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Introduction

In attempting to extend elementary divisor theory to the case of a linear
operator on a complex Banach space one is naturally led to a consideration of
the various equivalent definitions of the multiplicity v(A) of a complex number
A as a root of the minimal equation of a finite matrix 7. Of the numerous equiva-
lent definitions of this integer we have found only one which seems to have
some virtue when applied to the infinite dimensional case. That one is as fol-

lows: v(A) is the smallest positive integer or zero for which

LE- XYW (g )

is bounded for ¢ near A. Thus the rate of growth of the resolvent

T(H =(&E-T)!

for £ near A determines v(A). In this paper we consider the problem of deter-
mining conditions on the rate of growth and the mean rate of growth of the re-
solvent which are necessary and sufficient for a complete reduction of a linear
operator on a complex Banach space. What is to be meant by a ““complete’
reduction? There are several apparent meanings that might be given to the no-
tion of the resolution of the identity for an operator, all reducing to the clas-
sical one in the case of a finite matrix. For example, are we to require that E, be
defined for all Borel sets o or for ¢ in some sufficiently large subalgebra; should
it be countably or just finitely additive; should it be bounded or not? All prob-
lems are legitimate and in this paper we have chosen the most restrictive of
all the obvious interpretations. Consequently the conditions found on T (£) are
restrictive and the corresponding class of operators is small. On the other hand,
such operators have many important properties not shared by operators outside

this class. Other meanings for the notion of resolution of the identity will be
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560 NELSON DUNFORD

considered in another report.

Before stating what is to be meant by a resolution of the identity for 7, let
us recall that if T is a linear operator in the finite dimensional linear vector
space X over the field of complex numbers, and II; (A~ X;)¥ (A; distinct)

is its minimal polynomial, then there are projections E) with

Ex,X = [x|(T = })%x = 0]

and such that

[ = E)\1+"'+E)\k-

If, for a Borel set o in the complex plane, £, is defined to be the sum of those
E) , for which A; € o, then E, is a resolution of the identity for T in the sense
that it has the properties (i) below:

EE =E s E,=1-E, TE =ET

(i) { E_x is completely additive in o, % € X

the spectrum of 7 when considered as an operator in £_X is contained

in o, the closure of o.

If, for a given linear operator T in a complex Banach space, there exists a
family E, (o a Borel set) of operators in X satisfying (i), then E_ is called
a resolution of the identity for T. Such operators will be called spectral oper-
ators. f T is a spectral operator its resolution of the identity is unique, and
operators f(T) corresponding to scalar functions analytic and single valued on

the spectrum o(7) are given by the formula

f(")(/\)

(i) A z f(T) !
n.:

(T = \)"dE) ,

where the integral exists as a Riemann integral in the uniform topology of oper-
ators and the series is convergent in the uniform topology of operators.

The main problem is, however, to determine when T is a spectral operator.
We have endeavored to state conditions on the rate of growth and the mean rate

of growth of the resolvent

T(&)=(£-T)1
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which are sufficient and in some cases necessary and sufficient for the exis-
tence of a resolution of the identity. In order to do this, we have had to restrict
ourselves to the case where the spectrum o{(7T) lies in a sufficiently smooth
Jordan curve. To describe briefly in this introduction the nature of the results
obtained in this direction, suppose that T has its spectrum in the interval [0, 11.
The underlying assumption is then that for each A € [0, 1] there is a positive
integer v(A) and a positive number M (A) such that

(iii) M) T+ i) < MOV, 0< |p| <1.

This alone is far from sufficient to ensure that T is a spectral operator, even

in case
v(A) = M()) = 1.

An obvious necessary condition may be stated in terms of the following notion
of residue. Let C be a rectifiable Jordan curve contained in the set where
x* T(&)x is analytic. Let o be the set of all singularities of x* T(£)x which

are inside C. Then

1

(x*, x)y =
*lo 2m

S T (£)xd¢
is called a residue of x*T(&)x. It is clear that if T has a resolution of the

identity then
(x*, x), = x*E x,
and hence

(iv) [(x*, x),| < K|z*| |x|, x € X, «* € X*,

Condiiions (iii) and (iv) are very nearly sufficient to ensure that T is a spec-
tral operator. In reflexive spaces they are sufficient. In general though there

are operators satisfying (iii) and (iv) with
v(A) = M(A) =1

and not possessing a resolution of the identity. A final condition which in the
case of a weakly complete space X makes the set of (iii), (iv), (v) sufficient

for the existence of a resolution of the identity is the following. Let M), N) be
)V()\)

zeros and the range of (T - A , respectively. The condition is:
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(v) For every A in a set dense in [0, 1], M\ + N) is dense in X.

In case v(A)=1, the condition (iv) may be stated in the equivalent form:

(iv)” Lwb.  f* 2% (T (A + i) = T(A - i)} x| dA < 0.

o<p<t

Unless v(A)=1 the condition (iv)’ is more restrictive than (iv). However
there is a condition analogous to (iv)” which is equivalent to (iv). It may be
stated in terms of a decomposition of the resolvent. It turns out that for a spec-
tral T there are two operators U(¢) and V (£) such that

T(£) = U8 + V(&)

and such that x*V (&) x is the derivative of a single valued analytic function
at every point ¢ where x*T (£)x is analytic, and U(¢) satisfies the condition
(iv)’. The condition (iv) may be replaced by:

(iv}”"  The resolvent T (¢) has a decomposition as described above.

In any one of the following situations the conditions (iii) and (iv) (or
(iv)” or (iv)’’) are sufficient for the existence of a resolution of the identity

since in these cases (v) will automatically be satisfied:
(a) The union of the resolvent set and the continuous spectrum is dense on
fo,11.

(b) There is no interval of positive length consisting entirely of points in the

point spectrum of the adjoint.
(¢) X is reflexive.

(d) T is completely continuous.

Let d(&) be the distance from & to the spectrum o(7); then a condition
more restrictive than (iii) is

(iii )’ |d™ (&) T(E)| < M, near o(T).

This condition is necessary and sufficient for the simplification of (ii) to

m-1 () (x
(i)’ (=3 Lin f_n_‘g (T ~ M)"dE), .
n=0 '

Thus, in a weakly complete space, (iii)%, (iv), (v) imply that T is a spectral
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operator satisfying (ii)’. In a reflexive space, (iii)” and (iv) are equivalent
to the statement that T is a spectral operator satisfying (ii)".

In case X is not weakly complete, the above statements remain valid pro-
viding the notion of the resolution of the identity is weakened in the following
manner. Instead of requiring that E, be defined for all Borel sets, we demand
that it be defined and countably additive on the Boolean algebra determined by
the real intervals. This enables one to define the integral occurring in (ii)’%
Thus in this extended sense we may say that for an arbitrary complex Banach
space the conditions (iii)’, (iv), (v) imply that 7 is a spectral operator satis-

fying (ii)"

Although this is the second in a series of articles on spectral theory, not
much knowledge of the contents of the first [1] paper is assumed or used. We
collect here the terminology, notation, and results from that paper that are used
in the present one. An admissible domain is an open set bounded by a finite
number of rectifiable Jordan curves. It is called a T-admissible domain in case
its boundary is contained in the resolvent set p(T) of T. The class of complex
valued functions analytic and single valued on some T-admissible domain con-
taining the spectrum o(7) is denoted by F(T) or F(o(T)). For f € F(T),
the operator f(T) is defined by the formula

1 d
f(T) = = fc FONT(A)dA,

m

where C is the boundary of some T-admissible domain centaining the spectrum
of T. The mapping, given by the above formula, of the algebra of analytic func-
tions into an algebra of operators is a homomorphism which assigns the oper-

ators I, T to the functions 1, A, respectively.

1. Operators with nondense spectra and preliminary lemmas

In this section we consider an operator T whose spectrum ¢ (T) is nondense
in the complex plane. Two conditions concerning the singularities of the ana-
lytic function (& — T) 'x are introduced (these are 1.7 and 1.14 below). As we
show later, these are necessary conditions for the existence of a resolution
of the identity regardless of the operator T or the character of the space X. The
main purpose of §1 is to show how near these two conditions come to being
sufficient. Later, in $2, we shall determine the meaning of these two conditions
in terms of the rate of growth and the mean rate of growth of the resolvent T (&)

for & near the spectrum. The basic assumption for $1 is then:

1.1. AssuMPTION. The spectrum o(T) of T is nondense in the complex
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plane.

This means that the resolvent set p(7T) of T is dense in the plane. The
chief purpose of this assumption is to prove the following lemma which asserts
that the analytic function (£— T) 'x is single valued; if this fact is already
known then Assumption 1.1 may easily, in most of what follows, be discarded.
Since 1.1 is the underlying assumption for practically all of $1, it will not be
explicitly stated in the lemmas to follow. The other assumptions 1.7 and 1.14,

and others in § 2, will however be indicated parenthetically when they are used.

1.2. LEMMA. For each x € X the analytic function T (&)x defined on p(T)

has a unique maximal single valued analytic extension.

Let f, g be two vector-valued analytic functions defined on open sets D(f),
D(g), respectively. We suppose that D(f)D(g) D p(T) and that

f(&) =T(E) x = g(&) for EE€ p(T).

Let £ € D(f) D(g). By 1.1, there is a sequence of points { € p(T) with
rfn-——) ffo, and so f(fo)= g(fo ). Thus, if p(x) is the union of all open sets
containing p (T) upon which 7 (¢£)x has an analytic extension, we have uniquely

defined upon p (x) an analytic extension of 7 (&)x.

