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TRANSLATION INVARIANT MEASURE OVER SEPARABLE

HILBERT SPACE AND OTHER

TRANSLATION SPACES

F. H. BROWNELL

1. Introduction. We consider the problem of defining a nontrivial, transla-

tion-invariant Borel measure over real separable Hubert space. As noted by

Loewner [4l, this is not possible; but instead of relinquishing as he does the

real number system for a non-Archimedean ordered field for the values of a

"measure,*' we shall consider several topological subspaces of Hubert space

arising frequently in analysis. These are locally compact; and using either the

Kolmogoroff stochastic processes construction [2], or else following the Haar

measure construction [ l ] or L 5], we can get a nontrivial, essentially translation-

invariant Borel measure. However, since the special subspaces considered are

not groups under translation, and do not even contain a group germ, the usual

Haar measure construction must be modified in a special fashion, and the pre-

cise translation invariance obtained is somewhat restrictive. Actually we carry

through this modified Haar measure construction for the more general situation

of a locally compact translation space, which is defined as an appropriate sub-

space of an Abelian topological group. The results are collected in a summary

at the end.

2. Formulation of the problem. Let

oo

^ (xn ) 2 < +00 , xn real

the square summable real sequences and thus the real separable Hubert space

prototype. Since "ί2 i s a subset of Roc, the countably infinite Cartesian product

of the real line ( —oo, oo), we have available on Λs2

 a s w e l l as the ΛJ2 norm metric

topology also the product topology defined relatively from Roc Under these two

topologies we shall consider the Έ2-subsets

X = 1 x C ̂ 2 I I x n I <. h ( n ) f o r a l l n },
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532 F. H. BROWNELL

Y = \ x € l 2 \ £ \Xj\
2 < f(n) forallrc},

j = n

where f(n) and h(n) are specified functions defined over the integers n >^ 1

with values real or +00 having h (n) > 0 and f(n) >_ f(n+l) > 0.

Let Z = X or Y; we want to define the Borel class of subsets of Z. The open

intervals of Z are defined relatively from the elementary open intervals of 7?^,

and so we can define β as the σ-algebra of subsets of Z generated by the open

intervals, B 2 as that generated by the product-topology open sets, g 3 by the

metric spheres, and B4 by the metricly open sets. Actually B ι = B 2 = B3 = B 4 ,

and will be denoted by B and called the class of Borel subsets of Z. To see

this we note first by using the rationale that Roo and hence Z has a countable

basis of open intervals, so B t = B 2 . Similarly B 3 = B 4 , since ^ 2

 a n ^ hence Z is

a separable metric space and thus has a countable basis of spheres. Since any

product-topology open set is clearly open metricly, B2 C B 4 . Now it is easy to

see that any closed sphere

S = \ x C Z I | | * - y | l < p i

is actually closed in the product topology. Since any open sphere is a countable

union of closed ones, B3 <C 6 2 . Thus B3 = B 4 makes B t = B2 = B 3 = B 4 , as

desired.

Define

= U

for u C Roo and for any subset A of R^. We note that u G Z and A C_ Z do not

always make [A + u] C Z if Z ^ Z2 However, if A C B and u £ R^ then

[ i + « ] n Z C B , For

3 = U I [A + u]nZ £ B }

is easily seen to be a σ-algebra containing the intervals of Z, so 0 = 1^ C_ o,

which gives the result.

Our problem is to find a Borel measure φ9 that is, a nonnegative extended

real set function defined and countably additive over B, which is nontrivial

(Condition I) and translation-invariant (Condition II or II ') according to a speci-

fied topology.

CONDITION I. φ{Z) > 0 and φ{V) < +co for some nonempty V open in

the specified topology;
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C O N D I T I O N II. φ([Λ + u]) = φ(Λ) if A £ B, u C i 2 , and [A + u] c Z;

C O N D I T I O N I I ' . a ) <£(U + u]) = < £ U ) if ,4 C 6 , « C ^ ^ £ ^ where

F and [ F 4- u] are both open s u b s e t s of Z.

b ) 0 ( U + M] n Z ) < 0 U ) i f u C l 2 and both 4 and

[A + u] n Z are open subset s of Z .

