projective space. A linear

cycle is an irreducible cycle whose radical is a linear variety.

Let 5 be an ^-dimensional projective space over ky\x\ its h.g.p., and let X

denote the one-column matrix (x0, ••• , xn ), while U = (u(j) is a square matrix

of order n + 1 with elements in k. Set X' - UX, and let x\ . . . , % ' be the ele-

ments of the one-column matrix X'\ let υ be the homomorphic mapping of k[x]

such that \)a = a if a C k, Όxi = x{ ( i = 0, , n); if det U £ 0, Ό is an auto-

morphism and transforms in an obvious way an ideal of k[x] into an ideal of

A;[#], a subvariety of S into a subvariety of S, and a cycle of S into a cycle of

S. U will be called the matrix of U two l)'s whose matrices have proportional

elements have the same effect on homogeneous ideals, subvarieties, and cycles,

and shall be identified; υ is called a nondegenerate homography of S. If % is a

cycle of S, then D^ is called a homographic transform of %•

Maintaining the same notations, assume the ZXJ 'S to be indeterminates; then

I) is a nondegenerate homography of Sn{k(u)), and will be referred to as the

general homography of S. Set K ' = k{u), so that K' is homogeneous for the set

ί u00, , unn \ let K be the subfield of K' consisting of all the homogeneous

elements of degree zero of K\ If % is an unmixed cycle of S, set 3 ' = ^%κ/, then

3 ' is a cycle of S^/, and it is the extension over AΌf a cycle 3 of S^ . Clearly 3

is an unmixed algebraic correspondence between K and 5, and is called the gen-

eral homographic transform of %• Assume g to be integral and effective; if k is

the algebraic closure of k, and ^, 3 a r e t n e extensions of £, 3 over k, Kk re-

spectively, then 3 i s related to % as 3 i s to %, and the set § of the cycles 31 ^K

where v ranges over the places of K k over A;, is an algebraic system of cycles

on 1 S, called the homographic system of %.

Note that, according t o [ l ] or [ 2 ] , a cycle on S means a cycle of the extension of S
over the algebraic closure of k.
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L E M M A 2.1. The homographic system of % is the smallest algebraic system

of cycles on S containing all the homographic transforms of #.

Proof. Set A = Kk9 and let v C M(K). Let u00 be such that v(uij UQQ)>0

for every i9 j . Let σ be the homomorphic mapping of Rv whose kernel is tyV9 and

set uij{v) ~ σ{uij UOQ); since u00 is not necessar i ly the only urs such that

v(uij urs ) > 0 for each i, /, the set { ιiij(v)\ i s determined but for a nonzero

factor in k. Let U(v) be the matrix obtained after replacing, in U, each u{j by

the corresponding uij(v): if det U(v) ^ 0, then U{v) is the matrix of a non-

degenerate homography Ό(V). These notations will be used throughout this

sect ion.

We contend that Ό(v) ~%= %{v], and this will completely prove the lemma.

Let ψ{t, y) be a determination of Ψ ί , y ^ = Ψ ί , y # ( s e e [ 1 , § 2 ] ) ; denote by Y

the one-column matrix (yo> * * * > Ύr + ι )> Γ being the dimension of %, and by T the

matrix ( ί / , ) , so that Y = Γ̂ Y; Dean be extended in a natural way to k ( t , u9 x)9

and we have

υY = υ ( Γ Z ) = TiυX) = Γί/Z = (τT)X= τ{TX) == τ Y ,

where by T we denote the automorphism of k(t9 u, x) over k(u9 x) such that

ΊT = Γί/. If t; has the previous meaning, jΓ(t>) and Ί(v) will be related to Γ, T,

f a s U{v)9 Ό(v) are to [/, U, v. If £ is irreducible, set

where K' - K'k; we have, by definition,

hence

«A(ί, Όy)K'(t)[\)y] = UίJ n « ' ( « ) [ U y ] .

Applying T " 1 , and using the fact that Uy = Ty, we obtain

. A ί τ " 1 ί , y ) X ' ( ί ) [ y ] = υfe n K ' ( ί ) [ y ] ,

v/hich proves that i/f( T " " 1 ί, y ) is a determination of Ψ ^ γ S ' J hence ψ{τ 1 (v) t9

y) is a determination of Ψj y 3 ί ^ l But, s ince

τ~ι(v) = ( τ ( i ) ) " 1 ,

we see in like manner that ψ{ τ " 1 (v)9 y) is a determination of Ψ ί > y U (v) J~. It

is thus proved that υ ( v ) 2 " = S ί v l i f ^ * i s irreducible. If ^ i s not irreducible, the

same relation is easi ly establ ished as a consequence of its validity for irre-
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ducible cycles, Q.E.O.

LEMMA 2.2. The homographic system of % contains the homographic system

of each of its cycles.

Proof. Let Sg> be the homographic system of £, and let %x £ § , so that

(but for a proportionality coefficient) for some v £ M(K); here T ι{v)tij has

to be interpreted as the i/'-th element of the matrix TU ι ( f ) , which has a mean-

ing even if det U(v) = 0. Let g j , 3 i be obtained from %x a s g ' , g are from ~%;

we have

Ψ ί > r 3 ; = ^ ( τ - 1 ( ^ ) τ - ι ί , y ) .

For any υ' £ M{K) we have therefore

y t > y 3 , U ' ! = < / / ( τ ~ ι U ) τ " ι ( w ' ) ί , y ) .

Now, there exists a place t/' C M{K) such that

τ ' ^ t ; ) τ~ ι (^ ' )Γ = τ ~ ι U " ) ?',

so that

Ψt.y Si l t Ί = ^ ( α - ι ( t ; " ) ί,y) = Ψ,,y 3 U " J ,

or

LEMMA 2.3. Let % be an unmixed integral effective cycle of S =Sn(k)9 and

let g be the general homographic transform of %. Set G = Go (see [ 1 ] , Lemma

4.2); let Δ be the algebraic correspondence between G and S induced by g ac-

cording to Lemma 4.2 o/[ l ] , and set Z = D/±fQ. Let h be the algebraic closure of

k9 and let P be a point of G such that (Z{P !) JΓΓ is a homographic transform of

#£-. Then G is analytically irreducible at P.

Proof. Let ,ξ» be the homographic system of £, and set £ = G(ίr>); then G

is a component of the extension of G over the algebraic closure k of k. Assume

the lemma to be true when k is algebraically closed. In this case, G is ana-

lytically irreducible at each P £ G such that P is the image point of a homo-

graphic transform of % - J p Let P be the point mentioned in the lemma, R =

Q(P/G)9 P the image (on G) oi(Z{P})j, R^Q(P/G). If m = $(P/G), m =

5 β ( P / G ) , we have that mk is a primary ideal of Rk belonging to ϊ n Rh, and

that m n R C m , where I —> oc when h —> oo. Therefore the topology induced
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in R by the /^-topology is the /^-topology, so that the completion R' of R is a

subring of the completion /? ' of R. Since, by assumption, R' is an integral do-

main, so is R'; that is, G is analytically irreducible at P. This shows that it is

enough to prove the statement under the further assumption that k be algebrai-

cally closed.

Under this assumption, let 3' be a homographic transform of %, and set P =

P(%), P'=P(%')9 so that %=Z\P }, %'=Z{P'\. Let K have the previous usual

meaning. For each v0 £ M{K) whose center on G is P ' we have det U(v0 ) ^ 0;

let π be the automorphism of k(u) over k such that π U = ί/"" ι(^0 ) #• We have,

Ψ ί , y 3 U ^ 1 = ψ(τ'ι(πv)tfy).

N o w ,

τ Γ = Γ ί / , τ~ιT = Γ ί / " 1 ,

τ ^ ί T Γ t ; ) Γ = Γ ί / " 1 ( / 7 ί ; ) = Γ ( 7 7 " " 1 U~ι)iv) =TU'ι(v) U"1 (v0)

= τ~ι(v) τ'ι{v0)T,

so that

Ψ ί ( y 3 1 " ! = φ(τ-ι(v) τ~ι(v0)t, y ) .

On the other hand, as we have already seen, Ψ ί > y υ (v0 ) 3 ί t; ] is obtained from

Ψ ί p y3M = Mτ- ιUHy)

by replacing ί t \ with ί τ " 1 (v 0 ) t \, so that

Ψ t > y υ K ) 3 l » l = ^ ( τ ^ d ί τ ^ ί t o J ί , y) = Vι>y3{πv\.

It follows that

and this proves that C(πv/G) depends only on C (υ/G). Then the same is true

for C{v/π~ι 6 ) and C(v/G). Let H be the smallest subfield of K containing k(G)

and π l{k{G))=Ίc{π lG); the embedding of k ( G ) and k (π ~1 G ) in // gives an

irreducible algebraic correspondence C between G and π~ιG, and the above-

proved property shows that C has the same dimension as G, and that k ( rad C)is

purely inseparable over k(G). Besides, if P =P{ %\ £ G, then C[P] is the

point π~ιP'oί π~l G, and P = C[π~ιP']. Now, by Lemma 2.1, P' can be chosen

in such a way that G is analytically irreducible at P ' , and therefore 77 1 G is



488 I. BARSOTTI

analytically irreducible at π~l P'. Let G* be a normal associate to G, C* the

irreducible algebraic correspondence between π"1 G and G* generated by the em-

bedding of k(π ι G) and k (G* ) in H. Should G be not analytically irreducible at

P, L, [ π" P' ] would contain two distinct points, which is impossible by

Theorem 4.1 of [ l ] Kence G is analytically irreducible at P. By Lemma 2.1,

however, we can choose for P the image of any cycle # " of ξ> whose homo-

graphic system is ξ>, Q.E.D.

THEOREM 2.1. Maintain the same notation as in Lemma 2.3. // V is an ir-

reducible subvariety of Sy then Z{V\ exists^ and each component of the total

transform \Z; V, G] operates on the whole V.

Proof. Let D be a component of { Z; F, G ] , P a point of V on which ID oper-

ates, and assume

dim D > dim Z - dim S + dim V.