1.3. DEFINITIONS. By x(¢£) we shall mean the unique maximal single
valued analytic extension of T(&)x whose existence is established in 1.2.
The symbol p(x) will be used for the domain of definition of x(¢{), and the
symbol o(x) will be used for the set of singularities of x(&). Thus o(x) is
the complement of p(x), and p(x) D p(T), 0(x) C a(T).

1.4. DEFINITION. By [x] we shall mean the smallest closed linear mani-
fold containing all of the vectors T(&)x, & € p(T).

1.5. LEMMA. For every x € X we have:
1.5.1. x € [x];

L.5.2. f(T) [x]cClx], fE€F(a(T));
1.53. x(&) € [x], £ E€p(x);

1.54. [yl clx], y € [x].

Let C be a large circle such that

1
%= o= fc T(&)xdé € [x];
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this proves 1.5.1. Let y € [x] and f € F(o(T)). Since y may be approximated
by sums of the form EO(]- T(&)x, f(T)y may be approximated by sums of the

form

Yo, TN (T x = Loy — . (OTOx

i T T £ ¢

where I" is chosen, in the domain of regularity of f, to include ¢(T) and ex-
clude the points &;. Thus f(T)y € [x], and 1.5.2 is proved. Next let éo € p(x)
and, using (1.1), choose a sequence { € p(T) with fn — fo . Thus

T(&)x —x(,),

and since [x] is closed we have x(fo ) € [x]. Finally if ¥y € [x] we have,
by 1.5.2, T(&)y € [x], £ € p(T), and thus [y] C [x]. This completes the
proof of 1.5.

1.6. LEMMA. For x, y € X we have
olx +y) Coalx)ualy),
and for & € p(x) p(y) we have
2(E) + ¥ (&) = (x + ¥) (&).

On the open set p(x) p(y), the function x(&) +y(&) is an analytic ex-

tension of

T(Ex + T(E)y = T(E) (x +y), £ Cp(T).
Thus p(x +y) D p(x) p(y), and for & € p(x) p(y) we have, by 1.2,
(&) + y(€) = (x + y) ().
The second assumption which is needed in most of $1 is:

1.7. AsSUMPTION. If ¢ is a closed set of complex numbers, then the set

[o] of all vectors x with o(x) C o is also closed.

1.8. LEMMA. (Assumption 1.7.) If 0 is a closed set of complex numbers,
then [o] is a closed linear manifold, Tlol C [o], and the spectrum of T when

considered as an operator in [ o] is contained in o.

That [o] is a closed linear manifold follows from 1.6 and 1.7. Since
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Tx(p) = T(p) Tx,

for yin p(T) we have p(x) C p(Tx) or 0(Tx) C o(x), and thus T[o] C [al.
Now let x € [o], £ € o (the complement of o in the whole plane), fn € p(T),
and £ — £. Since for p € p(T) we have

T(wx = (& - DT(WTE)x,
it follows that p(x) C p(T (£ )x) and thus T(£,)x € [o]. Since
T(E)x = x(£))— x(8)

and [o] is closed, we have x (&) € [o]. Thus, since

(& - T)x(&) = x,
it follows that

(&-T)lol = [o].
To see that £ ~ T is one-to-one on [0 ], suppose that

(E-T)y=0,y €lol.

Then

y

A

and a(y)C(rf)ﬂ0=¢,

the void set. This means that y(\) is analytic for all A and thus that y = 0.
Hence, if £ € o’ then é — T is a one-to-one map of [o] into all of itself.

1.9. LEMMA. (Assumption 1.7.) For every pair oy, o, of disjoint closed

sets, there is a constant K (o, 0, ) such that

% (&) < K(ay,05) |x|, £€oy, x € lo,].

By 1.8, o, is contained in the resolvent set of T when considered as an
operator in [0, ). Since x (&) is the value of this resolvent at the point & € oy

when operating on x € [0, ], the present lemma follows from the preceeding one.

1.10. LEMMA. (Assumption 1.7.) For every x € X we have T[x] C [x],

and when T is regarded as an operator in the space [x] it has o(x) for its
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spectrum and p(x) for its resolvent set.

It was proved in 1.5.2 that T[x] C [x]. Let p, be the resolvent set of T as
an operator in [x]. Using 1.5.2 again, we readily show that p(7T) C p,;; and
since T (£)x is analytic on p, (since x € [x], by 1.5.1), we have p, C plx)
We shall now show that for every y € [x] we have p(y) D p(x), which means
that for every y € [x] the function T(&)y defined for £ € p(T) has an ana-

lytic extension to p(x). Elements of the form
(%) y = ZaT(E)x, &€ p(T)
are dense in [x], and for such y we have, for u € p(T),

T(u)y = Za].T(fj) T(u)x.

Thus T(u)y has the analytic extension ZO(].T(fj)x(p), p € p(x), and so,
for y of the form (*), we have p(y) D p(x), o(y) C o(x). Let y € [x], and
let y be a sequence of vectors of the form (*) with y, — y. Since y, ~y, has
the form (*), we have o(y, -y ) Co(x). Let N be a neighborhood whose
closure N C p(x), so that N and o(x) are closed disjoint sets. By 1.9, then,

17,(6) = 5, (O] = [y, = y,) ()] < K(N,0(x)) |y, - y,| >0
uniformly for ¢ € N. The function

f(&) = lim y, (&)
is analytic on N, and for every £ € p(T)N we have
f(&) = lim y (&) = lim (£ - Ty, = (£ - TYy'y.

Hence f(&)=y (&), €N, and p(y) D p(x). Finally we let £ € p(x) and
show that fo — T is a one-to-one map of [x] into all of itself. Let y € [x]; then
since fo € p(x) C p(y) we have, by 1.5.3 and 1.54, y(rfo) € [yl cxl.

Since

(£-Tiy(&) =y
for £ € p(T), this same equation must hold for £ € p(y); in particular,

(& - Ty(£) = y.
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Thus (& — T)[x]=[x]. To see that £ — T is a one-to-one map on [x], let
y € [x]and (£ - T)y = 0. For large £, we have the expansion

o (T-¢)"
T(é) =y ———;
nmo (£-¢& )"

hence T (&) y=y/(&- fo). Thus if y £ 0 we have o(y) consisting of the single
point & € p(x) C p(y), a contradiction since p(y) and o(y) are disjoint.
Thus it has been proved that for every ¢ € p(x) the operator £ — T is a one-to-
one map of [x] into all of itself, and hence p(x) C p, C p(x).

1.11. LEMMA. (Assumption 1.7.) If y € [x] then o(y) C o(x).

This was proved (in the form p(y) D p(x)) during the course of the proof
of Lemma 1.10.

1.12. LEMMA. (Assumption 1.7.) The set o(x) is void if and only if x = 0.

If x=0 it follows from Definition 1.3 that o(x) is void. Conversely, if
o(x) is void then by (7) the spectrum of T as an operator in the space [x] is
void. This, according to Taylor’s result [3], implies that [x] consists of the

zero vector alone. Hence x = 0,

1.13. LEMMA. (Assumption 1.7.) Let o be a set of complex numbers, and
o’ its complement. If x + y = x, + v, where 0(x), 0(x) C o and o(y), o(y,) C

o’, then x=x, y = y,.
The sets

gy = 0o(x)uolxy), 05 =0ly)uoly)

are bounded, closed, and disjoint. Since, by 1.6, o(x+y) C 0, u a,, there is

an admissible contour C containing o, and excluding 0, which lies in p(x + y).

Thus

1

1 1
X d = — —
= [ e (0= — [ x(Ode s — [ y(&)a

27

Since y (&) is regular in the closed domain bounded by C, the second integral
on the right side of the above equality is zero. Since o(x) is contained within
the domain bounded by C we see, from 1.10, that the first integral on the right

of the above equality is equal to x. Hence
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1
— [ () (DdE=x,

2

and similarly

1
5o ey (OdE = x

Thus x=x;, y =y,.

In most of what follows we shall need besides Assumption 1.7 the fol-

lowing:

1.14. ASSUMPTION. There is a constant K, depending only upon T, such

that for every pair x, y of vectors with o(x), o(y) disjoint we have
l2] < Klx + y].

1.15. DEFINITION. By s, we shall mean the family of all sets o with the
property that vectors of the form x +y with o(x) C 0, 0(y) C ¢” are dense in
X. Clearly, if 0 € s, then the complement ¢* € Sy

1.16. LEMMA. (Assumptions 1.7, 1.14.) For o € s, there is one and only
one bounded projection E, on X with the properties E,x=x if a(x) C o}

Eox=0if o(x) C o’ This projection has the further properties that
Eo’ + Eo-l =1, EU.EO.I = 0, IEUI < K.

Vectors of the form z = x + ¥ with o(x) C g, 0(y) C ¢’ are dense in X. In

view of 1.13 it is permissible to define, on this dense set, £,z = x. From 1.14
it follows that |E,z| < K|z |. Now if

z; =% + y, with o(x;) Co, 0(y) Co’,
then
Z2+21=x+%x +Y+Y¥Y1,
and, by 1.6, 0(x + x,) C 0, o(y +¥,) C ¢’. Thus
E(z+ z)=Ez+ E 2z,

and £, is additive and continuous on a dense linear set. Thus £_z is uniquely
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defined for z € X by the requirements that £ z is continuous in z. For elements

z of the original dense set we have
Eiz =FE,x=x=FE,z, where z=x + vy, o(x) Co, o(y) Co”.