Condition II clearly implies I I ' , and hence is a stronger requirement,

3. Negative results. We shall start with a few preliminary lemmas. F i r s t

define

S ( Z , x , p ) = \ y € Z \ \ \ x - y \ \ < P \ ,

the p-radius open Z-sphere about x

LEMMA 1. For any real r > 0 there exists no nonnegative, finitely additive

set function φ over the Borel subsets of

z = y = sα2,o, r),

satisfying I I ' , (or thus II also), under the metric topology such that

0 < φ(S(Ί2, 0, p)) < +oo for 0 < p < r .

Proo/. Let

p* = {p*/} C 5 ( ^ 2 , 0, r)

by defining pXj = 0 if / ^ p and p%p = r/2 for integer p >_ 1. Let

vp = s K 2 »p«, - A ,

so that Fp ^ 5 ( ^ 2 , 0> Γ ) ; a « d F p n Vq = φ for p ^ q follows from

\i~2- 1

^ — r> o

for y ζL Vp and y ' £ F^. But IK under the metric topology makes

φ{\'p) = φ(s(l2, o, i
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with 0 < b < +co. Thus

N

SU2,0,r) D U Vp9

p=l

and finite additivity of φ yields the contradiction

N

0 < Nb = Σ φ(Vp) < φ{S(<i2, 0, r ) ) < +oo
p = l

for arbitrary integer /V. Thus such φ cannot exist.

LEMMA 2. //

0 < inf h(n) for Z = X,
n > 1

or if

0 < inf f(n) for Z=Y,
n > l

then for any x C Z am/ p > 0 there exists some z £ Z am/ p ' > 0 sac/i ί/iaί

S(^2>
 z> P ' ) C S(Z, x, p) .

Proof. For the given Λ; C Z choose some W > 1 so that

/ 1 \ 2

Σ <*/>2< T p ) .

possible since x C ^ Define

as the projection of ^ 2

 o n t o Euclidean /V space £yγ. Clearly P{Z) is a convex

set with a nonvoid interior in EN including the origin; so we can find an interior

point z ' on the line-segment from x'= P(x) to the origin so that

N /I \ 2

Σ ( * Λ - * n > 2 < - P i
71 = 1 y 6 '

D e f i n e z G ί 2 s o t h a t z ' = P ( z ) b y t a k i n g zn = 0 for n > /V + 1 . T h u s
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\X-Z\\ =

N

Σ
1/2

Σ <\ < V

Let

b0 = inf A(/ι) > 0 for Z =
71 > 1

or

inf /(
n > 1

n)]
1/2

> o for y.

Now if Z = X, by choosing p " > 0 so that p " < &0 and

S(£tf, z ' . p " ) C

as we may since z' G! int P(Z), we get

, z, p " ) ^ Z.

If Z = y, then z ' G int P(Z) makes

JV

Σ (η)2 < / ( * )

for 1 < n <_ N, so here we choose 0 < p " < b0 and

p " < min \[f(n)]ι/2 - ^ < z / )

N 1/2
2

Thus

Σ (3}-

1/2 1/2

and

Σ (5}
1/2

< b0 <^ f(n) ΐor n > N + I,
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makes S(i2y z, p") C Y = Z.

Thus

p " , p > 0

yields

S(^2> z> p') C % n 5 ( ^ 2 , x, p) = S(Z, x, p)

as desired, since

makes

l l * - y | | < l l r - ^ l l + l l * - * l l < P

because | | Λ ; — z | | < (\/2/3)p.

T H E O R E M 3. //

0 < lim inf A (rc) tciί/i Z = X,

or i/

0 < lim inf / U ) with Z = Y,
71 —• o o

ίAen ίλere exists no Borel measure φ on such Z which is nontrivial ( I ) and

translation-invariant ( I I ' ) under the norm-metric topology.

Proof. Set

6 0 = inf h ( n ) if Z = X,
rc > i

or

6 0 = [ i n f f ( n ) ] ι / 2 if Z = Y ;
U >i J

thus clearly b0 > 0 is required by hypothesis. Obviously
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S(Z, 0, p) = SU2, 0, p)

for 0 < p < bQ, so the metricly open set

S(Z,x, p) = [ S U 2 , 0, p) + % ] n Z = [ S ( Z , 0, p) + x] nZ

for such p. Hence if φ ex i s t s , then φ(S(Z, x9 p)) < <£(S(Z, 0, p ) ) by Con-

dition II ' b ) for x C /V2, 0 < p < 6 0

Now set

bx = inf {all p > 0 such that <£(S(Z, 0, p ) ) > 0 } ,

so φ{S{Z, 0, p ) ) > 0 for p > i l f and = 0 for 0 < p < bt if bι > 0. Actually

6 t = 0. For if not set 8- (min 6 0 , ^ ! / 2 ) ; then Z, being separable, i s a count-

able union of spheres of radius p < δ. But such spheres have

φ{S{Z, x, p)) < φ{S{Z, 0 , p ) ) = 0 ,

implying φ ( Z ) = 0 by countable additivity, which contradicts Condition I.