If then D' is a component of [D; P, G], we have

dim D' > dim D — dim V > dim Z - dim S,

and D' belongs to (Z; P, G). If, therefore, we show that each component of [Z

P, G] has dimension equal to dim Z — dim S, it is also proved that each com-

ponent of { Z; V, G] has dimension equal to dim Z - dim S + dim V, and that as a

consequence Z{ V \ exists, because V is simple on S (see statement / of Lemma

4.2 of [l]). In order to show that \Z; P, G] has the pure dimension dim Z -

dim S, we proceed as follows: let k be the algebraic closure of k, and let 3 be

the general homographic transform of %; let K have the usual meaning, and set

K = Kk, 3 = 3j£» 2= 2jg-; let G, Z be related to 3 as G, Z are to 3, so that G is

a component of the extension of G over k. Let P t , P 2 , be the components of

P-p we have Q €1[Z; P .9 G] for some i if and only if there exists a Q G [ 2 ; P ,

G] such that (} is a component of Q^. Therefore [Z; P , G] has the pure dimen-

sion dim Z - dim S if and only if each [Z; P; , G] has the same property. As a

consequence, it is sufficient to prove the statement under the further assumption

that k is algebraically closed. Under this assumption, let P ' G S , and let π be

a non-degenerate homography of S such that π P = P '. Let M be the matrix of π9

so that 77-Z = MX (X being the one-column matrix (x0, ••• , xn)) Let σ be the

automorphism of k(u) over A: such that σU = Λfί/. Then it is possible to prove

(by the same method used in the proof of Lemma 2.3) the following: if v £ M(K)

a n d P C rad (Si t ; } ) , then P ' £ rad (3{ σ~ι v }); in other words, Z [ P ' ] is the

total transform of σ ~ x Z [ P ] in the algebraic correspondence C (between σ ιG

and G) generated by the embedding of k (G) and ά ( σ ~ ι G ) in X. Now, C is the
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same as the algebraic correspondence C used in the proof of Lemma 2.3, con-

cerning which it was proved that it does not have fundamental points either on G

or on σ ι G. Therefore C has no fundamental variety either on G or on σ ι G.

Since P ' can be chosen in such a way that Z[P'] has the pure dimension

dim Z — dim S, it follows that Z [ P ] also has the pure dimension dim Z — dim S,

as asserted.

Suppose that a component D of { Z; V9 G] operates on W C V, so that it is

also a component of [Z; W9 G ] . From the above proof it follows that

dim D = dim Z - dim S + dim W < dim Z - dim S + dim V,

a contradiction, Q.E.D.

We say that a cycle or a subvariety % of S is degenerate if each component

of % is a linear cycle or subvariety.

LEMMA 2 . 4 . The homographic system of an unmixed cycle of S = Sn(k) con-

tains some degenerate cycle.

Proof. We may assume k to be algebraically closed, since we are dealing

with an algebraic system. In view of Lemma 2.2, the statement is true if it is

true when 3 is irreducible. Therefore we assume £ to be irreducible. Set r =

dim 2, and let F be a linear subvariety of S such that rad % n F consists of

finitely many points; we also require F to have dimension n - r. Such an F cer-

tainly exists, because by repeated application of the theorem according to which

each minimal prime of a principal ideal is maximal dimensional, one can easily

establish that the intersection of rad % with a linear subvariety of S of dimension

s has dimension > r + s - n, and that there exists some s-dimensional linear sub-

variety of S whose intersection with rad % has the pure dimension r + s - n if

this number is not negative.

Let \x\ be the h.g.p. of S, and let ll9 ••• , lr be the linear forms in them's

forming a basis of p(F/k[x]). The system of equations /j = 0( ι = 1, , r )

can be solved for r among the * ' s , say %Λ-Γ + 1 , ••• , xn, and the solution is

written in the form

xi = Σ ai-n+rfj Xj (a p,q C A, i = n - r + 1, , n) <

Let ί/'be the square matrix
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0 1 0 0

°l,0* # * a\,n-r 0 0

ar, o ' ' ' arfn-r 0 § j

of o r d e r n + 1 . L e t i; C M (K) b e s u c h t h a t JJ {v) - Ό\ a n d s e t

Let T be the projective space over k whose h.g.p. is { u }, and se t

Uίj = "i/ %0 '

so that v is at finite distance for ί u ' } . lί {p ι(x)9 p2 (x), \ is a bas i s of *fi,

set

and let 2) be the radical of the ideal of k[x9 u'] whose basis is

\pt (x'), p2 (xΊ , ••• I .

If D = £>(!5>), then ID is an algebraic correspondence between T and S, and it

differs from Z = D o ^ a t m o s t ^ 0 Γ components which do not operate on the whole

T. Set

P = C{v/T), C(= C ( v / A [ u T ) ,

and let σ be the homomorphic mapping of k[x, u'] whose kernel is C[k\_xy α ' ] .

Then \σx'\ is the h.g.p. of F , and ίp ίσΛ: ' ) } is the bas i s of an ideal of k[x]

whose radical i s $>{(lD) [P]/k[x]). However, since \σx'\ is the h.g.p. of F ,

\p(σx')\ is also the bas is of an ideal of k[x0, ••• , xn-A whose radical 3ΐ is

^?(rad £ n F/k[x0, ••• , xn-Γ])', therefore 31 is purely 0-dimensional. Also, 3ΐ

can be extended to an ideal KA:[%] of &[%], and

Now, 3iA;[%] is purely r-dimensional; besides, each minimal prime of 3ί, being

a 0-dimensional ideal of k[x0, ••• , xn-r], has a basis consisting of linear forms
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in the x's with coefficients in k9 and the same must be true of each minimal

prime of 3ϊ Λ: [ Λ;]. This proves that (1D)[P] is a degenerate r-dimensional va-

riety. Since Z[P] C (ID) [ P ] , and since each component of Z [ P ] has dimen-

sion > r, this also proves that (1) Z[P] is purely r-dimensional, and (2) Z[P]

is degenerate. From (1) , and from the fact that T is locally normal at P, fol-

lows that Z [ P ] = S[^]> so that (2) implies that S t ^ L which is the radical of a

cycle of the homographic system of %, is degenerate, Q.E.D.

LEMMA 2.5. Maintain the notations of Theorem 2.1, and assume k to be al-

gebraically closed, and % to be irreducible. Then Z[V] is irreducible.

Proof. Since, by Theorem 2.1, Z\V\ exists, and so does Z\P \ if P £ F, by

Theorem 1.1 we have that (Z{ V \) {P\ exists, and that it is enough to prove

the lemma under the additional assumption that V is a point. Besides, the same

argument used in the proof of Theorem 2.1 shows that Z[P] is either irreducible

for each P C G, or reducible for each P £ G. Set D = Do γ, T having the same

meaning as in the proof of Lemma 2.4. In order to prove that Z[P] is irreduci-

ble, it is enough to prove that D[P] is irreducible for some (hence for each)

PCS. Let IF be the subvariety of T consisting of the centers on T of those

v £M(T) for which det U(v) = 0. We shall show first that if it is true that

D[P] has only one component outside W for P £ S, then it is also true that

D[P] is irreducible. In fact, let 21 be the prime algebraic system of cycles of

T whose general element is Z){5! (after extending it over k(S)). If D[P] is

reducible for each P £ S, then 21 is not simple; according to Theorem 5.4 of [ l ] ,

21 is then composed with a simple algebraic system 21' and an involution 3? on

G( 21'); 21' contains cycles which have no component variety on ψ (because not

every element of ?l has the radical in W), and 3 contains cycles which have no

component variety in any one given proper subvariety of G(2I'). Therefore 21

contains cycles which have no component variety in W, and this proves that for

some (hence for each) P £ 5, D[P] is irreducible, as claimed.

For any point Q £ T - W we shall write υ (Q) instead of υ ( v ) , v £ M ( T),

C(v/T) = Q. Then D[P] ~(D[P] n if) consists of the Q £ T - W such that

D ~ ι ( ( ) ) £ rad £. Let 5β be the general homographic transform of P constructed

with the general-homography υ " 1 (rather than U), and set E = Z)<g j then

Ό~ι(Q)P =E[Q] if QC Γ ~ίF, so that D [ P ] - ( D [ P ] n !T) = L - ( L nW),

where L is the subvariety of T on which E[vaά j ] operates. If we prove that

£[ rad %] is irreducible, it will follow that L is irreducible, as desired. Now,

the same argument used at the beginning of this proof shows that E [ rad ^]

is irreducible if £ [ P ' ] is irreducible for some (hence for each) P' £S9 or also
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if £ [ P ' ] has only one component outside W for a P ' £ S , say P'=P. But this

is obviously true, since the set of the Q £ T — W for which U ι (Q)P = P , that

i s , for which υ( (̂  ) P = P, is a linear variety l e s s its intersection with if, Q.E D.

THEOREM 2.2. Notations as in Theorem 2 .1. Set n = dim S, r - dim £, 5 =

dim F. // r + s — 7z > 0, ίΛe/i eαcΛ component of[Z; F, G] operates on the whole

G, F n rad $ i s not empty^ and each of its components has dimension >r + s—n.

Proof The proof of this result, like that of Theorem 2.1, is readily reduced

to the case in which k is algebraically closed and % is irreducible. In this case,

according to Lemma 2.5, D = [Z; F, G] is irreducible, and, by Theorem 2.1, D =

! Z ; F, G]. H P is a point of G such that Z\ P }= %', then F n rad 3'= ( I D ) [ P ]

by Theorem 2.1. Set d - dim D, and let F be the irreducible subvariety of G on

which ID operates. Then d = r + m-n + s, where m = dim G. Therefore,

( I D ) [ P ] is empty if P ^ F, while if P £ F each component of ( I D ) [ P ] ,

hence of F n rad 3, has dimension > r + s~τz + m - dim F. By Lemma 2.4, the

homographic system ίρ of % contains some degenerate cycle 3", and therefore, by

Lemma'2.2, it contains the homographic system ίξ)'of #". According to the first

part of the proof of Lemma 2.4, § ' contains some cycle %0 such that F n rad %0

is nonempty and has pure dimension r + s - n. If P o £ G is such that £ 0 =

Z\ Po \, it follows that Po £ F and that

r + s— n + m — dim F < r + s — rc,

that is, that dim F = m, F = G. Hence ID operates on the whole G, as claimed,

and each component of (1 D) [ P ] , for any P, has dimension >r + s - n, Q.E.D.

3. Intersection of cycles of a projective space. In this section S denotes an

n-dimensional projective space over k.

If t), % are unmixed cycles of S, of dimensions r, s respectively, such that

r + s — n > 0, then a component F of rad 3 n rad ^ is said to be a component

variety of % n t) or 0/ t) n % if dim F = r + s - n.