Thus £? = E,. It is also clear that
E,Eyso =0 and E, + Ejr = 1.
If A, is another bounded projection with the properties
Ayx = x if 0(x) Co and A,x = 0 if o(x) Co’,

then for z=x +y, where 0(x) C 0, 0(y) C 0’ we have 4,z =x=FE_ 2z, and
hence A,z = E, z for every z € X.

1.17. LEMMA. (Assumptions 1.7, 1.14.) If 0 € s, and f € F(o(T)), then
f(TYE, = E,f(T).

letz=x+7y,0(x) Co, o(y) C o’. Then
f(TYz = f(T)x + f(T)y.

By 1.5.1 and 1.5.2, f(T)x € [x]; and by 1.11, 0 (f(T)x) C 0(x) C o. Simi-
larly, o (f(T)y) C o(y) C o’. So

E f(T)z = f(T)x = f(T)Eyz.

Since the vectors z are dense, the lemma is proved.

1.18. LEMMA. (Assumptions 1.7, 1.14.) We have o (E,x) C o(x), 0 € sy,
x € X.

We have, by 1.17,

T(§)Eyx = B, T(§)x, & €p(T),

and hence the analytic function T(&)E, x has the analytic extension E, x (&)
for £ € p(x). Thus p(E,x) D p(x)and 0(E,x) C o(x).

1.19. DEFINITION. For o € s,, define X, = E,X.

1.20. DEFINITION. If M is a closed linear manifold in X for which TM C M,
we use the symbol o (M) for the spectrum of T when considered as an operator

in M, and the symbol p (M) for the resolvent set of T as an operator in M.
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1.21. THEOREM. (Assumptions 1.7, 1.14.) If 0 € s,, then TX, C X, and

o0(X,) C o, where o is the closure of 0.

It follows from 1.17 that TX, C X,. Let §¢5. We shall first show that
¢~ T is one-to-one on X,. If x € X, (£-T)x =0, then x(A)=x/(A= &)

since for all large A we have
> (r-=-46n"
-y 29T
n=0 ()\—f)r”l

Since x € X, , we have x = E,x; and since x()) is everywhere regular except
possibly at the point & € 0%, we have o(x) C 0, from which it follows that
E,x =0. Thus £~ T is one-to-one on X,. We next show that (- T)X, = X,.
Let

x € X, and x, + y, — %, o(x,) Co, o(y,) Co”.
Then

x=Eyx = lim E, (%, + y,) = lim Egx, = lim x,.
n n n

Let y, = %, (£), so that
Yo = Ym = % (&) = %, (§) = (%, = x) (&),
and hence, by 1.9,
[¥n = ym| < Ki |% = 2 | — 0.
Lety = linm Yn s so that

x = lim x, = lim (£ = T)y, = (£ = T)y.

It remains to be shown that y € X, . Since & € p(x,), we see from 1.5.3 that
Yo = %, () € [x,1,

and thus 1.11 gives o(y,) C o(x,) C 0. Thus y, = E_y, € X, and y € X,.
We have shown that if f¢ o then { - T is a one-to-one map of X, into all of
itself; that is, o (X,) C o.

1.22. LEMMA. (Assumptions 1.7, 1.14.) If 0 € s, then o(E x) C 0 o(x)
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for every x € X.

In view of 1.18 it will suffice to show that o(E_ x) C o. From 1.21 it fol-
lows that p(k,x) D ¢’, and thus o (E, x) C 0.

1.23. DEFINITION. The symbol s, will be used for the family of all sets
o having the following property. For every x € X and every € > O there are

vectors x,, x{ with o(x,) C o(x)o, o(x{) Co(x)0o’ and |x; + x{ — x| < &
1.24. LEMMA. The family s, is a Boolean algebra and s, C s;.

That s, C s; is clear from the definition of these classes. Let 0;, 0, € s,,
x € X and € > 0. We then have
X =% +x{ + uy, 0(x,) Colx)oy, o(x{) Calx)af, |u| < €/2;
x{ = %y + %5 + Uy, 0(x,) Col(x{)o,, o(x]) Colx{)oy, |u,| < €/2;
X=Xy o+ Xy + Xy + Uy + Uy,
Using 1.6 we see that
(%, + 2%,) Col(x)u o(xy) C(o(x)oy)u (o(x])oy)
C (o(x)oy)u (o(x)ay)
=a(x) (o, v 0;),
and
o(x;) Col(x{)o, Colx)o{ of =0(x) (o, uoa,)".

Thus o, u 0, € s,. It is clear from 1.23 that s, is closed under complementa-
tion and that the void set and the whole plane are in s,. Thus s, is closed

under crosscut; that is, 0, 0, € s, if ;, 0, € s,, and s, is a Boolean algebra.

1.25. THEOREM. (Assumptions 1.7, 1.14.) On the Boolean algebra s, the

projections E_ have the following properties:

’

Eol u EO’2 = Eal U oy Eal Ecr2 = E"l gy 1 kg = Eg;

E (my=1, E¢ = 0, where § is the void set.
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If the projections E,, o € s, are ordered in the usual fashion (that is,

E

‘o

C E,, means E, E, = L, or equivalently X, C X, ) then, by defi-
nition, £, v E,, is the smallest projection containing E, and E . It may be

given by the formula

Eg v Eyy = Ey + Eyy — E, E, .

02
This formula is readily derived from the relation
Ey Eq, = Es, Es ,
which of course will be established as soon as we have shown that
EU1 E(72 =Ey o
Now let x € X, ¢ > 0, 0y, 0, € s,. We have
X=Xy Xy F U, X =Xy o+ Xy + UV, Xy =Yy o+ Yy o+ W,
where |u|, |v], |w]| < €, and
o(x,) Col(x)oy, ol(x]) Co(x)oyf,
o(x,) Col(x{)o, Co(x)of o, C(0y 0,)7,

o(x;) Co(x{)o; Colx)o{ a5 C(oy vo,) C(o,0,),

oly,) Colx,)o, Colx)o;0,,
o(y;) C o(x;)os Colx)oyo5 C (o) 03)70,.

Place z=y, +y; +x, +x5, y=u+v+w, so that x=2z+y and |y| < 3e.
Remembering that £, x = x for every x with 0(x) C cand E,x=0if o(x) C o’,

we see from the above inclusion relations that
Ealf=3’2 + Y7, Eaz Z =Yy + X2,
E__E

o9 UIZ=E01EUZZ=EUIUZZ=)'21

(Egy + Eqy = Eg Egy)z =y, + 95 + %5 = By o, 2.

Hence
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(Eg, Eqy = Eq, o,)%| = [(Eg, Eq) — Eq o))y | < 3K(K+1)e.
Since ¢ is independent of x, we have
Eo Eyy = Egy oy = Eg) Ey .
Also,
|((Eg, vEs,)) — By yo,))x | <4K |y| < 12K ¢,

so that £, v k) = Ecrlug2 . The remaining conclusions have been proved
in 1.16.

1.26. DEFINITION. (Assumptions 1.7, 1.14.) The symbol s; will be used
for those sets o Csl for which there exist closed sets g , Vn€ s, with

v, Co, p, C o’y n=1,2,+++ and
x = lim (E, + E, )x, x € X.
n

1.27. LEMMA. (Assumptions 1.7, 1.14.) The family s; is a Boolean algebra
and s3 C sy

If o €5, and ft,s v, are as in 1.26, then by 1.22 we have

o(Ean) Cuy, o(x) C o o(x), U(E“nx) Cp, o(x) Co’alx),

and so o € s, that is, s; C s,. It is clear that s; is closed under comple-
mentation; hence, in order to show that s; is a Boolean algebra, it will suffice
to show that it is closed under the operation of forming unions. Let oy, 0, € s3
and v(i, n), p(i, n), (i=1,2; n=1,2,+++) be closed s, sets with v(i, n) C
o; nli, n) C O'i’ (i=1,2) and

x=1§lm (Ev(i,n)+EM(i.n)>x (i =1,2).
Then
x=E, %+ E/L(l n) % Uns and u, — 0.
Thus

’ - F ’ 3 ,
EG‘ x = bﬂ(l'n)x + kgl up and E x ——)EC,1 x.

w1, n)
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This last fact shows that the sequence v, defined by the next equation has the
property that v, — 0:

E (i,m* = EV(Z, n)Eu(l,n)x + £

ulz2, n)E#(l, ¥t Un-

Upon substituting the above expression for E#(l n)® into the formula defining
’
un, we see by using 1.25 that
x=FEy, x+ E, %+ uy + vp,
where

v = v(l,n)uv(2,n) p(l,n) and p, = p(2,n) p(1l,n).

Since vy, p, are closed s, sets (by 1.24) with v, C 0y v 0y, and p, C 0of 05 =
(0, uo,)’ it follows that o, u 0, is an s; set, and the lemma is established.