Thus bί = 0 and φ(S(Z, 0, p)) > 0 for all p > 0.

We want to show that φ(S(Z, 0, r ) ) < +oo for some r > 0. By Condition I

under the metric topology and Lemma 2 it is clear that there exists some r > 0

and z C Z such that

, z, r) C_ Z and <£(S(-£2, z, r)) < +oo.

Since S(^ 2 > *> Γ ) ζ. 2 , it i s easi ly seen for either X = Z or Y = Z that we must

have r < Z?o, and hence

Z 3 S ( ^ , 0, r) = S ( Z , 0, r ) .

Thus [S{Z, 0, r ) + z ] = S( / t 2 > z> Γ)> a n open subset of Z, so Condition I I ' a )

makes

φ(S(Z, 0, r ) ) = ψ ( S ( ^ 2 , z, r ) ) < +co.

Thus

0 < φ{S{Z, 0, p ) ) < +oc

with S(Z, 0, p ) = S(Ί2, 0, p ) for 0 < p < r for some r, 0 < r < b0, which is

impossible by Lemma 1. Thus the s ta ted φ cannot exis t .
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We also easily get the following considerably weaker result for the product

topology.

THEOREM 4. lf\n A(τι) =-foo! is an infinite set, then there exists no

Borel measure φ on X which is nontrίvial ( I ) and translation-invariant ( I I ' )

under the product topology.

Proof. Let V be any nonempty open interval of X. It is clear that by trans-

lating along each of the finite set of coordinates given in the definition of the

interval V, we can find a finite or countable set of pX £ "£2 such that

[V + px] C X and X = U [F + n*] .
p = l

Also Condition I Γ a ) makes φ(V + px) = φ{V) if φ e x i s t s . Thus φ{X) > 0

for nontriviality yields by countable additivity φ(V) > 0 for any open intervall

v 4 φ.
Now Condition I under the product topology implies that some open interval

VQ φ. φ has φ(V0) < +oo, so 0 < φ(VQ) < +co. Since VQ is defined in terms

of only a finite number of coordinates, and {n j h(n) - +ool is infinite, there

must exist some p so that x £ Vo imposes no restriction on the pth coordinate

of x. Let

W0 = \ y € V 0 I \ y p \ < U ,

a nonvoid open X interval, so φ(W0) > 0. Let 0Zj = 0 if / Φ P> ozp = 1> so

clearly {[ί#o+ m oz^ 5 f° r m a disjoint union of sets C VQ for different integer

m, with

0 +moz]) =

by Condition II'a). Thus

+ o c

which is a contradiction. Thus <£ cannot exist.

We remark that ^2 - ^ by taking Λ(τι) = +oo, so Theorems 3 and 4 show that

there exists no Borel measure φ on ^ 2 which is nontrivial and translation-

invariant under either the norm metric or product topologies.
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4. Positive results via Kolmogoroff. We want to give conditions under which

an invariant measure does exist on X or Y, getting a converse of Theorem 3. For

X we shall use the construction of Kolmogoroff [2, p. 27] of a probability mea-

sure P over real product spaces, in our case Z?^. Here we need a family Q of

real set functions, each member Qnίf... f nk being nonnegative and countably

additive over the intervals of E^, with coordinates indexed nl9 • •« , n, , and

having Qnίf... , n^^) = l Th e family Q is assumed to satisfy Kolmogoroff's

two consistency conditions:

where n' ^n., α ' = a., bf— b. for n ' , , nf a reordering of n , ••• , rc,. The

resulting P has P(I) - Q(I) if the interval I is the cylinder set by n , , n^ of

the interval / of JE .̂, P being the Borel-Hopf extension [ 1, p . 54] of Q from the

intervals to the Borel s e t s .

T H E O R E M 5. //

oo

Σ [h(n)]2 < + o o

/or some /miίe Λ/, then for X the product and metric topologies coincide, X being

locally compact; there exists a Borel measure φ which is nontrivial ( I ) and

translation-invariant (II) on X; and such a measure is unique up to constant

factors.