Let fc), 3 be unmixed integral effective cycles of S, of dimensions r, 5 re-

spectively; assume F to be a component variety of ^ n J, and let fc) = 2 ^ α j ^

be the minimal representation of t). Let 3 be the general homographic transform

of 3, G = Gπ, Z the algebraic correspondence between k(G) and S induced by

3 according to Lemma 4.2 of [ l ] . Let P be the (unique) point of G such that

Z\P\- 3. Then P is a rational point, so that F x P is irreducible, and F x P is

a pseudosubvariety of {Z; t)/, G] for some ι; Theorems 2.1 and 2.2 imply then

that V x P is a component of [{Z; ίjj, G }; ^ j , P ] for some i. Now assume Z =

2^. c. Z. to be a minimal representation of Z, and let 3 ^ ^ 2 , ••• be the distinct
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component variet ies of %. Then each %ι x P is component of exactly one [ l Z y ;

S, P ] , say [ l Z y ( i ) ; S, P ] ; and if some Zy is such that [ l Z y ; S, P ] has more than

one component, say ^ and ^2>
 t n e n A ( £ t ) = A ( £ 2 ) This being e s t a b l i s h e d ,

set c j = Cy.A( ^ ) ( A ( ( 1 Z ) [ G ] ) ) " 1 , i being such that / ( ί ) = / ; set also Z* =

Σ ; cf Z y . Then we have Z * { P S* = Z { P 1 = 3 . By Theorem 2.1, { Z * ; ^ , G }*

exis t s for each i. Since £ is analytically irreducible at P by Lemma 2.3,

α. = e ( K x P / ί Z * ; ί ) . , G l * ; V P J*

e x i s t s f o r e a c h i b y T h e o r e m 5 . 3 o f [ 2 ] . T h e n u m b e r Σ a α * s d e n o t e d b y i( V,

^ n #, S) and called the intersection multiplicity of t) with % at V on S. We set

i (V, ίj n £, S) = 0 if dim F = r + s - n but F is not a subvariety of rad t) n rad #.

If each component Vj of rad t) n rad J has the dimension r + s - n, we set

t) n ^ is called the intersection of § with % on S (although S does not appear,

at this stage, in the symbol fc) n %). Evidently, if i( V, t) t n %, S) and i( V, §2

 n

%, S) both exist and have the same dimension, then i ( V, ( t) t + fy2 ) n J, S) also

exists, and equals ^i(V, tyj n £, S).

A cycle 32 of S whose minimal representation is 3S = Σ e W. is said to be a

part of t) n % (whether ^ n ^ exists or not) if (1) each Wj is a component variety

of b) n 2, and (2) ey = i($y, t) n ^, S). The same cycle 52 is said to coincide lo-

cally at U with fc) n % (U being a subvariety of S) if (1) each Wj which contains

some component of U is a component variety of fc) n £, (2) each component of

rad ^ n rad % which contains some component of U coincides with some Wj, and

(3) ej = i(Wj, fc) n j , S) for each Wj which contains some component of U. Also,

^ n % is said to exist locally at U iί i(V, fc) n ^, S) exists for each component

V of rad ^ n rad g- which contains some component of U; the local part of § n %

at U is 2*j i(Xj, fc) n %, S) Xj, where Kj ranges among all the components of

rad fy n r a d % each of which contains some component of U.

LEMMA 3.1. Let t), % be unmixed integral effective cycles of S = Sn(k),of

dimensions r, s respectively. If r + s — n > 0, let V be a component variety of

^ n %. Let θ be an unmixed algebraic correspondence between an algebraic func-

tion field K over k and Ss such that the set N(θ) of the v G M(K) for which

θ{v\ is the modified extension of % over Kv is nonempty. If fc)' is the modified

extension of ^ over K, let Λ; (j = 1, 2, ) be the component varieties of fc)' n 09

and set

Λ , =



494 I. BARSOTTI

// v £ N(θ), then a partial extension of i(V9 ty n %, S) V over Kv is part of

\θ\v\*.

Proof. The statement is clearly true if it is true when ^ is irreducible; ac-

cordingly, we shall assume t) to be irreducible, and put Y = rad fc).

In order to avoid lengthy repetitions, we shall say that the set \ K, θ\ is "ad-

missible" if (1) every component of 0 operates on the whole S, (2) N(θ) is not

empty, and (3) each component of rad θ n Y# has dimension r + s - n and oper-

ates on the whole Y. And we shall say that an admissible set { K, θ\ is "satis-

factory" if the following statement is true: Set

then, for each υ £ N(θ), a partial extension of i (V, § n %, S) V over Kv is

part of Γβ ί v }*.

Step 1. Let 3 be the general homographic transform of %, G = Gp, K — k{G),

Q' the algebraic correspondence between K and S induced by 3 according to

Lemma 4.2 of [ l ] . If θ'= Σ * a'@- * s t n e minimal representation of Q\ set

and let P £ G be such that £ • αj D̂  ί P } = J. Set

Ji being any component variety of Dy ί P \; finally, put

Then clearly { K, β\ is admissible by Theorems 2.1, 2.2, and N(θ) is the set of

the v £ M(X) whose center on G is P. If Γ = Γ^ and C = D^ , then by defini-

tion we have

* ( F , ^ n ^ , S ) = e(J/ x P / C ; Y, P )*;

if t> £ /V((9), by formula (1) and by the corollary to Theorem 5.1 of [2] it follows

that Γ{ v ϊ* is a partial extension of C{ P i*, and therefore { K,θ \ is satisfactory.

This is the contention of Step 1.

Step 2. Let K* be an algebraic function field over K9 θ* the modified exten-

sion of θ over X*. By means of Lemma 1.2 it is a simple matter to prove that

{K , θ* ! is admissible if and only if { K, θ\ is admissible; in this case, N(θ*)

consists of the extensions to K* of the elements of N(θ); and clearly, if {X*,
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θ* ! and \K9 θ\ are admissible, then ί A*, (9*! is satisfactory if and only if

\K9Θ\ is such.

Step 3. We work again with two sets \ K9 0 I and \ A*, θ* 1, on which we make

the following assumptions: (1) if G = Gθ, G* = Gθ*9 then £ = k(G)9 A* = A(G*);

(2) { K9 θ\ is (admissible and) satisfactory; (3) if Z -DQ^Q, Z* = /)#*, G*> t n e n

G C G* and Z = { Z*; S, G S*. We wish to prove that { A*, θ* ! is admissible and

satisfactory.

Clearly each component of θ* operates on the whole S. If N = N(θ)9 N* =

/V(0 ), let uC/V, and let to be a valuation of A whose dimension equals dim G,

and such that C (w/G* ) ~ G. Then any valuation of X* compounded of ẑ  and of

an extension of v to A^ belongs to N*f so that /V* is nonempty. Let C* be a

component of {Z Y, G ] such that 1 C* operates on the whole G*, and let Y'

be the subvariety of Y on which 1G operates. Since (1G ) [ G ] i s a component

of Z [G ] n Yj£* , by Theorem 2.2 it has dimension > r + s — n9 so that dim C >

r + s - n + dim G*. Let Cy be a component of [ 1 C*; Y, G], so that

dim C. > dim C* — dim G* + dim G > r + s — n + dim G.

Since C; is also a pseudosubvariety of { Z; Y, G], and since 1 G, operates on the

whole G, by assumption Cj is also a pseudosubvariety of [Z; Y, G], and there-

fore

d i m C.<r + s - n + d i m G .

This proves that

d i m C. = r + s~-n + d i m G

hence Cj is a component of [Z; Y, G] and 1 Cj operates on the whole G; there-

fore 1 Cj operates on the whole Y, and the same must be true of 1C*. As a con-

sequence, { K*, θ ! is admissible. We remark that we have also proved that G is

not fundamental for 1 C* .

Let now G ' * be a normal associate to G , and call G' an irreducible sub-

variety of G'* which corresponds to G in the birational correspondence between

G* a n d G ' * . Set

7'* — Π

If C'* is any component of SZ '* ; Y, G ' * ] , and if 1 C * operates on the whole

G'*, since ! A' , 0 } is admissible and 5 is normal we have that e ( C ' * / Z ' * ;

Y, £ ' * ) * exists. Set



496 I. BARSOTTI

ThenΓ*=Γ6>* equals C'*{G'*\*. Set also Z ' = { Z '*; S, G'}*, so that Z'{G'}*

is the modified extension of Z{G}* over k(G'). Since G is not fundamental for

1 C* (as previously remarked), G'is not fundamental for C'*, and G'* is locally

normal at G'. Hence, by Theorem 4.1 of [ l ] , C'={C'*; Y, G'}* exists. The

component varieties C' of C a r e those components A of {Z'; Y, G'] such that

1A operates on the whole G'; but then C% Z '*, Y, G' can replace respectively

ί/, D, tF1, IF2 in Theorem 1.2, and the result is that C" equals the cycle obtained

from [Z'; Y, G'] in the same way as C * is obtained from [ Z ' * ; Y, G'*] .

Let C be obtained in the same way from [Z; Y, G]; then

Γ = Γ^ = C{Gf,

and, by Lemma 1.2, C'\G'\* is the modified extension of Γ over k(G').

If v* £ /V* and P = C(v*/G*), then Z*{P |* is the modified extension of %

over jfc(P); therefore P £ G; hence P ' = C (v*/C* ) belongs to one of the irre-

ducible subvarieties of G'* (say G') which correspond to G. Since C'jG'}* is

the modified extension of Γ over k(G'), and because of formula (1), there are

components Vj (j = 1, 2, ) of V x P such that e( Vj/C; Y, PO* exists, and

such that

U F , ^ n %,S)oτάV = Σ ^ ί ^ . / C ; Y, P ' )* ord (1 V ) \P'\\

Hence each Fy is a component of [ C * ; Y, P ' ] , and e(Fy/C'*; Γ, P')* exists

since G'* is normal (see Theorem 5.3 of [ 2] ). But then Theorem 1.1 yields

e(F./C/*; Y,P'T = e(V./C; Y,P')*.

As a consequence, a partial extension of

(which is also a partial extension of i ( F , ^ n %f S)V) over X^* is part of

Γ* ί ι;* }*. This means that ί K*, #* } is satisfactory, as announced.

Step 4. If \K, θ\ is the set given in the statement of Lemma 3.1, let # 'be

the general homographic transform of %, and set

the Uη's playing the usual role in the definition of θ'. Let K*, θ* be obtained

from K, θ as K'* 0 ' are from A:, ^, and by means of the same ttjy's. Set also

G = G^,, G* = G^,, Xχ = k(G), K* = A(G*),
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and let θi9 θ\ be the algebraic correspondences between respectively, Kί9 Kl9

and S of which θ'9 0 are modified extensions over respectively, K' and K*.

If v C N = N ( 0 ) and w is the unique extension of υ over R*9 since θ{ v\*

is the modified extension of % over Kv it follows that #*{κ;S* is the modified

extension of θ' over A^. This also means that G C G*, and that Z t = { Z*;

5, G ! , where we have set

7 - Π 7* - D
Z l ~ ^ i , G » Z i ~ UΘ*,G*-

By Step 1, {Kp 0X } is satisfactory; since { K*9 θ*} has been shown to be re-

lated to ί K l9 θι ! as {X*, (9* 1 is related to { K, 0} in Step 3, it follows that {K*9

#* } is satisfactory. Step 2 implies then that {&*, <9* 1 is satisfactory.

Step 5. Let K, θ9 K*, θ , N have the same meanings as in Step 4, and set

N* = N(0*), Γ* = Γ β # .