1.28. LEMMA. (Assumptions 1.7, 1.14.) Let 0 € s5, x € X, € > 0. Then
there are sets p, v € s, with p open, v closed, p D 0 D v, and such that
|Eyx| <€, o Cp—v, € sy;
| Eox — Eg x| < €, pDog Dv 0 € s,.
Since o is an s, set, there are closed sets v, p” € s, with
vCo, p’Co’y x=FEyx + Eyex + u,and |u] < €.
Then
|Ex — Eyx| = [Eu| < Ke.
Let wCp— v, @ €s,. Then
|Epx| = |EgEu-vx| = |E,(E, - E))x| < K*€;
this proves the first conclusion. Now
By = Eoy = Eoeooy + Loy = Eopoooy =

ooy < Ecr-(;rU1 - Eol-ocrl ’

and since 0—-00, C p—v, 0, —00; C p—v, the second conclusion follows
from the first conclusion.
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1.29. LEMMA. (Assumption 1.7, 1.14.) If 0y, 0 € s3; 0y C 0pyq(m=
1,2, «<:); and 0,;, — 0; then Es x —E,x, x € X

Let x € X, € > 0 be arbitrary. Let €, > 0 and 3>
pick open sets p, € s, with y, D o, and

, €n < € Using 1.28,

|Eox| < €1y @ C pp — 0y, mCsz.
We shall now show that
n
(*) Iwa|<z Ej,OJC([Ll +"'+ﬂn)_0n, G)CS2.
j=1
The statement (*) is true for n = 1. Assume that it is true for n and let
® C (py +eootpnt1) = Op4y, ®€s,y,
so that

o=ol(p +eor+p) = 0p] + @lpgey = 0p4y)

and w = w; + @,, where

op=ol(pg+e+u) = 0n] (ppar = 0ns1) 05 = @ (pnay ~On+1).
By our induction assumption we have
n
Baxl < T &
j=t
and since w, C pp+1 — Op+ we have

le2x$ < €n+1e

Since w,; and w, are disjoint, it follows that

n+1
|Euxl| < lelxI + [szx‘ < z 6]‘;
j=1

this proves (*). Now let § =y +.+++p, so that £ is open, increasing with
n, & O op, and [E x| < € for every 0 € s, with o C ¢, — op. Using 1.28, let
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g, v € s,, p open, v closed, p D o D v, and ‘Eax—Eolx| < € for every
o, € s, with u D 0; D v. We have

pd> U & pdp U op=podadr
m=1 m=1

Since v is closed, there is an integer k, such that
k
p 2 u fm#=§kﬂ-j7’a (kz_ko).
m=1
Thus

|Eox ~ E, x| < e, (k> ko)

$k

and since fk p—o C {fk — 0, we have, from (*),

\Efk“'x - Eakxl = |E

gw%ﬂ<e, (k=1,2 ).

Hence
lon—-Eka] < €, (k> ko)

this proves the lemma.

1.30. THEOREM. (Assumptions 1.7, 1.14.) For each x € X the set function

E_x is countably additive on the Boolean algebra s;.

The conclusion of the theorem means that if o, o, € s;, 0, 0, is void for

n#m,o= UT op, then

Y Eox = Egx.
n=1 "

The lemma is an immediate consequence of 1.25, 1.27, and 1.29.

1.31. DEFINITION. By a Borel algebra of sets we shall mean a Boolean
algebra of sets which is closed under the operation of taking denumerable

unions.
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1.32. DEFINITION., The smallest Borel algebra of sets containing the

Boolean algebra s; will be called the family of sets measurable T and will be
denoted by m(T).

In part of what follows we shall assume:
1.33. AssuMPTION. The space X is weakly complete.

1.34. THEOREM. (Assumptions 1.7, 1.14, 1.33.) The function E, defined
on s; to the set of bounded projections on X has a unique extension to m(T)

with the properties (the first of which ensures uniqueness):
(i) Ee¢x is countably additive on m(T), x € X;

(ii) |E.| < K, e € m(T);

(iii) Ee Eey = Ee, e)r €15 €3 € m(T);

(iv) Ee ye, = Ee v Eey ey, e € m(T);

(v) E¢ = Eeo, By(py=LEg =0,e € m(T), ¢ void;

(vi) f(TYEg = Eof(T), e €m(T), f € F(a(T)).

For point sets e,, e we mean by e, — e or lim, e, = e that

o0 o0 (o] [>.9)
e= [ Ue= U n €n»
m=1 n=m m=1 n=m

and we recall that if

a, —a, b, —b

then
apb, — ab, a, v b, —a v b, af —a’.

We define a transfinite sequence of Boolean algebras By, 3, «++ as follows:

B, = s3 and B, consists of all e such that there exists a sequence

e, € U

&Y B,
with e, — e. Thus m(T) = Uy, B, where w is the first ordinal whose cardi-
nal is that of a nonenumerable class. For each x € X and x* € X* there is,

according to a well-known theorem of Hahn, a uniquely defined countably
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additive numerical set function m (e, x, x*) on m (T ) such that
m(e, %, x*) = x*E.x, e € s, = B,, x € X, x* € X*.

We first show that for every x € X and e € m(T) there is a unique vector
x, € X such that

x*xe = m(e) X, x*), x* C X*.

This is true for e € B,. Assume that it is true for e € Uyca By and let e € B,
en, € UycaBys en — e. Then

x*xe, = m(eq, x, x*) — m(e, x, x*), x* € Xx*.

Since X is weakly complete, there is a vector x, with
x*xe = mle, x, x*), x* € X*,

This last equation shows that x, is independent of the sequence e, —e and

also is uniquely defined. Next consider the statements:
Im(e, =, x*)| < Klx| |x*[;
mle, x; + %y, x*) = m(e, xy, x*) + m(e, %y, x*);
m(e, 0x, x*) = am(e, x, x*), O scalar.

These relations hold for e € Bg» and since m(e, x, x*) is continuous on m(7T)
in the topology e, —» e it is seen by induction that they hold for any e € m(T).
They show that for fixed e € m(T) the vector x, is linear and continuous in
x; that is, for e € m(T) there is a bounded linear operator £, on X with E x =

x.. Hence we have

*E,x = m(e, x, x*), |E,| < K, e € m(T), x € X, x* € X*,

The uniqueness of E. follows from the uniqueness of m(e, x, x*) asserted by
Hahn’s theorem. That E.x is countably additive on m(£) in the strong topology
of operators and not merely in the weak topology follows from a theorem of
Orlicz concerning weakly complete spaces. Banach has restated the theorem of

Orlicz in a form to hold on any Banach space and it reads as follows [2]:

ORLICZ-BANACH THEOREM. If all the partial sums of an converge

weakly to an element, then the series &ux, is unconditionally convergent.
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The countable additivity of E¢x is a corollary. For let
enem=¢an7'ém,en€m(T),e= Uen-
n=1

For every set = of integers, let

Then we have the weak series convergence:

> Ee x =Eg x.

nemw

Thus, according to the Orlicz-Banach theorem, ZEenx converges uncondition-

ally in the strong vector topology. The sum is, of course, E,x since
x*Egx = Zx*Ee x, x* € X*,
n

Thus we have proved statements (i) and (ii). Statement (iii) holds for e,
e, € By. We suppose that

EaEb =Eaba a’b € u ;8')/1
y<a

and let

a,b, € U B, with b, — b€ B,.
y<a

Then

x*E Epx = m (b, x, x*Eq ) = lim (b, x, x*E;) = lim x*EaEbnx
n n

= lim x*Egp x = lim m(ab,, x, x*) = m(ab, x, x*) = x*E,px.
n n

Thus

EgEp = Eqp for a € U B, , b€ B,.
y<a

Next choose
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ap € U B, with ap — a € B,.
y<a

Then

x*E  Epx

m(a, Epx, x*) = lim m(a,, Epx, x*) = lim x*Eanbe
n n

i

lim x*E; px = lim m(a,b, x, x*) = m(ab, x, x*) = x*E px .
n n

This proves (iii). Statements (v) and (vi) are readily proved by induction,

and (iv) follows from (iii) and (v).

1.35. DEFINITION. If for each e € B, the Borel sets in the complex plane,
there is a bounded linear operator £, on X, then the function £, on B to the
ring of operators on X is called a resolution of the identity in case Egr =1~ Eg,
EEIEG32 = Eele2 for e, e;, e, € B, and x*E,x is countably additive on B for
every x € X, x* € X*,

1.36. LEMMA. A resolution of the identity has the further properties
(i) Egx is countably additive on B, x € X;
(ii) sup |Ee| < o0
e€B
(iii) EelEe2 = Eelez’ Eeer2 = Eel uEez, ey, €, € B;
(iv) E£J= E., E¢ =0, E, =1 e € B, ¢ void, p = the whole plane.

Statement (i) follows from the Orlicz-Banach theorem, and (ii) from the
principle of uniform boundedness. E4 = 0 since E. is additive in e; hence
I= EC'{P = Ep. The second part of (iii) follows from the first part and (iv )

1.37. DEFINITION. A resolution of the identity E, is called a resolution

of the identity for the linear operator T in case

TE, = E,T and o(E.,X)Ce, e € B.

1.38. LEmMMA. Let X be weakly complete, and let T be a bounded linear
operator in X whose spectrum is nondense. Then T has a resolution of the
identity if and only if it satisfies the conditions 1.7, 1.14 and:

1.39. For every complex number A and every € > 0 there is an s; set of
diameter < € and containing A as an interior point.

Furthermore, when T has a resolution of the identity E, it is unique and has
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the following properties:
(i) if o is closed, then E,x = x if and only if 0(x) C 0}

(ii) o(E,x) Coo(x), o€ B, x € X.

To prove the sufficiency of the conditions it is, in view of 1.34, sufficient
to show that 0 (X,) C e, e € B, where X, = E,X. Let £ be a complex number
not in eo (7)), and with each A € eo(T) associate an s, set oy whose diameter
is less than 1/2 the distance from & to eo(T) and such that A is in the in-
terior of o). A finite number o,, -+, 0, of these sets g, covers eo(T), and
since s; is a Boolean algebra the set 0= U_| o; € s;. Since s; C s;, we see
from 1.21 that o(X,) C o. But since

we have X, C X,. Since ¢ ¢ o and 6(AX,) C o, the operator £ ~ T is one-to-

one on X, to all of X, and hence likewise on the invariant subspace X, . Thus
EE€ p(X,), (ea(T)) Cpl(Xe), €D ea(T)Doa(X).