Proof. The stated condition on h(n) makes the equivalence of the topo-

logies over X obvious, as well as local compactness. Let X% Ί^, and β^ be

defined like X, ^ a n d <̂χ» except only with coordinates of n > N + 1, so

clearly

X = AN x X ,

where AN is an interval of E^ Construct the Borel measure P on Rζo by the

Kolmogoroff construction from
k

aJ9
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where E (n, a, b) is the length, possibly zero, of the interval of intersection of

[-h(n), h(n)] and [α, 6] This ()-function family has Qn , , n (^β) = l>

has Q countably additive since it is a multiple of k dimensional Lebesque mea-

sure, and satisfies Kolmogoroff s consistency conditions as needed.

Let

p \xp\ > h(p)\

open in /?4 clearly

P*(Vp) = ρ ( F p ) = — - - [ £ ( p , - o c , - A ( p ) ) + £ ( p , A ( p ) , + oo)] = 0 .
2h(p)

Now

X ' = \ x £ l \ I \xn\ < h(n) for n > N + 1 }

and the given condition on h{n) makes it poss ible to replace Λ/2 by Roo in this

formula, so that

U vp,

which i s in the Borel family B* of R^. Thus ? * ( X ' ) = P * {R^) = 1 follows

from P * ( F p ) = 0, and * ' is thick in R^ ( s e e [ 1, p. 7 4 ] ) . Hence P(A (\X') =

P*{A) defines P uniquely over s e t s A n X , /4 C B*, which form the Borel

family B of X\ so P i s a Borel probability measure on / ¥ ' with P ( / Π ^ L ' ) =

h
Of μ^ is /V-dimensional Lebesque measure, φ = μN x P is a Borel measure

on AN x X = X. Also

and we obtain

φ(B x A') = μN(B) < +oo

for open bounded E^ intervals B C AN by using P(A ) = 1, and thus φ is non-

trivial (/) on X.
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We want to show φ to be translation-invariant (II) on X If W is any X-

interval, then W = X n I with / an Roa-interval, and if u G Ί2i
 s e t

B p = U C Λ o o I \ x p \ < h ( p ) } ,

Cn = / π Π [ f l p - « ] n * ,

and

\p=l

so that

φ(Wn[X-u]) = φ(In[X-u]nX) - l im
71 -•βo

a n d

φ { [ W + u ] n X ) = ψ ( [ l + u ] n X n [ X + u ] ) = l i m
n —* σo

Now the first rc coordinate edges of Dn are those of C^ translated by the cor-

responding u coordinates. Thus taking n > the greatest of the finite number of

coordinate indices involved in /, from φ - μN x P and P (X'n /) = Q(J) we get

φ(Cn)- φ{Dn), both being the product of a normalization factor and the first

n coordinate edge lengths. Thus we have

φ(W n[X- u]) = lim φ(Cn) = lim φ(Dn ) = φ([ W + u] n X),
71—• oo 71 —» oo

as desired.

Now let[/4 + w]c^/Sίbe given for some Borel subset A of Z. If { Wι \ is a

countable disjoint /Y-interval family covering A, then also

A C U d F f n U - B ] ) C UWf.

Since

= inf [2iφ(Wi)]
AC u ^
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as the unique Borel-Hopf extension [ l , p. 54] of φ from the intervals to the

Borel sets, we have

φ(Λ) = inf &iφ(Win[X-u]))
A<Z_ U Wi

ί

= i n f ( X i φ ( [ W i + u ] n X ) ) > φ ( [ A + u ] )
AC_ U Wi

i

from

φ ( W i n [ X - u ] ) = φ([Wi + α ] n X ) .

Thus φ(A) > φ([A + u])f and symmetrically φ( [A + u ]) ;> φ(A), so that

φ(A) = φ([A + u]) for Condition II of translation-invariance.