Let w be a valuation of X* over X such that uij{w) = 0 if i Φ /, u { ι (ι^) = 1, and

Kw — K. If v C /V, let ι;* be the place of K* over A; which is compounded of w

and f, so that t;* G! /V*. Since \K*9 θ ! is satisfactory by Step 4, a modified ex-

tension of i ( Vt ^ n ^, S) F over X^^ = Kp j s part of

} v ! = I Γ (u l l l i l ,

Since w is a place of K* over /ί, and Kw = Â , and since θ is the general homo-

graphic transform of θ, the following statement is true by definition: If Λy is a

component variety of t)' n (9, then ι(Λy, t)'n (9, S/ζ ) Λy is part of θ \w\ . As a

consequence, Λ = An is part of Γ ί w \ , and its component varieties are all the

components of rad t)' n rad θ' of dimension r + 5 - n. If Ĵ  is a component of the

extension of V over Λt>, and if Λ' is a component variety of Γ \w\ such that

(1Λ') if!* has R as a component variety, certainly

dim Λ ' = dim V, — r + s — n;

that is, Λ' is a component variety of Λ. This proves that (Γ { w \ ) ί v \ and

Λίz;!* coincide locally at V^\ hence a partial extension of i ( V, t) n %, S) V

over Kv is part ot Λ{ v !*, Q.E.D.

REMARK 1. Maintaining the same notations, by comparing Steps 3 and 5 we

see that if ί K, θ\ is admissible, then Γ^ = Λ^, and ί K9 θ \ is satisfactory.

REMARK 2. Remark 1 shows that the use of the word "intersection" and of

the symbol n in Lemma 1.2 agrees with the present definition of intersection of

cycles.
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REMARK 3. Remark 1 also shows that in defining the intersection t) n %9

any admissible set \K9 θ\ can be used in place of the set {K9 θ\ of Step 1 of the

proof of Lemma 3.1. Step 1 itself shows that admissible sets do exist.

THEOREM 3.1. // ^χ9 §2

 a r e ^'dimensional cycles of S9 and %ί9 %2

 a r e s "

dimensional cycles of S9 and V is a component variety of

then

n %.,

Proof. (See Remark 4 at the end of this proof). Assume t) , %. ( / = 1, 2 ) to

be integral effective cycles . By definition,

i(V* U i + ^ 2 ) π (%t + J 2 ) , S ) = ΣLi(V9 ^ n (%χ + J 2 ) f S ) .

Hence it is enough to prove that if ^ denotes either ^ , then

i(V9 ^ n ( ^ n 2 2 U ) = Σ / . i ( F , ^ n ^ , S ) .

N o w , l e t ^, be t h e g e n e r a l h o m o g r a p h i c t rans form of % 9 a n d s e t

£ = * ( . . . , ^ 7 %0S ).

Then 0 t + ^ 2 is the general homographic transform of %χ + £ 2 . In the notations

of Lemma 3.1 and its proof,

N = N(θι + θ2) = ^Vίβi) n N(Θ2)9

and

U , βyl ( ; = 1, 2 ) , \K9ΘX + ^ 2 }

are satisfactory. We a l s o have

Γ ^ +^ 2

 = Γθί

 + Γθ2>

so that Lemma 3.1 itself and Remark 3 imply

HV,S n ( ^ + j a ) , S ) = ΣjUVΛ n J ; .,S), Q.E.D.

REMARK 4. So far, Theorem 3.1 has a meaning only if tyjf %j (j - 1, 2) are

integral effective cycles. This particular case is sufficient, however, to give a

meaning to i{V9 ^ n £, S) when t), £ are rational virtual cycles: in fact, for



INTERSECTION THEORY FOR CYCLES OF AN ALGEBRAIC VARIETY 499

some integer m it is true that

where ^y, £y (y = l , 2) are integral effective cycles; Theorem 3.1 shows that

the number

~ι [i(V, $ ! n % ι t S ) - i

depends only on F, ^, %. This number will be denoted by i(V, fc) n £, S) and

called the intersection multiplicity of fc) w iίA % at V on S; all the other notations

and definitions concerning t) n % are extended likewise. With this definition it

is easily proved that Theorem 3.1 remains true in general. As a matter of fact,

Lemma 3.1 itself remains true after removing the assumption that ^ and % are in-

tegral effective cycles.

Let $ be an unmixed r-dimensional cycle of an irreducible n- dimensional va-

riety U over k, and let V be an irreducible subvariety of U of dimension < r, R -

Q(V/U); let % = ^ bi %i be the minimal representation of %, and set jo. =

? ( fy/V) n R for each i such that R C Q{ %./U) (that is, such that V C ^ ) .

We say that ^ is a complete intersection at V on U if there exists a subset { ζ\

of a set of parameters of R such that (1) the ^ / s are all the distinct minimal

primes of the ideal of R whose basis is { ζ , ζ , !, and (2) we have

for each i for which ^. exists. Any such set { ζ\ is called a set of representa-

tives of % at V on U. Also, { ζ\ is assumed to consist of units of R if V £ rad ^.

A complete intersection at V obviously coincides, locally at F, with an integral

effective cycle.

L E M M A 3.2. Maintain the notations of Lemma 3.1; assume % to be irreduci-

ble, and t) to be a complete intersection at V on S. Let {ζ} be a set of repre-

sentatives of t) at V on S9 and set £>= 5β (rad %/S) n Q{V/S). If σ is the homo-

morphic mapping of Q( V/S) whose kernel is )p9 then \σζ\ is a set of parameters

ofQ{V/τad %),αndi(V, $ n 3, S) = e (Q( F/rad 3 ) ; σζ).

Proof. Let θ be the general homographic transform of %,

K = H ••• , u. u~l> . . . ) ,

T the projective space whose h.g.p. is { u\9 P the point of T at which uij = 0 for

i 4" j9 uα = l Let { η \ be a regular set of parameters of Q (P/T). Set Z = Dθ τ ,
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and let t) = 2ϋ α *}• be the minimal representation of i). Set C; = {Z; *);, Γ}*

If Cy/ (Z = 1, 2, ••• ) are the component varieties of Cy, then from the corollary

to Lemma 1.1 follows that

Cj - Σ z e(ρ(C7/rad Z); ζ) e(Q{ S,/S); ζVι Cμ.

According to Lemma 3.1 and its proof, we also have, by Theorem 3.1:

i(V, i> n 1, S) = Σj aje(V x P/C.; fy, P )*

x P/Cμ);η)e(Q(P/T);η)-y e(<?(C / 7/rad Z ) ; £)

x e ( ρ ( i)j/S); ζΓι

Since α̂  = e((?( |jy/S); ^) , this also gives

The ideals 5β (Cy//rad Z ) n ^ ( F x P/rad Z) are all the minimal primes of the

ideal of Q( V x P/rad Z ) whose basis is { ζ \; therefore the associativity formu-

la (Theorem 2.1 of [ 2 ] ) gives

i(V, $ π %9S) = e{Q(V x P / r a d Z ) , ς, η ) .

The only minimal prime of the ideal of Q(V x P/rad Z ) whose basis is {77} is

the ideal 5β (rad % x P/rad Z) n (?( V x P/rad Z ) , and

e((?(rad J x P/rad Z ) ; η) = e(rad j x P/rad Z; S, P )* = 1;

therefore, if T denotes the homomorphic mapping of Q(V x P/rad Z) whose

kernel is said prime, the associativity formula gives

i(V, $ π i,S) = e(Q(V x P/rad j x P ; τ ^ ) = e((?(F/rad j ) ; σζ), Q.E.D.

Notice that the fact expressed in Lemma 3.2 is the basic reason for which

Γ^ = Λ^ when θ is admissible (see Remark 1 and the proof of Lemma 3.1).

LEMMA 3.3. Let ty, % be unmixed cycles of S, and let V be a component

variety of § n %. Let Δ be the general homographic transform of t),

K = k( ••• , utj u~Q

ι

0, ••• ) ,

v any place of K over k such that Kv = k9 uij (v) - 0 if i £ y, ua (v) = 1. // 3'

is the modified extension of % over K, and Λy (y = 1, 2, ) are all the com-

ponent varieties o/Δ n %', set
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Λ = Σ / i ' U y . Δ n i'9SK)A..

Theni(V,ϊ>n %, S) V is part of A{ v}*.

Proof. Assume first ^ and J to be integral effective cycles. Let u^ be the

reciprocal element of u{j in the matrix U = (U(j); if ί X } is the h.g.p. of S, let σ

be the non-degenerate homography of Sκ such that

Then σΔ is the modified extension fc)' of ty over K, and # = σ % is the general

homographic transform of %. If Λy is a component variety of Δ n %', then σ Λy is

a component variety of i)' n Θ, and

»(A;., Λ n j ' , S ) ί ) = iiσλr $' n 6>, S R ) .

If

and T is constructed from { u^- u I as T is constructed from { u -r} in § 2 , then

by § 2 we have

Ψ t > y ( σ Λ ) =ψ(~-,uijU~o

l

o, . . - , τ " x ί , y ) .

If we replace here each Uj y by uij(v), we obtain

Ψ t > y ( ( σ Λ ) M * ) = ψ(u..{υ),t,y) = Ψ t j y ( Λ{ v \* ) ,

which goes to show that

( σ Λ ) M * = Aft;}*.

But i{ V, § n %, S) V is part of (σΛ) { v }* by Lemma 3.1, so that it is also part

of Λ { v \ , as asserted.

If ^ or % are not integral effective cycles, the proof of Lemma 3.3 is easily

derived from the above special case, Q.E.D.

THEOREM 3.2. Let K be an algebraic function field over k$ Δ and Θ two un-

mixed algebraic correspondences between K and S9 of dimensions r, s respec-

tively. Let ^, % be two cycles of S such that the set N of the v C M(K) for

which Δ{ v \ , θ{ v } are the modified extensions over Kv of t), % respectively is

nonempty. Let V be a component variety of § n £, and let Λy (/ = 1, 2, ) be

all the component varieties of θ n Δ; set
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j ' Π ' K ' * ~ j j j "

Then the set { Λy } is nonempty, and, for each v £ N, a partial extension of i( V,

% π ^, S) over Kv is part of Λ{ v 1*.

THEOREM 3.3. // fc), % are unmixed cycles of S, and V is a component vari-

ety of § n J, then

i{V, § π %, S) = i(V, % n t ) , S ) .

Proof Theorems 3.2 and 3.3 will be proved together in a number of steps.

We shall prove them under the additional assumption that t), $ are integral ef-

fective cycles. The transition to the general case is obvious.