It will now be shown that if T has a resolution of the identity £, then it is
unique. Let 4, also be a resolution of the identity for 7. et o, o, be disjoint
closed sets of complex numbers. Since o (E; X) C oy, the function T(&) By %

analytic on p(7) has an analytic extension to o{. Hence also the function
T(¢) Ao by % = A, T(&) kg %

analytic on p(T) has an analytic extension to o{. Since o(4,X) C o, the

function T (&) Ay Ey % has an analytic extension to 0”. Thus
p(AoEcrlx) D gfuo’={0,0)" = the whole plane;

that is, 0 (4, E, x) is void. By 1.12 we have 4, £, = 0. Likewise £, A, =0.

Now there are closed sets 0, C op4; — 0y, and hence 4, x — Aypx = A7 .

Then

0=4,,E; %= Eq Ay x —E; AS x = AJ Eqy x.

0= Ey (I=4g) = (I=Ag VE, , Ey = Eg Ay = Ay E

oy 7oy oy 7oyt
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Similarly,

Ay = E, A =E

1 o1 oy oyp°’

Since A, x and E_ x are both countably additive on B and coincide for closed
sets o, they must coincide for all 0 & B. We shall now show that if 7 has a
resolution of the identity E., and o is closed, then £, x = x if and only if

o(x) C 0. Let o be closed and £, x = x. Since 6(X,) C o, the function
T(EOE,x = T(&E)x

analytic on p(7T) has an analytic extension to ¢’ Thus p(x) D 6%, o(x) C 0.
Conversely, let 0(x) C o, where ¢ is closed. Let o0, be closed, 0, C 0,4, —

o’, so that
p _—
x=FE x+ Ejx=FE,x + Egox = E_x + hnm E, x.

Since o, 0(7T) and ¢ are disjoint, closed, and o, 0(T) is bounded, there is an

admissible contour C, surrounding o, 0 (7T) and excluding 0. Also, since
o(X, ) CopolT),

we have

1 1
Eopo = =— . (B2 (8)dt = =— [ E, x(&)de.

271 c 271 n
However, since o(x) C o, the function x(¢) is analytic on and within C,.
Thus

E, x =0 and x = £ x.

on
In this proof we have used the equality
(By, ) (€) = Eq x(£),
which is clear from 1.2 since both functions are analytic extensions of
T(E)E, x = E,, T(&)x

on p (7). We shall next show that o(E_x) C oo(x) for every o € Bandx € X.

Since o(X,) C o, it is clear that 0 (E,x) C 0. Since
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(Eyx) (&) = Eox(&) for £ € p(T),

we have p(E x) D p(x), 0(E,x) C o(x). Thus 0(E_ x) C oo(x). The neces-
sity of 1.7 follows immediately from (i). Next we shall show the necessity of
1.14. As pointed out in 1.36 (ii) it follows from the principle of uniform bound-

edness that

sup |Eg| = K < 0.
eEB

Let 0 =0(x), 0, = o(y) be disjoint. Then, by (i), £,x = x; and, by (ii) and
1.12, E,y = 0. Thus

|%| = [Eq(x + ¥) | <K |x + y].

Finally we prove the necessity of 1.39. Let ¢ be a circle and its interior.

Let 0, be closed and 0, C 0,4; — 0" Then £_x + E, x —x. Since
0(Eyx) Coa(x) and o(E, x) Copa(x) C a’a(x),

we see that o is an s; set,

II. Operators whose spectra lie in a rectifiable Jordan curve

In order to apply the final lemma of $1 we find it necessary to restrict
further the nature of the spectrum o ( T'). Later we shall be interested in specific
cases where the spectrum lies either in a straight line segment or in a circle,
and these two cases may be treated simultaneously by restricting the spectrum
in the manner described in the next paragraph. When this is done and a rate of
growth is imposed upon the resolvent (Assumption 2.1), it is possible to give
conditions, of a nature much more applicable than those of the preceding lemma,
which will ensure the existence of a resolution of the identity. This may be
accomplished in a variety of ways, and some of the sets of conditions given
are necessary as well as sufficient.

Throughout $2 it is assumed that the spectrum o(7) is contained in a
closed rectifiable Jordan curve I'y. In order to be able to manipulate in a fairly
simple fashion the analytical operations involved, we suppose further that
I'y is embedded in a one parameter family I';(-8; < 8 < 8, 0 < §; < 1/2) of
closed rectifiable Jordan curves, with I's, interior to I's, for =5, < 8; < &, <
8y The curve I's is defined by a function

§= é‘(ky 6)’ -1 _<_A __<_.11 with f("‘lr 3) = f(l’ 8)'
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We suppose that the parameter § has been chosen in such a way that | 8| is the
distance measured along the arc £(\, 8) from the point £(X, 0) to the point
&(X, 8), and that the ares (A, 8), -8, < & < §,, for different values of A, do
not intersect. Finally we suppose that for each 6 € [- 84,801 the point £(A, &)
traces, as A increases from —1 to +1, the curve Iy in a counterclockwise di-

rection.

2.1. AsSUMPTION. The spectrum o(T) of T is contained in the rectifiable
Jordan curve 1"y described above, and the rate of growth of the resolvent T (&)
for &= &(X, &) near the spectrum is restricted by the condition

lim sup 15"V T(&)] <o, ~1 <A<,
-0

where v(A) is a nonnegative function defined for =1 < A < 1.

Since the function v(A) may be increased without destroying the above
property, and since &, < 1/2, every operator T satisfying 2.1 has an index

function v (X) according to the following definition.

2.2. DEFINITION. Any nonnegative integer-valued function v () satisfying

the condition
16"N) T(&) <1, 0< 8] <8, AE [-1,17,
will be called an index function for T.

It might be pointed out that if v(A) is defined only on the set A C [-1,1]
consisting of all those A for which £(A, 0) € 0(T), and the above inequality
is valid for A € A, then T has an index function. It is not assumed that v(X)
is bounded, and it is erroneous to conclude that T has a bounded index function
providing v(A) is bounded on A. Elementary operators exist for which every

index function is unbounded and at the same time every index function is bound-

ed on A.

2.3. LEMMA. (Assumption 2.1.) There is an index function v(X) for T with
the property that every interval of positive length contains an interval of posi-

tive length upon which v(A) is constant.

Let A be a closed subinterval of [-1, 1]. Let A, be the set of all A € A
such that

|8" T(£)] <1, 0<|8] <&y.
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Since for fixed 8§ # O the point & = £(), §), and thus T (&), is continuous in
A, it follows that A, is closed. By 2.1 we see that A = UA,, and thus the

desired conclusion follows from the category theorem of Baire.

2.4. LEMMA. (Assumption 2.1.) Let v()A) be an index function for T: 0 <
8 < 83 Ay Ay € [=1,11; &, = E(Xy, 0), & = E(X,, 0) distinct points of Ty ;
and vy =v(Xy), vy =v(X;). Let C(Ay, A,) be the rectifiable contour (oriented
counterclockwise) composed of the following four arcs. There are two cases:
If Ay < X\, the arcs are

f()\p#)y—aﬁﬂf_a; {:(/\2’#)’—85#.(_5,
EA8), Ay <A< A5 and E(A=8), A <A< Ay

whereas if Ay < A, we use the arcs

EMp), —8<n<d; Egyp) -8 <p<d;
EOG8), AL (A A5 and £ 8), A& (Mg A,).
Let P (&) be a polynomial in &. Then

1 v V.
T(A ) = — J()\“M P(E) (£-E)M (£-£)" T(&)d¢

27 C

exists as a Riemann integral, is independent of 85, and has the properties

lim I(A, X)) =0, o(I(Ay, Ay)x) C L&, &1,
0<]A,=A;|—0

where [ £,, &, 1 is the closed subarc of Ty consisting of all points of I'y which

are inside or on the contour C(A[, X,).

The integrand is defined and continuous at every point of the contour C (A,
A, ) except at the points &, and &,. Since v()) is an index function for T, the
integrand is bounded on the curve C(XA;, A,). Hence I(A;, A,) exists. It is
clearly independent of & since the integrand has its only singularities on the
curve I'y. Now let A; < A, so that C(Ay, A,) consists of the arcs 4B, BC, CD,
DA, where 4, B, C, D are given by the complex numbers

E(Ngy, =8), E(Xy, =8), E(Ny, 8), £(Ny, 8).

Let
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K = Lub. [P(&)], £ €Ty, 5 Ks= Lub. [T(£)|, &€ Ts.

let 0 < € < 8, 6= €/2, and let y, be such that for 0 < A, ~ A; < y. we have
the lengths of the arcs AB, CD, and &, &, (on [y) all less than § and also
less than €/K(§). Then the integrand f(¢) defining I(Ay, A,) for £=&(, p)

satisfies

O] <KIE=&1™ [l ITO] <K |€-41", ¢ €BC.
Since, for & € BC, we have

[é-&l <& =-&l+ 16 -8l <d+p<26<],
it follows that for & € BC, and likewise for £ € DA, we have the bound

[F(O] < K.

For &€ on AB or CD, we have

[F(E)] < KKs |[€~ &1 |€- &1 < KKs.