Finally for the uniqueness of φ it is easy to see by division of intervals

into large numbers of equal subintervals that any nontrivial, translation-invari-

ant φ will have ψ(I)9 I being an interval of X, proportional to the length of each

of the edges of /. By our definition of μN and Q, this makes ψ(I) - Kφ(I),

with 0 < K < +oo and K independent of /. The extension to all Borel sets

thus gives ψ(A) = Kφ(A), A C B, as desired,

5. Haar measure and translation spaces. For the space Y our positive

result is a complete converse of Theorem 3. We shall get the result by con-

sidering a considerably more general situation. Let the Hausdorff space R be

an Abelian topological group, and as before define

u + ϋ] = u e R I u-tt)CA\

under β-group addition for A Ĉ  R and u C /?. Consider a fixed closed subset

Z of /?, which becomes a Hausdorff space under the relative topology from R,

but not in general a group under /?-group addition. Such a space containing the

zero of R is said to be a translation space if it satisfies the following con-

dition:

i) If V is any open subset of Z containing zero, then Z is covered by the

open interiors in Z of the sets of the collection | Z n [ F + α ] j u ζi R\.

LEMMA 6. X is a translation space for R = Ί2 under the metric topology.

Proof. Let V be the given neighborhood of zero, so that we have some

small p > 0 with S ( Z , 0, p) (I V. Then for any given z G Z = X we will find
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u £ Z and p ' > 0 so that

S{Z, z, p ' ) CZ n [ S ( Z , 0, p ) + u] C Z n [V + u],

w h i c h m a k e s z C int (Z n[V + u]) for C o n d i t i o n i ) . F i r s t s i n c e t h e g i v e n

z £ Ί2i
 w e c a n find f in i te Λ; s o t h a t

Σ

l / 2

and then define u €2 Z = X by un = zn for 1 <^n <_ N and un = 0 for TZ > /V. Then

set

p ' = min ί — p , A ( / ι ) for n = 1, 2, , N J > 0 ,

s o a n y % € I S ( Z , z, p ' ) h a s

\ z - u \ - p < p

Any such Λ; also has

for 1 < n < N, and

% - zrc I < P' < h ( n

for w > /V, so that # C [S(Z, 0, p) + u]. Thus

S(Z, z, p ' ) C Z n[S(Z, 0, p) + i*] f

as desired.

LEMMA 7. Y is α translation space for R — α^ under the metric topology.

Proof. If F is the given neighborhood of zero in Z = Y, we can find p > 0

with p 2 < / ( I ) and S(Z, 0, p) C V. Now either p 2 < f(n) for all τι, or else

by the definition of Y there is a unique finite N with

f(N) > p2 >
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In the first case for the given z C Z we take u = z9 and since now S( Y, 0, p) =

S(Ί2i 0, p) by p 2 < /(rc), we have

C1 / 'Ύ \ 'Ύ X Q ί y f\ \ Λ r~ r7 X "X} 1

J ( Z , z , p ) = Z n L J V ^ 2 > " , p ) + M j C Z n L K + M J

for z £ int (Z n [ F + u]) as desired for Condition i ) .

In the second case for the given z £ Z = Y we define a £ Z by wπ = zn for

1 <_ n <C /V, and wn = 0 for n > /V In this case also we have

S(Z, u,p) = Z n [ S ( Z , 0, p) + u\.

For the left side clearly includes the right side, while if y £ S(Z, u, p), then

for 1 < n < N we have

oo oo

Σ / \ 2 \7 / \ 2 2 r( \

(y. - tt. ) £ 2* {ϊi ~~ Uj> < P < / V ^ )

For n > N we have

oo oo

(y. - u.) = > y < f(n)9

so that

y £ Z n [ S ( Z , 0, p ) + i t ] ,

and hence

S(Z, u, p) C Z n [ S ( Z , 0, p) + u]

for equality. Finally since z £ S ( Z , ixp) by

/ oo \l/2

\/=/V+l /

we have

z CS(Z,u,p)cZn[V+u],

so that
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z £ i n t ( Z n [ V + u ] ) ,

S(Z, u, p) being open, for Condition i ) .

Thus X and Y are special translation spaces, so the result we shall obtain

for translation spaces applies to them. For the general translation space Z we

define the Borel class B as the σ-algebra generated by the open subsets of Z,

given by the relative topology from R. For a Borel measure φ defined over 6 we

note that Condition I of nontriviality and I I ' of translation-invariance still make

perfect sense in this more general context, if u £ /u2 i*1 Π ' ι s replaced by

M £ /?. We shall now establish that a locally compact translation space does

possess something like a Haar measure, that is a nontrivial, translation-in-

variant, regular Borel measure. First we need a few more lemmas.

LEMMA 8. // V Q_ W are both open subsets of the translation space Z and

if [ W + u ] n Z is open in Z for some u £ R, then so also is [ V + u ] n Z.