Step 1. In the notation of Theorem 3.2, let k' be the algebraic closure of k in

K, and let K' be a field isomorphic to X over k'; then the direct product K x K'

over Z ' i s an integral domain. Let E be the quotient field of K x K'. Let Δ'be a

"copy" of Δ over K'. Given a v £ N, select elements xv , xm C K such

that (1)X = A'U), (2) kΊx] C Λv, (3) if ̂ )= C( V/A'[Λ;]), then k'[x]^ contains

all the coefficients of

\yθ£K[t,y],

after one of these has been made equal to 1, and (4) A't^l^ contains all the co-

efficients of

after one of these has been made equal to 1.

Let χ'9 ••• , x'm be the elements of K' which correspond to xχ9 , xm in

the isomorphism between K and K'. Then E = k'(x, x'). The ideal ^ of k'\_x, %']

whose basis is \x{ - xl9 , x'm - xm \ is prime; let u be any valuation of E

over k whose center on k'[x, x'\ is ̂ J, and whose dimension over tc equals

dim ^/k = transc K/k, Then u is a place of E over X. Let Δ* be the modified

extension of Δ ' over K: then we see that Δ*{ wS* is the modified extension of

Δ over Ku. Let Λ* be obtained from Δ* and 0 as Λ# (in Lemma 3.1) is obtained

from θ and t). Then, by Lemma 3.1, a partial extension of Λ over Ku is part of

Λ*Ui*.

Step 2. Let k'[z] be the integral closure of k'[x9 x'\ and let υ' be the

place of K* whiqh corresponds to v in the isomorphism between K and K'. Set

Cf= C(t; '/&'[%']), and let Q be the minimal prime of C\k\x, % ' ] . Denote by t>*

the place of £ over k which is compounded of u and of an extension of v to Ku
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Then Ω C C(v*/k'\_Xt * ' ] ) , and therefore some minimal prime Ω' of Qk'[z] is

contained in C( v*/k'[ z]). We select a place w of E over K whose center on

k'[z] is Ω'; then there exists a place w* of E over A; whose center o n i ' [ z ] is

C (t>*/&'[ z]), and which is compounded of w and of some place vί of Z ^ over

A;. If v0 is the place of K over k induced by υι, we have

hence

C(vo/k'[x]) = C(w*/k'[x]) = C{v*/k'[x]) = C(v/!c'[x]).

As a consequence, because of the choice of {x \, v0 and v have, on G$ and G^,

the same centers; since v G /V, we deduce that t>0 G N. We also have

C(w/k'[x']) = Ω' n &'[*'] = q == C( υ'/k'ίx']) I

therefore, since v d N9 it follows that Δ* { M; }* is the modified extension of ̂

over Kw. Let Λ ' be obtained from θ, §' (= modified extension of φ over Â ) as

Λ^ (in Lemma 3.1) is obtained from t), 0 respectively. Now we can replace, in

Lemma 3.1 t) by θ, % by fc)', 0 by Δ*, Λ^ by Λ*, and the result is that a partial

extension of Λ ' over Kw is part of Λ* { w }*.

Step 3. We now make the assumption that a partial extension of ί ( F, % n t),

S) V over X v is part of Λ'{ v0 !*. Since we also have that

is the modified extension of Λ'ί t?0 }* over Kw+, we deduce that a partial exten-

sion of i{ V, % n φ, S ) F over Kί;1 is part of Λ {if }*.

Let F be the irreducible variety over k' whose n.h.g*p. is { z }; set

L = ϋ Λ * F ' ^ = C ^ * / F ) = C(v*/F),

and let U be the subvariety of S on which L operates. Since F is normal, for any

component C of [L; ί/, P ] of dimension r + 5 - n the number e(C/L; U, P )*

exists. The previous result shows that among the C*s there are pseudosubvarie-

ties Vj of S .̂, x F such that ( lFy ) [ P ] is a component of V^ίpγ a n c ^ i* a lso

shows that if

then a partial extension of i ( V, % n §, S) V over k{P) is p art of V.

The concluding statement of Step 1 shows that a partial extension of Λ[ v }*

over Kv* is part of Λ*{ v* 1*. If F " is the part of Λ{ v }* whose component varie-
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ties are components of the extension of V over KV9 this also means that a partial

extension of F " over Kυ* coincides with a partial extension of F'over X^*, and

therefore also with a partial extension of i( F, % n §, S) V over Kv*. But then

F " itself is a partial extension of i ( F, % n ty, S) V over Kv, and this proves

that Theorem 3.2 is irue if the assumption made at the beginning of Step 3 is

true.

Step 4. We now apply the content of Steps 1, 2, 3, to the following case:

assume ij, $ to be irreducible; let # 'be the general homographic transform of %,

let Δ ' be the general homographic transform of fy, constructed with an inde-

pendent set { uij \ of indeterminates, and set

s e t

and let Δ, ^ be the modified extensions of Δ ' 0 ' over X. We select places p,

p 'of //, //' over A; such that

κ p = κ p , = A, ̂ . (p) = tt^.(p') = o if i t j , u.;(p) = u -(p') = i .

We further select for v the place of K over A which is compounded of the unique

extension p* of p over //', and of p ' . In this case the set {x \ can be selected to

coincide with the set

(see Step 1), and k' = k. Besides, k[x, x'\ is integrally closed, so that \z \ -

{%, x'\ (see Step 2). The fact that k[z] = k[x9 x'\ implies that we can select

v0 = v in Step 2» Hence we can replace, in Lemma 3.3, S by S / / /, ty by the modi-

fied extension # " of % over # ' , J by the modified extension ψ' of t) over H', K

by K, x; by p*, Δ by 0, Λ by Λ', F by the extension F " of F over # ' and Lemma

3.3 yields that i(V", %" n $", S^,) V" is part of Λ i p * }*. Now, from the defi-

nition of intersection multiplicity follows that

i(V", I" n V',SH,) = i{V, 2 n ^ . S ) ;

therefore i( F, J n t), S) F is part of

(ΛVπipT = Λ ' ί υ ! * = A'ίυor.
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Hence, in this particular case, the assumption made at the beginning of Step 3 is

true, and therefore, by Step 3, i(V, % n ^, S) V is part of Λ{ t>}*. If Λy is any

component variety of Λ, then lΛy, considered as an algebraic correspondence

between K and S^, operates on the whole rad 0 ' (see Remark 1), while, con-

sidered as an algebraic correspondence between K and SH', lΛy operates on the

whole rad Δ'. If { ζ!, \8\ are sets of regular parameters of Q(raά Θ'/SH ) and

()(rad Δ'/SH') respectively, it follows that 0, Δ are complete intersections at

Λy on Sκ, and that \ ζ\, { 8 \ are sets of representatives of 0, Δ, respectively, on

Sκ. Set

R = Q(Aj/Sκ).

If σ, T are the homomorphic mappings of R whose kernels are 5β (rad Δ/S^ ) n R

and 3̂ (rad θ/Sκ ) n R respectively, Lemma 3.2 implies that

i{Aj, 0 n Δ, Sκ) = e(σR σζ),

and this equals e (R; ζ, 8) by the associativity formula (Theorem 2.1 of [ 2 ] ) ;

therefore, again by the associativity formula and Lemma 3.2, we have

i(Λy, 0 n Δ, Sκ) = e{R; ζ, 8) = e(τR; τ δ ) = i(Ajf Δ n 0, S χ ) .

This shows that Λ is unaffected when Δ, 0 are interchanged, that is, when φ f %

are interchanged; hence i (V, ίj n %, S) V is also part of A{v }*, and this

amounts to saying that

i ( P> ^ n % S) = i ( V9 % n t), S).

Theorem 3.3 is thus completely proved when t) and £ are irreducible, and there-

fore also when they are not irreducible, because of Theorem 3.1.

Step 5. We go back to the general case considered in Steps 1, 2, 3, and prove

that the assumption made at the beginning of Step 3 is always true. According to

Theorem 3.3, proved in Step 4, the equality

i{A'> Θ n $', sκ) = ; ( Λ ; , γ n 0, sκ)

is true for any component variety Λ^of Λ'. Therefore we can replace, in Lemma

3.1, fc) by ^, 3- by £, 0 by 0, Λ# by Λ', and the result is that a partial extension

of

over KVQ is part of Λ'f t>0 }*, since, as it was proved in Step 2, v0 G /V. This

completes the proof of Theorem 3.2, Q.E.D.
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THEOREM 3.4. Let £, ^, % be three unmixed cycles of S - Sn(k)9 of di-

mensions r, s9 t respectively such that

r + s + £ - 2π > 0

let V be a component of rad £ n rad fc) n rad 3 of dimension r + s + t - 2n. Let

U i, U29 ••• be the components of rad £ n rad ty which contain V, and let Wι,

W29 ••• be the components of rad ^ n rad % which contain V. Then

dim Uj = r + s - rc, dim ΪFy = s + £ - n,

ϋ = ΣjHUj* ? n ^ S ) ί / ; . one? IF = Σ y ^ ^ . ίJ π Ϊ , S ) ^

exist. Moreover,

i(V, jp n I Γ , S ) = U F , ί/ n j , S ) .

ΓAis number shall be denoted by i(V, $ n fc) n ^, S ) , αrcc? α similar notation

will be used when more that three cycles are involved.

Proof. We may assume, by Theorem 3.1* £, *), $ to be irreducible. Let 3£ ,

D , 3 be the general homographic transforms of £, fy, J, respectively, con-

structed with three independent sets of indeterminates'l α, y }, { v, y 1, { u y }, and

set

fl = £ ( . . . , u y α ^ f . . . ) , / = 4( , v^ VQ0

1, •••), L = *(••• , w y M;QQ, •••)

Let X, H), 3 be the modified extensions of 3C , |!) , 3 respectively over K. Then

(X n |9) n 3 and X n (^) n 3) exist. Let 1 ξ}, {77 {, { ζ\ be sets of regular parame-

ters of ρ( rad X'/Sfl), (?(rad g)VSy ), (?(rad SVSL ) respectively. If Λy is any

component variety of Λ = X n ^), lΛ. operates on the whole rad X' and the whole

rad D , so that X and )̂ are complete intersections at Λy on S^, and { ξ\9 {η} are

their sets of representatives at Λy on 5^.. Therefore, by Lemma 3.2, Theorem

3.3, and the associativity formula (Theorem 2.1 of [ 2 ] ) , we have

i (Λ y , X n$,Sκ) = e ( ρ ( Λ ; . / S χ ) ; ξ, η) .

If Γj is a component variety of Γ = Λ n 3> this also shows that Λ is a complete

intersection at Γ̂  on S^, and that { ξ9 η \ is a set of representatives of Λ at Γ̂

on S since 3 i s a^so a complete intersection at Γj on S χ , and | ( ! is a set of
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representatives of 3 at Γ^ on S^ , the same argument gives

i(Γ z ,Λ n 8,SK) = e{Q(Γι/Sκ); ξ9η9 ζ).