Thus if 0 < Ay = A; < ye, then
1
[T(Ay, )] < oy [486K + 2KKs e/Kg)l = 2Ke/m.
™
Now let x € X, n € p(T), and 7 outside of C(A;, A, ). Then
T(n) (A Ay)x

1 y 3} ]
ot f(Al,)\Z) PEY(E=ENTM (E=ED2 (=&Y T(&)xdé

27: C

1 v v
pom Tx Ly POE=EDT (6-6)7 (-6 dg

2mi c(

LS

=577 hoga) PO E-EDT =607 (-7 T(O)xde,

and the last integral gives an analytic extension of T (n) I(A, A, )x for all
7 outside C (A, A, ).
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2.5. LEMMA. (Assumption 2.1.) The operator T satisfies the conditions
1.1 and 1.7.

Condition 1.1 clearly is satisfied since a rectifiable Jordan curve is non-
dense in the plane. To prove 1.7, let 0 be a closed subset of the spectrum,
xp, € o], x, — x. We make an indirect proof by supposing that there is a point
& € 0(x)o” According to the Heine-Borel theorem there are closed disjoint
subarcs Ay, «++, Ap of Iy with 0 CA = Ajueer v A, and E € A% Let

=1 <A <pyp <Ay <py <eee <Ay <y <1

be such that the arc Aj, (j=1, .-+, p) is defined by £(), 0), Aj <A< pje Let
C]- = C(A;, ,uj) as defined in 2.4. Since x,(¢) has its singularities in the set
A, we see that

L - - )" sora = o,

]=

-

where

6]' = §(A]’ 0), é] = E(}L]’ 0)9

and C is any contour of the form C = C(A, A, ) providing [ A, A,] is disjoint
with A. Since, by 2.4,

1 1
[()\j -—, )\j) —0, l(uj, 1j +—n-)-—-)0,

n

we have,

P . e
H (T _ é_—])V(A]) (T _ C]) (}'L]) Xn
7=t

P P
Y LI -6 @ - ) e,

1
2mi j=1 i f=

—

Since the convergence, as n —» w, of the integrands on the right side of the
above equality is bounded, we may in this equation replace x, by x and conclude
from 2.4 and 1.6 that
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o[ TT (7= £)"™) (1~ )" | ¢ a
-4 ,~ -
j=

The desired contradiction will be obtained as soon as we show that the above
inclusion implies that o(x) C A. But this implication follows immediately by

induction from the statement
o(z) Co((&-T)z) u (&),
which is verified as follows. Since
T(pyz = (E= wyP {T(w)(E=T)z -z}, p# ¢,

any point p other than p = & to which T(p) (£ - T)z has an analytic extension

must be in p (z); that is,

p((&~T)z) Cplz)u (€).
Thus

o((£ =T)z) D ol(z) n (&)

2.6. LEMMA. (Assumption 2.1.) Let v()\) be an index function for T. For

every complex number £ and every nonnegative integer n, define
M= € (T -&E"x=0], N2 = (T - &) X.
& 4 &
Then for & = £(), 0) we have
N _gn TvAd) _ Tn
?WZ _mg,%é: _%g, n > v(d).
Let fl = £(X, 8); then
(&= T) T(&) = (£~ &) T(£) + 1.

Now assume, for the purpose of induction, that (the preceeding identity is the

case when j=1)
(E= TV T(&) = (E= &V T(E) + (£ ENVT 4 (E= EV2(E-T)

et (E= EN(E-TH2 4 (£~ Ty,
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Multiplying this by & — T, we have
(E=TYMT(E) = (6= EV HE-ENTE) + I+ (£- 6 (E-T)
bee b (E=EN(E- TV 4 (- TV,
and hence
(%) (= TV T(E) = (= EVIIT(E) + (6= &)Y
FE=EV T E-T) 4ot (E=EN(E= TV 4 (£~ T,

Now in (*) put j = v(X), and operate on a vector x € ?ﬂ?;()‘)“. We get

0= (&= &MU T(EDx + (6= &)Wy

bt (E-EN(E-TYW g 4 (£ - T)* Wy,

If we let § — 0, then ¢, — &; and since® § measures the arc £&;, we have

P '51 )V()\Hl

(€= EPM*T (g )| = |5¥ W+ T(rfl)(_a‘_

< 6—0.

This shows that x € W;()\). Thus
v(A)+1 v(A)
EUtg ch £
and hence

EW;O\) = ng , n > v(Xd).

Using (*) again except now with x arbitrary, we may write
(¢ - T)u()t) x = (&= T)v()\)+l T(rfl)x + 0(5),
where O(8) is a vector which approaches zero with 8. Thus

v\ - YW+ - Q)
%Itf C?R§ c%§ ,

and so
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ﬁgm =2, n>v(A).

2.7. DEFINITION. (Assumption 2.1.) Let v(XA) be an index function for 7.
As shown in 2.6, the manifolds mg(’\) and Wg(’\) are independent of the index
function v(A). They will henceforth be designated by the symbols mg, Wf,
respectively.

Of the three principal conditions of Lemma 1.38, namely 1.7, 1.14, and 1.39,
the condition 1.7 has already been shown (by 2.5) to be a consequence of 2.1.
Neither one of the other two conditions is a consequence of 2.1 alone, and we
concentrate our attention now on restating 1.39 in a more applicable form. The
following assumption 2.8, which may be used to replace 1.39, turns out to be
necessary as well as sufficient. It has the disadvantage of not always being
easily applicable. It should be noted, however, that in the case of operators
with only continuous spectra it is trivially satisfied. Or more generally, if every
subarc of T'y contains points either in the resolvent set or in the continuous

spectrum then 2.8 is automatically satisfied.

2.8. AssuMPTION. (See Assumption 2.1.) For every £ in a dense set on
| P

‘ﬂlg + §R§ is dense in X.

2.9. LEMMA. (Assumptions 2.1, 1.14.) The set of points & on the curve
'y for which §m§ %5 # 0 is nondense on I'y. Moreover, gﬁé Sﬁg = 0 for every

&, interior to a subarc of Iy upon which some index function is constant. For

such &, the set mé @ Sﬁf is closed. Thus if 2.8 is satisfied then

for every & in a set dense on Iy .

In view of 2.3, the first statement is a consequence of the second. Ac-
cordingly, let v(A) be an index function which is constant on the interval

[A;, Ay ], and let & = £(X, 0) where Ay < A < A,. Let

v=v(A), & = £, 0), & = E(n, 0),

where

Ay <A <A<y <Ay and Ay —A, pp —AL
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Take P(&) = 1 in 2.4, so that
I()\n, I»l»n) + I(Plrn )\n) = (T - én)v (T - cn)v_')(T - §)2y'

Thus, it is seen from 2.4 that the vector (T — £)?¥x is the limit of vectors
%y = {ppy Ap)x and & € p(x,). Thus 2.6 and 2.7 show that every vector
x € %, is the limit of a sequence {x, } with & € p(x,). Now if x € Wf Wf we
have (7 — &)Y x=0, and hence o(x) C (£). If £ € p(x,) and x, —> x, then
&€ p(=x,); and, by 1.14,

|x] <K |2 - x| —0, x=0,and U, N, = 0.
Finally we show that smg ® ?Itf is closed. Let
Xp + Yn —> 2, where x, € mf’ yn € %g .
Since v, — ym €& %f , there are vectors u,,, with
Y = Ym = tpm | < (am)™ ', &€ plugy).
By 1.14, then,
%0 — 2m| <K |%p = % = tpm | < K %n = 2 + Yo = ¥ | + (am)"}—0.

2.10. LEMMA. (Assumptions 2.1, 1.14, 2.8.) For every pair &, £ of distinct

points in a set dense on I'y we have

g NN o X.
fmfe ?Iﬁfl@ Ré, fo = X;
and Sﬁf ?ftél is the closure of the manifold (T — &)Y (T - fx)yl X, where

v=v{A), v; =v(A), E= &, 0), fl = &(Nyg, 0), and v(X) is an index function
for T.

For every £ in a set I' dense on Iy we have, by 2.9, projections Ag and

A§ with

A§+Aé=l, A§X=§L‘l§, A£X=%§'

Since for pu € p(T), we have T(;L)%f C Sﬁé and T(#)gﬂf C §m§, it follows
that T(u)Afx = A§ T(pu)x, and thus p(x) C p(Afx). Since
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(T - €)M 4, =0,

&y

we have U(Aglx) C (fl), and hence pr(Aglx) C p(/lé, Afl?c). Since
o(Asy) C (&), we have y € X; then 4, Az =0 by 1.12 and 2.5. Similarly
Ag, Ag = 0. Thus

I+A’Al

l=(A§+A§').(A§ +A§’1)=A§+A§ £z

1

. 3 V
and this proves the first statement of the lemma. Now let x € %g gﬁgl , so that
1

- _ 14 - ’ — ’
x = (T f)y,y_/lglwaAfly,x—z‘l5 x.

1

By 2.7 there are vectors v, with (T — fl)yl vy _')Ag' y and
1

R
i

lim (7 = &)* [d, y + (T - £)7 v,],
n 1

x=A£x=%MT—fV(T—§yHW

1

Thus %g %;l as well as its closure %5 %51 is contained in the closure
(T - &Y (T - &N X,
Obviously (T - &)Y (T - fl)le C ?735 9’351, and so the proof is complete.

2.11. THEOREM. (Assumptions 1.14, 2.1, 2.8.) Every Borel set is measur-
able T; and if X is weakly complete then T has a resolution of the identity.