Proof. Since Z is a translation space, it is closed in R, so Z — W and Z — V

are both closed in R as well as in Z. Since open and closed subsets of the

topological group R remain such under translation, B = [(Z — W) + u] n Z and

C = [ ( Z - V) + u] nZ are both closed in R, and hence in Z. Defining A-

( / ? - [ Z + α ] ) n Z , w e have

Au B = Z - ( [ W + u]nZ)9

known closed in Z, so that i - i C β must follow. We obtain B (̂  C from F C f,

and this makes A — A C C; thus Z - ([V + u] n Z ) = A u C is closed in Z, or

[V + u] r\Z is open, as desired.

Let [ B + C] = ί x + y I x C B and y £ C \ and B" = \ x \ -x C B \ for the

following lemma.

LEMMA 9. // the translation space Z has compact subsets B and C with

B r\C — φ, then there exists some Z-neighborhood V of zero so that

[ 5 + V] n [ C + V] = φ .

Moreover, both [ F + z ] n B φ. φ and [ F + z ] n C ^ φ are not simultaneously

possible for any z £ /?.

Proof. Since B and C are compact subsets of Z, they are also such of the

topological group R. Thus there exists an /^-neighborhood W of zero so that
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[B + W"]n[C + Π = φ .

Hence F = Z n«/, so F" C ίΓ, gives the first result. If [V + z] nB £ φ and

[ F + z ] n C ^ φ , then z G [ β + Γ ] n [ C + Γ ] = φ , a contradiction, which

gives the last.

Following Halmos [ l , p. 252], if B and C are subsets of the translation

space Z, we let (C:B) denote the least cardinal (thus ^o or an integer .> 0)

of sets P of z £ R such that

C C U [B + z ] .
~~ z e P

LEMMA 10 // C is a compact subset of the translation space Z and V is

an open Z-subset containing zero, then (C : V) < +oc.

Proof. By Condition i) we have

C C U int (Z n[V -+ u]),
uβR

an open covering of compact C. Thus there exists a finite set A of such a with

C C U int ( Z n [ F + it]) C U [V + i t] ,

and hence

) < +oo.

This lemma is the only place where Condition i ) is used to get our following

main result on the existence of a Ilaar measure.

THEOREM 11. If Z is a locally compact translation space, then there exists

a regular Borel measure φ on Z which is nontrivial (I) and translation-invariant

(ID.

Proof. Since Z is locally compact, it possesses a neighborhood F t of zero

such that Vί is compact, so 0 < (Vι:V) < +oo for any other Z-neighborhood

V of zero, by Lemma 10. Also clearly

(CiV) < (C-.V,) (Vr-V) < ( C : ^ ) (Vr-V),

so we may define
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λ o ( C ) = (V,: VT1 (C .V)

and have

0 < λv(C) < (C .V,) < +co

for any compact subset C of Z and any Z-neighborhood V of zero. Following

Halmos [ l , pp. 254-256], we construct a content λ from λv. Let Ω be the

Cartesian product of the bounded closed intervals [0, ( C : ^ ) ] over all com-

pact subsets C of Z; Ω is compact by Tychonoff's theorem, and each λ^ €1 Ω.

Setting

A(V) = \λw I W' C V, W a Z-neighborhood of zero},

we see that Ω contains by compactness some λ C Π^ Λ ( F ) , the intersection

being over all Z-neighborhoods V of zero. As in [ 1 ], this function λ ( C ) de-

fined over compact Z-subsets C is a content; that is, for subsets B, C, and D

compact we have

0 < λ (C) < λ (B) < +oo

if C C β, and

λ(CuD) < λ ( C ) + λ ( D )

with equality if C nD = φ by use of Lemma 9. Also λ( Vx) = 1 since λ^ ( Vι) = 1

for any F. For translation invariance we note that if [ C + z ] Ĉ  Z for a compact

Z-subset C and z C R9 then [ C + z ] is also compact, since translation by z

is a homeomorphism of R onto /?; ( [ C + z ] : F ) = ( C : I / ) , obviously; and thus

λv([C + z]) = λv(C) for any neighborhood V makes λ ( [ C + zλ) = λ ( C ) .