If now Δ = J) n S, we can prove by the same method that

i(Γz, X n Δ, Sκ) = e(<?(ΓySχ); f , , , , () ,

so that Λ n β = ^ n Δ. Let now v be a place of K over A: such that,

ij ^ ' ~ ij^ ' ~ ij ^ ' ' * a^ ' ~~ H ~~ ΰ" 9 v

T h e o r e m 3.2 i m p l i e s t h a t U i s p a r t of Λ j v ! * , a n d t h e r e f o r e a l s o t h a t i( V, U n %9

S)V i s p a r t of Γ j t ί for the s a m e r e a s o n , i(V, $nW,S)V i s p a r t oϊΓ\v\ ,

Q . E . D .

4. Further properties of the intersection multiplicity in a projective space.

Throughout this section? S will be an n-dimensional projective space over the

field k.

THEOREM 4.1. // £, ^ are unmixed integral effective cycles of S, and V is

a component variety of £ n ί), ίΛerc i{V9 £ n t), S ) is a positive integer.

Proof. In the proof of Theorem 3.4 it has been shown that

i(Λ., X n D, Sv ) = e((KΛ./S^ ); f, 77),

so that Λ is an integral effective cycle. But then i(V9 $ n ίj, 5) is an integer

because it is the multiplicity of V in Λ j v} {v having the same meaning as

in the proof of Theorem 3.4), Q.E.D.

From Lemma 3.2, Theorems 3.2 and 3.4, and Lemma 2.3 of [ 2 ] , it is now

possible to see that a cycle j is a complete intersection at V on S, and has the

set of representatives { ζ\ at V on S, if and only if % coincides locally at V with

£1 n 5?2 n # * * 9 w n e r e £1 is t n e (n — 1 )-dimensional cycle

5. = Σ ; fi; (ίi) IKvu' k{C{Vij/S))] Civy/S);

h e r e v.. {j = 1, 2, •• •) a r e a l l t h e d i s c r e t e n o r m a l i z e d v a l u a t i o n s of k(S) o v e r k

of r a n k 1 a n d d i m e n s i o n n — 1 s u c h t h a t v. (ζ ) > 0.

THEOREM 4.2. Let ^, % be unmixed cycles of S of dimensions r, s such

that r + s - n > 0; let V be a component variety of t> n %. Let k' be an extension

of k9 and ίj', ^ the modified extensions of §9 % over k\ Then each component

Vj of Vfc' is a component variety of §' n %% and
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is the modified extension over k' of i(V, fc) n 2 , 5 ) V.

Proof. The first assertion is evidently true. In order to prove the second

statement, let |[) , 3 be the general homographic transforms of ΐ), 3 respec-

tively, constructed with two independent sets of indeterminates { u(j }, { V(j !• Set

and let g), 3 be the modified extensions of § * , 3* respectively over X. Then

Λ = D n 3 exists, and if v is a place of K over k such that

Kv = &, uij(v) = v.. ( f ) = 0 Ίί i £ /, ua(v) = f j i i^) = 1>

then ΐ ( F , t> n 3, S) F is part of Λ M * by Theorem 3.2. Now let g)', 3 ' , X ' b e

obtained from ^\ ^ as g), 3> ̂  a Γ e from >̂ ϊ*> ̂ ^ D^ 3 a r e t n e modified ex-

tensions of |9, 3 respectively over K'. If Λ ' = D n 3» assume for a moment Λ '

to be the modified extension of Λ over k'. If υ' is any extension of υ to X'over

k' such that Kv, = k'9 then Λ'lz;'!* is the modified extension of Λ{ v }* over A'-,

and therefore

is the modified extension over ά 'of i(V, t) n 3, S ) F , as claimed. We conclude

that the theorem is true if it is true when applied to |J), 3> 0 Γ also, a fortiori, if it

is true under the additional assumption that fc), 3 are complete intersections at F.

This, in turn, is equivalent, by Lemma 3.2, to the following assertion: Let A be

an irreducible subvariety of S, { ζ\ a set of parameters of R - Q{A/S); let A ' be

the modified extension of 1 A over k% Av . . . , Am its component varieties,

and set

Ri = Q{Ai/Sk,).

Then

Now, if A;' is an algebraic function field over k the proof of this statement is

implicitly contained in the proof of Lemma 1.2; otherwise, it can be obtained by

a well-known limiting process, Q E.D.

T H E O R E M 4.3 ( B E Z O U T ' S T H E O R E M ) . Let ty, % be unmixed cycles of S

such that ^ n 3 exists. Then
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ord ( § n %) = ( ord ίj) (ord %).

Proof. By Theorem 3.1, we may assume without loss of generality that fc) and

% are irreducible; and, by Theorem 4.2, we may assume k to be algebraically

closed. Let |f), 3> ^> Λ have the same meanings as in the proof of Theorem 4.2.

Then

ord ( fc) n ^) = ord Λ.

Since k is algebraically closed, fξ) and 3 a r e t n e modified extensions over K of

the general elements of the homographic systems § , S of t), £ respectively. Ac-

cording to Lemma 2.4, § and ® contain two degenerate cycles fc)', $',- and there-

fore they contain the homographic systems ίρ', S ' of fc)', 3' respectively (Lemma

2.2). Two cycles §", 3 " of § , S , respectively, can be found in such a way

that *)" n 3 " exists; we have then that §" n j ' ' = Λ { ι ; } * for some v C

(Theorem 3.2), and therefore

ord ( fc)" n %"•) = ord Λ = ord ( t) n ^ ) .

If r = ord t), s = ord 3, we have

the ^ .'s and ^ ' s being linear varieties. Lemma 3.2 gives that for each i, j the

intersection 1^. n \%. is an irreducible cycle whose radical is a linear variety.

Hence Theorem 3.1 implies that ord ( φ n %) - rs, Q.E.D.

THEOREM 4.4 (CRITERION FOR SIMPLE INTERSECTIONS). Let *), % be

irreducible cycles of S9 of dimensions r9 s respectively such that r + s — n > 0.

Let V be a component of rad t) n rad j . ΓΛeπ the following four statements are

equivalent:

(1) i( V, t) n £, S) exists and equals 1;

(2) Zeί \X\ be the h.g.p. o/S; let

{fί(X),f2(X)9.-.} and i6ι(X)9g2(X),.--\

be bases of p (rad fc)/S) and p (rad j / S ) respectively. Let {x } be the

h.g.p. of V. Then the Jacobian matrix J (f(X), g(X); X, t) acquires the

rank 2n - r — s when \X\ is replaced by {x }. Here {t} is a p-independent

basis of k over kp if p is the characteristic of k;
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(3) there are regular sets of parameters \ ζ}9 {η } ofQ{rad %/S), Q (rad

respectively such that { ζ, η\ is a regular set of parameters of Q{ V/S);

(4) p( V/S) is an isolated primary component of

If ins V = 1, then J (f(X), g(X); X, t) in Statement 2 can be replaced by

j(f{X),g{xy,X).

Proof Let |9, 3, Λ, K have the same meaning as in the proof of Theorem 4.2.

Let Sί, S2 be the projective spaces whose h.g.p. are { u\, \v\ respectively. Set

Z*

and let P, (̂  be points ofS t , S2 such that

γ*\p\* = ̂ ,z*{ρι* = r,

set also G = P x Q. Then the ideal whose basis is the set of the

has

. . , «tf/ « „ . • , . v.. v , ])

as an isolated primary component, and the ideal whose basis is the set of the

Gi (X, v) = gi( , Σ ; vZy ^oo */' ' " ^

has

ψ (rad Z/λ [Z, , α ι 7 M^ 1, , , v.. v~*9 ] )

as an isolated primary component. If assertion 1 is true, then only one com-

ponent Λ' of Λ has the property that L'=rad D^ ^ contains V x G; besides,

rad Λ' has in Λ the multiplicity 1. Therefore, by Lemma 3.2, { Fx, F 2 , , G ί9

G29 } is the basis of an ideal of which

p { L ' / k [ X , ••• , » , 7 « u o « * " ' " • > v i j v o o > ' " ] )

is an isolated primary component. Since

i(V, ^ J , S ) = e(V x G/lL'iS,R)*,
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and since upon replacing the ix 's, i^ ' s by their values at G the Fi(X9 u),

Gi(X, v) are replaced by the fi(X), gi(X), Theorem 5.6 of [2] or its corollary

implies that Statement 2 is true.

Assume now Statement 2 to be true; then Theorem 10 of [6] implies that

Statement 3 is true. Finally, if Statement 3 is true, then fc) and % are complete

intersections at V on S, and Lemma 3.2, together with Theorem 2.1 of [ 2 ] , yields

the result that Statement 1 is true. Statement 4 is clearly a consequence of

Statement 3, and it implies Statement 2, Q.EoD.

COROLLARY. With notations as in Theorem 4.4, if

then V is simple on rad ^ and rad £.

Proof. This is a consequence of Statement 3 of the theorem and of a well-

known result on regular local rings, Q.E.1J.

5. Intersection of cycles of an algebraic irreducible variety. Let V be an ir-

reducible variety over the field k9 U a subvariety of V, S the ambient space

of V. By this expression we mean to express the fact that if { X } is the h.g.p. of

5, then the h.g.p. ί x \ of V is a homomorphic image of { X !; of course S is not the

only projective space of which V is a subvariety. Let £ be an unmixed cycle of

V We say that % is a section of V at U if there exists an unmixed cycle 3 of

S such that 1 V n 3 a n d % coincide locally at JJ'. We shall develop in this section

a theory of intersections of cycles of V which will be valid when the cycles are

sections of V at some ί/; before we do so, however, it is important to show that

this is the case under the customary conditions. Namely, we have:

THEOREM 5.1. Let V be an irreducible variety over the algebraically closed

field k9 S the ambient space of V\ U a nonempty irreducible subvariety of V9

simple on V, % an irreducible cycle of V; then there exists an irreducible cycle

£ of S such that IV r»3 coincides with % locally at V.

Proof Since, by Theorem 3 of [ 6 ] , each U simple on V contains a point P

simple on F, the theorem will be proved in general if it is proved under the as-

sumption that U is a point. Let { x \ be a n.h.g.p. of V for which U is a finite

distance, R = Q(U/V). If

m = dim S, n = dim V9 r = dim £,

let {y , ••• , γn \ be a set of regular parameters of R contained in &[#]; then

¥\9 "' ' yji a Γ e algebraically independent over Ic. Let F be the projective space
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over k whose n.h.g.p. is {γ}, and set

\) nk[y]), Z ' = p{p{τad %/k[x]) n k[y]) .

Then ί/' is a point, and dim Z ' < r. The embedding of &[y] in k[x] gives an ir-

reducible algebraic correspondence D between F and V9 such that rad D is bi-

rationally equivalent to V in a birational correspondence which is regular2 at

finite distance; we shall therefore denote subvarieties of V and D which corres-

pond to each other with the same symbol. Since Q(U'/F) contains a set of regu-

lar parameters of R9 from the corrollary to Lemma 1.1 we obtain

e(U/D; U% V)* = 1.