Let -1 <o < B <y<éd<1,and choose Ay, Ay, p1y, p, so that
O<Ap <Ay <fB, y<p <py <9,

and such that there is an index function v (A) which is constant on the intervals
[Ay, A2l, [pis gy 1o This is possible in view of 2.3. Since an index function
may be increased without destroying the property of being an index function, we
shall suppose that v(A) has the constant value v on both of the intervals

[)\1’ Az ]9 [#1, (] ]o Let
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‘:':1 = f()\p 0)9 62 = é‘()\zv 0)1 gl = é:(p-ls 0), 42 = f([—’q, 0)9

and
f(&) = (&= &)Y (£ &))" (- (£- )7
Then for appropriate choices of the polynomial P (£) in 2.4 we have
FOT) = T(xgy Ay) + T(pgy ) + T(pgy Ay) + T(Ay, py).

By 2.10 there are points A, p with A, < A < Ay, p; < p < p,, and such that for
E=E&(N0), ¢ = &(py, 0) we have

* = /A .

(*) 50?5 aamgea%f ERC X

Now if we let A\; — Ay Ay — Ay gy —> Uy py —> p then by 2.4 we have
I()\p )\2)—)01 I(Illy #2)——)0,

and
(T - &Y (T - é)hjx = lim f(T)x = lim {1(pyy Ay)x + 1(Xy py)x}.

Also, by 2.4, we have o (I (py, Ay )x) C [42, rfl land o (I(X,, py )x) C [stz, ¢ 1
where, for two points &= £()%, 0), £ = £(1*, 0) on 'y, the symbol [ &%, £}
means the closed subarc of 'y defined by £ (X, 0), A" < A < A, if A” < A" and
closed subarc £(A, 0), A ¢ (A7, A7), if M < A

Since 2v()\) is also an index function, it is seen from 2.10 that §R§ 572; is
the closure of (T — &)%Y (T - ¢£)?%X, and hence every vector in Wf %g is
the limit of a sequence of vectors of the form x + y with o (x) C [§, (], o(y) C
[£, £1% Since o(x) C (&) if x € 59?5, we have, from 1.6 and (*) above, the
fact that every vector in X is the limit of a sequence of vectors of the form
x+7y with o(x) C U§, £}, aly) C L& £V’ This shows that [ £, {] is ans; set
for T (see Definition 1.15). The above argument shows also that [, £] is an
sy set for T. We shall next show that o =[&, ] is an s, set for T. If the in-
tervals (&, B) and (ct, 8) that we started with above are replaced by the in-
tervals (A —1/n, A) and (g, p + 1/n), we see that there are points Ay, p,, with
A=1/n <A <Ay p<p, <p+ 1/n, such that o, = [én, fn], where

4 = f(#m 0)’ fn = ’f()\n’ 0)’



SPECTRAL THEORY II. RESOLUTIONS OF THE IDENTITY 595

is an s; set. Now let
Y= (T = £2Y (T = %5, 3y = (T = &Y (T — £) (T= O (T-¢)"x,

so that y, — y, and for appropriate choices of P (£) in 2.4 we have

yp= Ty M)x + TN, )x + T pp)x + I (pps Ay)x.

Thus by 2.4 we may write
y=1(N p)x + I(py Ay)x + zp, where z, — 0.

Now from 2.4, 2.5, and 1.16 we see that
Ecrl()\’ Ii) = [()\’ I-L)v Ecrl(lin’ /\n) = 0,

Eon[()\, w) =0, Eo 1(pns M) = 1un An)s

and since | E, | < K we may write y = E,y + E;_y + v, where v, — 0. Since
y is an arbitrary point in the manifold (T - £€)** (T - ¢)?¥X whose closure is

9?5 9?; , and since

|E, + E, | < 2K,

we have

y=FE y+ linm E, y

for every y € %5 %g' For x € Sﬁg ® Wﬁl we have o(x) C o; and so, by 1.16,

we have E,x =%, E, x = 0. Hence, it follows from (*) that

(**) x=E;x + lim £, x, x € X.
n

Now 2.5 and 1.22 show that 0(£,x) C 00o(x), 0(E, x) C op0(x) C 0’a(x),
so that 0 is an s, set. The same argument shows that [én, fn] =0, is an s, set
and hence (**) shows that o is an s; set for T. Thus we have proved thatif
-1 < a< B <y <8<1 there are points A, p with &t <A< B, y < p <9,
such that o = [£(X, 0), £(p, 0)] is an s; set. This clearly implies the state-
ment 1.39; hence every Borel set is measurable 7. Theorem 2.11 then follows

from 1.38.
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III. The operational calculus

3.1. DEFINITION OF f f(A)dE, . In what follows we shall be concerned
with an integral, ff()\)dEA, where E¢ is the resolution of the identity for an
operator T. The functions fto be integrated are either scalar- or operator-valued;
they will always be continuous, so that the Riemann integral will suffice.
Although the applications to be made are to operators satisfying the preceding
restrictions, it seems desirable to word the definitions and elementary properties
of ff()\)dEA in terms of an arbitrary operator T on an arbitrary space X subject
to the single restriction that T has a resolution of the identity. Since o(7) is
bounded, it may for any & > 0 be partitioned into disjoint, nonvoid Borel sets
Ays +++y A, whose diameters are less than 5. The norm | 7| of such a partition-
ing 7= (A, -+, A;) is | 7| = max; diam A;. If for a scalar- or operator-valued
function f defined on o(7T) we have the sums 277 f(N)EN, converging, as
|7| — 0, to a limit independent of the choice of A; € A;, the function f is
said to be integrable. Of course the convergence of Ew f()\i)EAi as |7] —0
may be in the weak, strong, or uniform topology of operators; but for the func-
tions we shall integrate, it is always in the uniform topology of operators, so

we need not concern ourselves here with the other cases. The integral is de-

fined by

SJIOVE, = lim Y f(N)EA,

lﬂ} -0
and for any Borel set o in the plane we define J;T f(A)dE) to be Eoff()\) dE,.

3.2. LEMMA. If for each e in a Borel algebra B there is a bounded linear

operator A, in the space X such that x*A¢x is countably additive on [ for each
x € X, x* € X*, then there is a constant v(A) such that

> |x*4, x| <vld) |x| [x*], e e void for i # j, ¢ € B.

i

Let 7=1{e;} be a finite or enumerable sequence of disjoint elements in S.
For each x € X, x* € X7 define U,(x, x*) as the point in the complex Banach
space 4, (the space of absolutely convergent sequences) given by the sequence
{x*Ae,x} (if the sequence {e;} is finite we extend it to an infinite sequence
by taking e, to be the void set for all large n). For fixed x, =, the function
U, (x, x*) is additive, homogeneous, and closed; hence U,(x, x*) is continuous
in x*, Similarly, U,(x, x*) is continuous in x for fixed x*, 7. Thus for each

7, U (x, x*) is simultaneously continuous in x, x*. Since the numerical function
y UglX, y ’
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x*Aex is countably additive on 3, we have

(*) sup | Unp(x, x*)| < 0, x € X, x* € X5,

Let Z, be the set of points (x, x*) in the Cartesian product space Z = X' x X*,
where | U, (x, x*)| < n for every n. Since U,(x, x*) is continuous in (x, x*),
Z, is closed. From (*) we have Z = UZ,, and so the Baire catagory theorem

gives an integer ng, a point (xg, x¥) € Z, and an ry > 0, such that
| U2y %) | < gy my |2 = x| <19y [2* = x¥| <.

Now if y € X, y*€ X*, and |y|, |y*| < ry, we have

Up(y, y*)

i

Uw(xo i x: - y*) = U?T(xo - Y x:)

Uw(x01 x:" y*) + U?T(xO’ X:),

and | U,(y, y*) < 4ny.Thus if v(4) = 5”0/’02 , we have

| Unly, y*) | < w(4) [y] 1y*].

3.3. LEMMA. Every continuous scalar function f on o(T) is integrable, and

IffOVdE | < max  [f(0)|o(E),
Aca(T)

| L f0 B | <sup [f(M)] v (E),

Aeo

where v(E) is the constant of 3.2. Also if O is an arbitrary parameter and
f(o, A) is continuous for A € o(T) uniformly with respect to 0., then the sums
Z,, floy NYEN, for a partition m = (Ajy eeey Ay)y A € A;, converge, as
| 7| — 0, uniformly with respect to .

For two partitions 7= (A;, «++, Ay), #’=(A{, -+, As) of 6(T), and for
N E A, )\]-'E Af (i=1,¢ee,n, j=1,++-,m), we have

2 o, MIEA, = X fla, AVEAS = 2 2 (0, 0) = floy AN EAAF -
i=1 =1 j=1

i=1
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If for € > 0, 6(e) > 0 is chosen so that

[fla, A) = fla, A)] < e for |A = A’| < B(e),

we have, by 3.2,

Y [, MEA, = T flo, MIEA | < € w(E), «, | x|, |a7] < 8(e)
i=1

j=1

Z f(O(, /\,‘)EAi

i=1

< max |f(a, A)| v(E),
Aeo(T)

and

E, ¥ flo, A)En,

i=1

< sup |flo, A)| v(E);
Aéo

this proves the lemma.

While in our final results the only operator-valued functions we shall have
to integrate are of the form (T —AI)" f(A), where f is a scalar function, it
will, during the course of the proofs to follow, be necessary to integrate func-
tions in a more extensive class. Accordingly, we consider functions of the fol-
lowing type. Let D, be an open set containing the closure D of an admissible
open set D D o(T). Let C be the boundary of D. Let f(&, A) be a scalar func-
tion defined for ot € D,, A € 0(T), continuous similtaneously in both vari-
ables over their respective ranges, and analytic for o € D, uniformly with
respect to A € o(T); that is,

flo + 7, A) = fla, A) af(a, A)
-
n oo

uniformly with respect to A € ¢(T). Because the continuity in A is uniform

with respect to « on C, the operator-valued function

1
TN = == [ floa, M T(@)da
mi

2

depends continuously on A. It is this type of continuous operator-valued func-

tion defined by a scalar function f(c, A) whose singularities in « stay uniformly
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away from o(7T) as ) varies over o(T) that we shall be integrating. For the
sake of brevity we shall call functions f(ct, A) of the above type T-uniform.