Let IF be any subset of Z, define the inner content

λ*( lΠ = s u p λ ( C )

over compact C C W, and for any subset E define

φ(E) = inf λ*(JΠ

over open Z subsets W D. £• Restricting 9S to 13, we see that φ is a regular

Borel measure on Z; φ is nontrivial (I) by

φ(Z) > φiVi) > λ ( F i ) = 1 and φ(Vx) < λ ( F t ) = 1,
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( s e e [ 1 , 53 C and E, p. 2 3 4 ] ) .

It remains only to show that φ is translation-invariant ( I I ' ) . F i r s t

for z £ R and any Z-subset W having [ W + z ] C 2 . For then compact C C_ W

has [ C + z ] C_ Z and compact, so λ ( [ C +z]) = λ(C) and thus λ*([W + z]) >

λ # ( l F ) The opposite inequality follows symmetrically to give the result , s ince

any compact C C [ W + z ] has C = [ C — z ] compact with

C C ^ C Z and λ ( C ) = λ ( C ' ) .

Now if F is an open Z-subset then <£(F) = λ * ( F ) s ince λ* is monotone.

Thus If V and [ F + « ] n Z are both open in Z, and u €. R, then IP C F and

[W + u] = [V + u]nZ, where ^ = [ ( ] F + α ] n Z ) - u] so that

^ ( [ F + i t ] n Z ) = λ*([W + u] = λ * ( I F ) < λ * ( F ) = φ(V)

for part b ) of Condition II .

For part a ) , assume A G 13, u C R, and A C Vo, where F o and [ F o + u]

are both open Z-subsets . Then for any open Z-subset V ~3_ A, Lemma 8 with

V = V n Vo and W = F o both open makes [ F n Vo + u ] open also, and we note

that

[A + u] C [ F n J / 0 + ι/] c [ F 0 + M ] c Z .

Hence

λ * ( [ F n F 0 + i t]) = λ * ( F n F 0 )

makes

ΦU) = inf λ* (
open V^_A

inf λ# ( [
open VD A

V) = inf λ*(l
open VDA

~~ open
inf λ*(in< = φ ( [ A+ u ] ) .

Symmetrically, φ([A + u]) > φ(A) gives φ([A + u]) = φ(A) for our resul t .

Presumably resul t s similar to Theorem 11 are true for similar subspaces of

non-Abelian topological groups. We have considered only the Abelian case for

simplicity and because the interesting examples in analys i s are Abelian.
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COROLLARY 12. / /

liminf f(n) = 0,

then the space Y is locally compact under coincident metric and product to-

pologies, and Y possesses a regular Borel measure nontrivial ( I ) and translation

invariant ( I I ' ) under this topology.

Proof. The coincidence of the topologies and local compactness of Y is

trivial from f{n) 10; and Lemma 7 and Theorem 11 give the rest.

6. Another translation space example. In addition to X and Y, we want to

give another example of a translation space, still with R = ^ 2 Let

z, = \x€i2 I £ n2r (xny < M\
n=l

for some fixed real r > 0 and M > 0, so that clearly Zι is actually compact.

Such a space would arise by using Fourier analysis on L 2 " ^ u n c t i ° n ' s P a c e s in

which the rth derivative was subjected to a fixed bound in norm. We shall now

show that Z t is a translation space, though our proof seems unnecessarily

long.

LEMMA 13. If u £ Zi has un-0 for n > N for some finite N, and

1/2

for some p > 0, then

Zx n [ S ( Z t , 0 , p ) + ί ί ] = S(Zl9 u, p)

open in Zt.

Proof. We only need to show that

S{Zι, u, p ) C Z t n [ S ( Z 1 ? 0 , p ) + u],

the o p p o s i t e i n c l u s i o n b e i n g o b v i o u s . C o n s i d e r a n y z £ . S(Zχ, u, p); we n e e d

o n l y s h o w ( z — u) £ Zχ. H e r e 11 z - u \ \ < p , s o

-un)2 <N 2 r
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and thus from

1

- 2*
n=l

1/2

we obtain, by Minkowski's inequality,

1/2

0 <• - PNΓ <

Thus un = 0 for n > N and z £ Z t yields

N

Ύ n7

n=N+ί

1/2

« 2 r u « ) 2 - Σ »a

/v
2r

Thus we have shown that

N I 1 / 2 \2
a r u ) 2 P HΣ »a ru»)

N

71 = 1

1/2

n2r (zn-un)
2

1/2

so (z — u) £. Zί as desired.

THEOREM 14. Z t satisfies Condition i), and hence is a compact trans la-

tion space possessing a Haar measure in the sense of Theorem 11.