Let Z be a component of [D; Z', V] containing U; then Theorem 1.1 implies that

dim Z = dim Z ' since among the Z's there is one which contains rad £, and

which therefore has dimension > r, we conclude that dim Z4= r, so that dim Z ̂  r

for each Z. Now, by Theorem 1.1, we have

1 = e{U/D; V% V)* = e(U/Σz e(Z/D; Z\ V)* Z; U', V)*.

Since Z ' is simple on F9 according to a remark preceding Theorem 5.5 of [2] we

have that each e(Z/D; Z'9 V)* is an integer; we cannot state that e ( ί / / l Z ; ί/',

V)* exists for each Z; however, according^to Lemma 1.1, we may operate in the

following way: Replace, in Lemma 1.1, D9 /)*, F, F9 G9 k respectively by

Σze(Z/D;Z',V)*Z9U9V,Z',U'fkf

and select correspondingly Z*, G'9 Ό% U*f ί/*, ••• to replace F% G% D'9 D*,

Z)*, in Lemma 1.1; impose upon Z* the additional condition that{lD.'; V9

G'}* exists for each component variety D. of Ό'\ for each Z, set

α(Z) = ΣjeiUj/D , V, G')*ord(lί/*)[GΊ,

where / is such that

(lopiz*}* = (1Z)UΊ*.

Since { 1D^; V9 G'{* exists, and h{ U* ) = 1, we deduce that α(Z ) is an integer.

The α of Lemma 1.1 is given by

α = Σze(Z/D;Z%V)* α(Z),

and therefore, since ord U = 1 in this case, Lemma 1.1 itself gives that

2T is regular at ί/ if for each t/'•= Γ (ί/) it is true that ρ( ί//K) = Q (ί/'/K')ί in this
case ί/' is unique.
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1= e(U/Σze(Z/D;Z', V)*Z; F, UT = Σz e(Z/D; Z'9 V)* α(Z).

Since we have seen that each e(Z/D; Z ' , F ) * and each Cί(Z) is an integer, it

follows that there is exactly one Z, namely rad %, and that e(Z/D; Z', F ) * = 1.

Now, the set \y\ can be identified with a subset of k[X], \X\ beiηg the

n.h.g.p. of S which corresponds to 1 x }. Set

S = lφ(p{Z'/k[y])k[X]),

so that 3 i s a n irreducible cycle of S of dimension r + m - n. The fact that the

only Z is rad £ means that rad 3. is the only component of F n rad 3 containing

U; since

r = n + dim 3 - m,

we also have that rad ^ is a component variety of 1 V n 3 Finally, since

e{Z/D;Z', V)* = 1,

a regular set of parameters of Q(Z'/F) is a regular set of parameters of Q(Z/V),

and this means that ^>(rad %/k[X]) is an isolated primary component of

φ{V/k[X\) + p ( r a d 3 / A U ] ) .

This, in turn, by Statement 4 of Theorem 4.4 shows that ΐ(rad £, \V n 3> S ) =

1, Q.E.D.

Let V be an irreducible /ι-dimensional variety over the (arbitrary) field k9 and

let fc), ̂  be unmixed cycles of V of dimension r, s respectively; if {] is an ir-

reducible subvariety of rad ^ n rad 3, we say that U is a component variety of

( ty n 2> F) if dim ί/ = r + s - n. If J is a section of V at ί/, let 3 be an unmixed

cycle of the m-dimensional ambient space S of F, such that % coincides locally

at U with 3 n 1 F. If ί/ is also a subvariety of rad t), then it is a subvariety of

rad fc) n rad 3 Since

dim 3 = 5 + m - n 1

by Theorem 2.2 we have

dim U > r + s — /ι.

Assume ί/ to have exactly the dimension r + s - rc, so that it is a component

variety of ( t) n % V) and of ij n 3 Assume also t) to be a section of F at ί/,

and let JΓ! be related to ty as 3 i s t o ί The number i(U, ̂  n 3> S ) exists, and

by Theorem 3.4 it equals
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i ( ί / , δ n I F n S , S) = »( ί/ , g) n a . S ) .

This proves that

i(U, $ n S , S ) = * ( £ / , 8 n i , S )

does not depend on the choice of § , 3> but depends only on ί/, fc), 3, F; accord-

ingly, it will be denoted by i ( ί/, fc) n 3, F ) . We shall put i( U9 § n %, V) = 0 if

dim U ~ r + s — n but f/ <t rad i) n rad %. A generalization of the meaning of this

symbol will be given after Theorem 5.9; the remark following Theorem 5.9 con-

tains comments on the validity of most results of this section for the generalized

symbol. Theorem 3.3 yields:

HU, t) n 3, F) = i{U, <9 n 3 , S) = i{Uf 3 n t), S) = i(ί/, 3 n t), J/);

that is, we have the following result:

T H E O R E M 5.2 ( C O M M U T A T I V Ϊ T Y LAW). If one of the symbols

a meaning, the other also has a meaning? and their values are equal.

The number i ({/, ^ n £, F) is called the intersection multiplicity of fc) α/zc?

% at U on V. Assume that ίj, % are such that each component Uj of rad t) n rad ^

is a component variety of ( fc) n 3, ^)> a n ( ^ ^ n a t i(U > § n >̂ ^ ) i s defined for

each/; in this case we shall set

the cycle ( ^ n 3, F) is called the intersection of ^ ατιo? % on V. The locutions

" t o be part of ( $ n 3, F ) " , " t o coincide locally at . . . with ( fc) n 3, F ) " , " to

exist locally at " , and " the local part of ( t) n 3, F) at " shall have a

meaning even if ( t> n %, V) does not exist, in exactly the same way as the simi-

lar locutions in § 3 have a meaning even if ίj n 3 does not exist. Obviously, in

the special case in which V = S, the symbols i(ί/, fc) n 3, S) as defined here or

in § 3 have the same meaning; accordingly, the symbol ^ n 3 of § 3 shall be de-

noted from now on by ( ^ n 3, S) .

From Theorem 4.2 we obtain:

THEOREM 5.3. Let V be an irreducible variety over k9 fy and % two unmixed

cycles of V such that

dim ^ + dim % - dim F > 0,
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and let $ be a part of ( t) n $, V). Let k'be an extension of k; V' the extension

of V over k'\ £ ' , fc>', 3 ' the modified extensions of $, t)9 % respectively over

k'. Assume V to be irreducible. Then ins I7 (ins V')~ι$' is part of { t)' n %', V).

From the definition, and from Theorem 3.1, we obtain:

T H E O R E M 5.4 ( D I S T R I B U T I V I T Y LAW). // U, *) , %l9 V are such that ί(U,

^ n %ι> V) has a meaning for /, / = 1, 2, and ij

dim t) t = dim fc)2, dim %χ = dim %2 ,

then

i(U, ( ^ + \) n (%ι+ j 2 ) , V)

has a meaning and equals

2

Σ i(U, fy π %p V).

THEOREM 5.5 (ASSOCIATIVITY LAW). Let £, t), % be three unmixed cycles

of the n-dimensional irreducible variety V over k, of dimensions r s s9 t respec-

tively. Let U be a component of rad £ n rad t) n rad j o/ dimensions r + s+ t ~ 2n;

assume J , t), % to be sections of V at U; let $'9 ty' be the local parts? at ί/s of

( 2? n 9̂, F ) , ( t) n %, V) respectively. Then i(U, $' n %, V) and i(U, $ n %', V)

exist and are equal. Their common value is denoted by i{(J, y n t) n ^, V)9 and

a similar notation is used when more than three cycles are involved.

Proof. Let 3C, ?), 3 t>e unmixed cycles of S (the ambient space of V) such

that £, $, 3 coincide locally at ί/ with ( X n 1 V, S), (g) n 1 F, S), ( 3 n l F , S )

respectively. Then (X n g), S) and ( |) n 3> S) exist locally at U; let X , 3 be

the local parts of (X n ^), S), (S) n 3> S), respectively, at U. Theorem 3.4 im-

plies that

i(U, X ' n %, S) = i(ί/, y n S ' , S ) ;

on the other hand, again by Theorem 3.4, (X n I F , S) coincides locally at U

with ( X n ίj, S), and therefore with ( £ n fc), V) and with Jp'; this proves that

i(U, X ' n j , S ) = i(U, ? ' n a, F ) .

In the same way we obtain

i(U, 5 n 3 ' , S ) = i ( ί / , p n i ', F ) , Q . E . D .
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THEOREM 5.0 (TRANSITIVITY LAW). Let V be an irreducible variety over

k9^ W an irreducible subvariety of V. Let t), % be unmixed cycles of W9 and U a

component variety of ( ̂  n %9 W). Let ^)$ 3 °e unmixed cycles of V such that

(?) n 1IF, F ) , ( 3 n 11F, V) exist locally at U and coincide at U with h, %

respectively. Then ( § n 3* ^ ) exists locally at U; let X be the local part of

(D n 3, V) at U. Then ( X n 1 IF, V) and ( fc> n %, W) both locally exist and coin-

cide at U.

Proof. Let H) , 3 b e unmixed cycles of the ambient space S of V such that

( $ * n I F , S), ( 3 * n I F , S) coincide locally at U with g), 3 respectively. Then

O * n l l F , S), ( 3 * nl lF, S) coincide locally at £/ with ί?, % respectively by

definition. Let X* be the local part of ( ?)* n 3*» S) a t ί̂ ϊ ^* exists because

the dimensions fulfill the correct relations. Then (X n 1 F, S ) coincides local-

ly at U with X, so that ( X* n 1 W, S) coincides locally at U with ( X n 1 W, V).

On the other hand, ( t) n & I* ) coincides locally at U with (?)*n 3 * n l ίί', S),

Q.E.D.

Theorem 5.6 also shows that in the definition of i ( U, § n £, F ) , the ambient

space S could be replaced by any space S containing F as a subvariety.

T H E O R E M 5.7 (LAW O F T H E C O N S E R V A T I O N O F T H E N U M B E R ) . Let A

be an irreducible variety over k9 and K an algebraic function field over k let

S be an irreducible algebraic correspondence between K and A, and let X, S) be

unmixed cycles of rad S. Let v G M(K) be such that Kv = k> and that S{ v \ is

irreducible? say Ώ { v }* = I F , where V is an irreducible variety over k. Set

so that 3ps ^ are unmixed cycles of F; let U be a component variety of ( £ n ^,

F ) . Among the components of rad X n rad §, Zeί lly (/ = 1, 2, ) be those such

that rad (lUj) {v\* contains U; then

dim 11. = dim X + dim |Γ) - dim S

/or eαcA /. Assume X, §) ί o &e sections of r a d δ α ί 11 j u U 2 u ••• . Then (1) CXy =

/(lly, X n f), rad SB) exists for each j , so that U = ̂ . (X. U. exists, (2) U is a

component variety^of each ( 1 Uy ) { v j * , and (3) i(U, £ n t), F ) exists and equals

the multiplicity of U in U{v !*.

Proof. We need to prove only the last statement, since the others are an

immediate consequence of the relations between the dimensions. Let 5 be the

ambient space of S, X an unmixed cycle of S such that (X n ϋ , 6) and X coin-
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cide locally at XL t u U2 u . Then 11 coincides locally at each Uj with (X n ̂ ),

o) by definition. Let S ~ Si v }* be the ambient space of F; the application of

Theorem 3.2 to the two algebraic correspondences X , 33 between K and S proves

that (X { v }* n 1 V, S) coincides locally with £ at ί/. The same theorem, applied

to X and |9, yields the result that ( X ί v }* n fc), S) coincides locally at U with

U{v\*; therefore U M * coincides locally at ί/ with ( p n ίj, F ) , Q.E.D.

THEOREM 5.8. Le£ F &e arc n-dimensional irreducible variety over k, t) an

r-dimensional irreducible cycle of F, U an irreducible subvariety of rad fc), £ arc

s-dimens ional cycle of V which is a complete intersection at U on V9 and such

that

r + s - n = dim U.

Assume ty to be a section of V at U. Let { ζ\ be a set of representatives of % at

U on F, and set

fc= 5β(rad $/V) n Q(U/V).

If σ is the homomorphic mapping of Q(U/V) whose kernel is \), then \σζ] is a

set of parameters of Q{U/τad ^ ), and i{U, ty n ^, F) exists and equals

e((?(ί//rad ^ ) ; σ ^ ) .

Proof, lϊ \x] is a n.h.g.p. of F for which U is at finite distance, we may

assume ζ. C k[x] for each /. Let { X \ be the correspondent n.h.g.p. of the ambi-

ent space S of F, T the homomorphic mapping of &[Z] onto &[%] such that ΊXj =

Λy. Let ZJ (/ = 1, 2, ••• ) be elements of A:[A] such that T Zj = ζμ then the set

ί z ! is a subset of a set of parameters of Q( U/S), and, if m = dim S, there exists

a cycle 3 °f S, of dimension s + m — n, such that 3 is a complete intersection at

U on S, and has { z \ as a set of representatives at U on S. Therefore, by Lemma

3.2, % coincides locally at U with ( g n I F , S), so that i(U, t) n %9 V) exists

and coincides with i (ί/, ty n 3> S) locally at {/ this, in turn, by Lemma 3.2,

equals e(Q(U/τad ^) ; σΊz), Q.E.D.

T H E O R E M 5.9 ( R E L A T I V E I N V A R I A N C E O F T H E I N T E R S E C T I O N M U L T I -

P L I C I T Y ) . Let F, V be irreducible varieties over k> T a birational correspond-

ence between V and F ' ; let §9 % be unmixed cycles of V, U a component variety

°f ( ty n %9 V) such that i(U, ^ n %> V) exists. Assume T to be regular2at U9 so

that T is also regular at each component variety t)y of fc) containing U and at

each component variety %ι of % containing U. Let aj, b[ be the multiplicities of

$μ %ι, respectively, in t), %; set
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ί/'= τ(uχ $:= n^), ι\ = nh), *r= Σ y α . $;, a ' = Σ z ^ %'r

Then ifi(U% fc)' n #', F ' ) exists it equals i{U, t) n £, F ) .

The cyc le fc)' i s cal led a transform of fc) at U in (or with respect to) T.

Proof, By considering the composite variety of V and F ' , we may clearly

reduce the proof to the following simpler case: There exists a n.h.g.p. { x \ of

V for which U is a finite distance, and there exist elements x , x , ••• ζLk(V)

such that { x, x'\ is a n.h.g.p. of F ' for which {/' is a finite distance. In this

case let S be the ambient space of F, and let \X] be the n.h.g.p. of S corre-

sponding to {x\; if S ' is similarly related to F ' , we may assume that a n.h.g.p.

of S ' has the form {X, X'\ \X'\ being a set of indeterminates. The correspond-

ence between F ' and V is now visualized as a "projection" of F ' on S C S'.

If A (resp. A*) is an irreducible subvariety of S (resp. of F') containing 67

(resp. ί/'), whose n.h.g.p. is {̂ { (resp. { ξ, f ' l ) , we shall denote by /I* the

irreducible subvariety of S ' whose n.h.g.p. is ί f, X'\; therefore we have

A* n S = 4 (resp. /I* n F ' = 4 ' ) .

This correspondence generates in an obvious way a correspondence

3-* 3* (resp. 3 ' -»3*)

among c y c l e s . Now, l e t 3 be a c y c l e of S s u c h t h a t ( I F n 3> S ) c o i n c i d e s

l o c a l l y at ί/ with £ ; then

by definition. Theorem 4.4 readily shows that i), S> 1 ^ coincide, respectively,

with ($* n 15, SO, ( 3 * n I S , S), (1 F* n I S , SO locally at U, and then an

immediate application of Theorem 5.6 yields that

;(ί/, $ n 3, s ) = »(*/*, tf π 3 * , s ' ) .

In like manner, we obtain that £* coincides locally at 6' with ( 3 * n ^ > S'),

and therefore also that

i ( ί / * , tf π 3 * , S ' ) = i ( ί / * , *̂ n f , V * ) .

We now wish to show that 1 F ' is a complete intersection on F at each irre-

ducible subvariety A ' of F ' which contains ί/' (and which is therefore regular

for the birational correspondence between F and F') Let in fact A be the trans-

form of A * in F; since
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QU/V) = QU'/V),

t h e r e e x i s t s a p £. k[x] — p( A/k[x]) s u c h t h a t px' ζL h\_x\ f o r e a c h y . W e a l s o

have p £ k[x, X'] - p(A'/k[x9 X'])f and therefore

x'j-x- = P~
ι(pχ;-χp c QU'/V*)

for each y. The set { , X? - x', } is a regular set of parameters of

Q{ V'/V*), hence a subset of a set of parameters of Q{A '/V* ), hence also a set

of representatives of 1 F ' at A ' on V , as announced.

This being established, we apply Theorem 5.8 to the varieties F , U' and

and the irreducible cycles I F ' , 1 £/*, obtaining the result that i(U% 1 ί/* n I F ' ,

F* ) exists and equals

e ( Q ( U ' / U * ) ; . . ,Xj-ξj, - ) ,

where we have denoted by { ζ, ζ'\ the n.h.g.p. of ί/'; but, as before,

is a regular set of parameters of Q( U'/U*)9 and therefore

(If/* n I P ' , F*) = \U\

Likewise, we obtain that ( t)* n l F ' , F*) and ( ^* n l F ' , F* ) coincide locally at

ί/'with fc)', ?' respectively. Now, Theorem 5.6 applied to V*, V, t)', %% {/', ^*,

2* yields the result that ( t)'n %', F') exists locally at ί/' and coincides locally

at ί/'with

(ϊ(ϋ*, *̂ n tf,V*)U*n IF', F*).

In view of the previous equalities, this amounts to saying that

i(U', V n & V) = i(U> t) n i, V), Q.E.D.

Theorem 5.9 implies that i ( U9 ^ n %, V) depends only on Q(U/V), on the

quotient rings in V of those component varieties of t), £ which contain c/, and on

the multiplicities of such component varieties in t), % respectively. Accord-

ingly, in the notations of Theorem 5.9, if ty', #' are not both sections of F ' a t

U% but i(U, ty n %, V) exists, we shall define i ( U', ty' n ^', F') to be equal to

i ( U, t) n 2, F ) ; Theorem 5.9 itself shows that this is a good difinition, that is,

that it is independent of the choice of F ' . This enables us to define i ({/, ij n 2,

F) also when F is an irreducible pseudovariety (see [ l ] ) , since each irreduci-
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ble pseudovariety is regularly equivalent to an irreducible variety. The question

is now raised as to whether all the results of this section remain true for the

present extended definition of the meaning of the symbol i ( ί/, ^ n %, V). The

answer is as follows:

REMARK. Theorems 5.2 to 5.9 remain true after we replace the word "va-

iety" by the word "pseudovariety", and the sentence " ^ is a section of V at

U" (or a logically equivalent one) by the sentence "there exists an irreducible

variety V9 birationally equivalent to V in a correspondence T which is regular

at each component of U, such that a transform of t) at U in T is a section of V

at Γ(U)" (or by a logically equivalent one). The question is not even raised,

however, when U is simple on V and the ground field is algebraically closed

(see Theorem 5.1).

A comparison between Theorem 5.8 and the corollary to Lemma 1.1 shows

the a posteriori connection between the theory of intersections and the theory

of algebraic correspondences, namely:

THEOREM 5.10. Let D be an unmixed algebraic correspondence between

the irreducible variety F over k and the projective space S over k, and assume

each component of D to operate on the whole F. Let G be an irreducible sub-

variety of F, D a component of [D; S, G] Then if

e(D*/D;S,G)* and i(D*,D n 1 ( 5 x G), S x F)

both exist, they are equal.

From Theorems 5.1, 4.1, and 4.4 we obtain:

THEOREM 5.11. Let U be a simple irreducible subvariety of the irreducible

variety V over the algebraically closed field k. If φ, % are irreducible cycles of

V such that U is a component variety of (§ n %, V), then i(U, t) n $, V) exists

and is a positive integer. A necessary and sufficient condition in order that

i(U, *} n%,V) = 1

is that %) ( U/V) be an isolated primary component of

Let finally ί/, V be irreducible subvarieties of a projective space S over an

algebraically closed field k; let S ' b e a "copy" of S over k, V* a copy of U in

S', M a component variety of (1 U π 1 V9 5) . Let Δ be the identical algebraic

correspondence between S and S'9 and set
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MA = [Δ; M, S I , ί/Δ = [Δ; U, S'], V^ = [Δ; V, S'].

From the results of the present section, the following equalities are easily es-

tablished:

l ( ί / ' . χ V) = ( 1 ( 1 / ' x S) n K S ' x Π . S x SO;

l ί / Δ = (Δ n K f / ' x S ) , S x SO, 1 F Δ = (Δ n 1 (V x SO, S x SO,

i(M, IU n IV, S) = i(ΛfΔ, 1 ί/Δ n 1 F Δ , rad Δ)

= i(Λ/Δ, Δ n l ( ί / ' x S) n 1 ( F x SO, S x SO

= *(A/Δ, Δ n l(U'x V), S x SO,

and this, by Theorem 5.8, proves that our definition of intersection multiplici-

ties coincides with the one given in [3] for the case of algebraic varieties,

when the latter is defined.
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