Proof. We merely need to verify Condition i) for Z 1 # Thus given any open

Z^subset V containing zero and any z £ Zl9 we shall find some u £ Zγ and

p > 0 so that S(Zl9 0, p) C t7 and
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z C Zχ n[S(Zl9 0, p) + u] = S(Zl9 u, p)

o p e n in Zl9 w h i c h m a k e s z G int ( Z t n [ F + u l ) , a s d e s i r e d . H e r e w e n e e d

c o n s i d e r only 2 ^ 0 , s i n c e u = 0 m a k e s 0 G F = i n t (Zιn[V + u]) for t h e

r e s u l t if z = 0. S i n c e z ^ 0 , we may c h o o s e /V s u f f i c i e n t l y l a r g e s o t h a t

Σ -

h a s 0 < β < 1/5, a n d s o t h a t

yJM

2Nr
'<PX

for some pχ such that S {Zl9 0, p^ ) C_ V. Let

so

p < — < p t and S(Zl9 0, p) C F .
~" 2Λ'Γ

Define z/ G Z t by un = zn for 1 < n < N and un = 0 for n > N.

we have

Lemma 13,

Zx n [ S ( Z l 9 0 , p ) + u ] = S ( Z l 9 u , p )

o p e n i n Z ι # F i n a l l y t o c o m p l e t e t h e p r o o f w e h a v e z £ S { Z X , u , p ) , f o r

1
- « I I 2 = Σ

N
2r Σ » 2 r ( ^

— 2, n (zw) < — —
N2Γ \n = l /V2r 4

(2/Vr)r\2 Σ -2
= P
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or 11 z - u 11 < p, as desired, since β < (1 - β )/4 from 0 < β < 1/5.

7. Summary of results. We have discussed here the translation spaces

X = \xCl2 I K | < h(n)\

and

Y =\xCl2\ £ xf < f { n ) \ ,

and also

Zι=\xCl2\ Σ n2r(xn)
2 < M\

n-ϊ

in § 6 , all being subspaces of real separable Hubert space. For X under the

metric topology we have found (Theorem 3) that there exists no nontrivial,

translation-invariant (II or I I ' ) Borel measure if

lim inf h(n) > 0
n —><χ>

u n d e r t h e p r o d u c t t o p o l o g y we h a v e t h e s a m e c o n c l u s i o n i f A ( w ) = +oo i n f i n i t e l y

often ( T h e o r e m 4 ) . If

which is equivalent to local compactness, then under the metric topology X has

a nontrivial, translation-invariant (II) Borel measure which is unique up to

constant factors (Theorem 5). For Y under the metric topology

lim inf f(n) = 0,
71

or thus f(n) iQ, is equivalent to local compactness, and necessary and suf-

ficient for the existence of a nontrivial, translation-invariant ( I I ' ) Borel mea-

sure (Theorem 3 and Corollary 12). Also we found (Theorem 12) that any

locally compact translation space possesses a nontrivial, translation-invariant

( I I ' ) Borel measure; thus so does Zγ (Theorem 14).

It is clear from the foregoing results that local compactness is in general
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the crucial condition for the existence of a nontrivial, translation-invariant

Iiorel measure. This is well known for topological groups [ 5, p. 144], and con-

jectured for spaces with a group germ (a neighborhood of zero in which group

addition is always possible). However, it is to be noted that neither X nor Y,

when locally compact, nor Zι has a group germ. Thus our results seem to be

new, and the concept of a translation-space a fruitful one. In fact the idea of a

group germ cannot lead to anything here; for it is not difficult to see that any

convex metric subspace of ΛJ2^ which is locally compact and contains a group

germ under Λ/2~
vector-addition, must be finite dimensional, hence a subspace of

EN and thus trivial. In connection with local compactness it should be noted

that our results are not complete for X; here if Σ ^ t Λ ί r c ) ] 2 = + oc the space is

not locally compact under the metric topology and presumably no nontrivial,

invariant Borel measure exists. We could only show this if

lim inf h(n) > 0,
n—* oo

which assumes more.

The construction of an invariant measure on subspaces of real separable

Hubert space suggests an attempt to carry over vector analysis from E^ In

particular, in a later paper the author investigates the relationship between

^-vector-differentiation [6, p. 72] and Fourier transforms over X. Here X is a

modification of Jessen's torus space [3] and can be made into a group, so

standard Fourier theory applies [7 or 5]
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