3.4. LEmMMA. Let f(ot, A) be T-uniform. Then f(T, N) is integrable, and

for every Borel set 0 we have

1
LI 0B = —— [ ([ f(e, M dE) T (@) dot.

Let = (A; «ooy Ap), X\; € A;, be a partition of o(T). Then

i

1
(T, ) En, ]Z(__ ff(a,A]-)T(oc)da)EA].

27i C

1
271

.4 (Z f(a, /\‘)EA,-) T(o)do .
j

The desired results follow from 3.3.

3.5. LEMMA. Let f(x, M), g{a, A) be T-uniform. Then f(x, A)g(x, A) is
T-uniform, and for a partition w = (A;j, ==+ , A,) of o(T) and points Ay A€ Zj

we have

lim X (T, ) (T, \)En, = JF(T, \) g(T, M) dE) .

le—»u m

It is clear that there is a common domain of uniform analyticity. Let C be
its boundary. For € > 0, fix 8 > 0 such for every pair A, A\ € ¢(T) with
[XA = A’| < & we have

| flo, M) [ga, A7) = g(ax, M| < €, a € C.
From 3.2, if | 7| < 8 then

2 flo, M) Tglo, A = g, M)IEp] < € v(E), a € C.

Now

f(T, )\j) g(T,\)=f(T, )\I') g(T, )\j)+f( T, Aj)[g(T, Aj’]—g(T, )\j)]

and



600 NELSON DUNFORD

| Z AT ML 8(T, X)) = g(T, A1 Ep |

1

ml

I

[ T(a)do (Xf(at, ) [gle, Af) = glat, A)TEp)

= (6/277)(max [T(O()l) (length C) v(E).
a€C

Thus in order to prove the lemma, it suffices to show that

lim Xf(T, ) g(T, A EA, = JF(T, A) g(T, \)dEy .

(Note that if A; € Aj and not merely in Zj, there is nothing left to prove.) But
this is clear since the function f(T, A) g(T, A) is continuous in A.

3.6. LEMMA. If [ is integrable (scaler- or operator-valued) and U is a
bounded linear operator in X which commutes with E,, ¢ € B, then Uf is in-
tegrable and

U‘l;f()\)dE)t = LUf(A)dEA, o €B.

The proof is clear from the definitions.

3.7. THEOREM. Let X be arbitrary and T a bounded linear operator in X
with the resolution of the identity E,. For any closed set of points p € p(T),

we have

o0 _./\ n
(£-T)' = Zj—————“ AN
n=0 (é':_)\)rwl

where the sum converges in the uniform topology of operators and uniformly
with respect to £ € p.

In view of the elementary identity

P T - n _ p+1
G-y T2, TN
n=0 ({:_)\)n-kl (é:_)\)p+l

and 3.6, we have
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P (T-\)" T - \)PH!
(-1 Y —(—-—)—dE)t=I—f(—-—A-)———dE
n=o (£~ )1 (£-1)PHt

Now let & = the distance from p to o (T). This is positive since 6(T) is, bounded
and closed. Break o(7T) into disjoint measurable parts A, -++, A, of which

the diameters satisfy
diameter A; < &/4 (j=1,¢e¢,mn).
Let C; be a circle of diameter /2 containing A, in its interior, so that
[ =M (E=-MY <12, E€p, AECA;, 0 €C.

Let Ty (A;) be the resolvent of T when considered as an operator in XA Since

a(X&].) C _A_j and

~\)P
{3 (_T__idEA X C XA, ,
(=P ’

we have, from 3.3,

—-2\)P
l& u dEy,
T (E-MN)P

- P
- f.( =y AP () do dEA|
j \ 27i I (&= A)P

f (o~ A)P

B (g- )P

dE)y

1
- = fc,. To(A})dot

2mwi

—1- max | To(Aj)] w(E)/2P, £€ p.

T a€C;

IN

Since f= j[;‘+---+ &n, we have

(£-1) i j(T"Mn dEy — 1
- ——— dE)
n=0 (’f'_)\)n‘fl
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uniformly for £ € p. This proves the theorem.

3.8. DEFINITION. An operator is called a spectral operator if it has a

resolution of the identity.
3.9. THEOREM. If T is a bounded spectral operator, the resolution of the

the identity E. is unique, and for every f € F(T) we have

= Mo

(=3

(T - \)" dEy ,

n!

where the integral exists as a Riemann integral in the uniform topology of

operators and the sum converges in the uniform topology of operators.

We shall first show uniqueness. Let 4., £, be resolutions of the identity
for T. Let o,, 0, be disjoint and each consist of a circle and its interior. Let
T' (&) be the resolvent of T when considered as an operator on Ey X. Let
T2(£) be the resolvent of T when considered as an operator in Ay, X. Then
for f¢ o, TH(E) Ey Ay, is a bounded linear operator in X and analytic
for £ € o{. Likewise for & € o3, Ey, T2(¢) Ao, is a bounded linear operator
in X and analytic for £ € 0. Let £ € (0; u 0, )" Since £~ T commutes with

Ey, , we have

(& = T)Ey, T*(&) 4y, = By, A,

2
and operating on the left with 7' (&) we have

Egy T2 Aoy = T'(E) By, Aoy -
If f(&) is defined to be

f(6)

Eoy TH(E) Aoy = TH(E) By Agy, € €0y vy’

E, T2(§)A0'21 fCUI

1

TH(E) By, Apyy €€y,

then fis an entire function. Since for large £, we have

f(&) = T Egl Agz — 0 as |¢| — w.
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it follows that f(£) =0 and £, 4., = 0. By symmetry, 4,, E; =0. Let oy,
(n=3,4,+++) be the set of those points of 0(7T) whose distance from o, is
> 1/n. Let Oy, +++, Op(n) each consist of a circle and its interior and be such
that the set 8" = U§; is disjoint with o, and covers o,. Then, since Ey A5;=0,
we have 45, C E,7 X and

AUnX C AsnX = (UASi) X = U(ASiX) C EU;X .
1 1
Hence
El;xAUn:A E_A_ =0.

op? Moy Hog

But 4, —)Aa,{x, x € X, and so

Also, since 45, £, = 0, we have Ey X C Asz X and
Eq, X c 45z X) = (N4s) X = A, X.
l 12

Thus

A By, = By y Agp B =0, A E, =0, Ay E, =E

o1 o2 “sn oy ?

and therefore

By symmetry,

= Ao, By, = By Ag, = E, .

From this it readily follows that 4, = E_ for any Borel set o. Now let f € F(T).

Let C be an admissible contour upon which f is analytic and such that

1

2ni

(1) =

fcf(f)T(f)dg.

Now, by 3.7, we have
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T(&) = Y J(T =N (£~ ™1 dE)y,
n=o0

and the series converges in the uniform topology of operators and uniformly for

&€ C. So

f(T) = [ feeae (f(_T‘_’L dEA)-
—O 27t (f-—)\)n+1

Since

- n n (n"r)
f_(_T_ﬁ_ dBy = ¥ (n)T’ (2,
(£- 2yt o\l Ty

it follows from 3.3, that the Riemann sums approximating

ST -0 (-0t dE)

converge uniformly with respect to & € C.

Hence

™) (A
f(T) = Z ff ) (1 dE) .

From this point on we shall again restrict our attention to the case of an
operator I whose spectrum lies in a rectifiable Jordan curve I'y and whose re-
solvent satisfies the growth condition 2.1, It will be convenient to state the

condition 1.14 in terms of residues as defined in the following:

3.10. DEFINITION. Let o(x), o(x*x) be the sets of singularities of the
functions x (&) = (& - T) 'x, x*x(&), respectively. Let o be open and closed
in o (x), and

x, = ﬁ fx(g) ¢,

where C is a rectifiable Jordan curve containing ¢ in its interior and having

o(x)o’ in its exterior. Then the vector x, is called the o — residue of x(&).
o8
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Similarly if o is open and closed in o (x*x) then the scalar
1
(x*x), = —— f x*x (&) dé
27 °C

is called the o — residue of x*x(¢).

With this terminology, condition 1.14 asserts the existence of a constant

K such that |x,| < K |x].

3.11. THEOREM. Let X be weakly complete, and let T be a bounded linear
operator in X whose spectrum lies in the rectifiable Jordan curve Iy and whose
resolvent is restricted in its growth by Assumption 2.1. Then T is a spectral

operator and satisfies the equation

S £ (&) .
f(ry=3Y fam —— (T-&VdE,, [ €F(T),
n=0

n!
providing:
(i) (The density condition.) For every & in a set dense on Iy Mg + Ng is
dense in X.

(ii) (The boundedness condition.) There is a constant K such that all resi-

dues x, satisfy the inequality

|x0'l S_K !xl’ xCX.

This theorem is an immediate corollary of 2.11 and 3.8.

Conditions will now be given which are of a nature more applicable than
(i) and (ii) of 3.11 and which are sufficient (and in some cases necessary ) to
imply (i) and (ii). We shall begin with a brief analysis of some conditions
which are sufficient to imply the density condition (i).

3.12. THEOREM. The operator T of Theorem 3.11 satisfies the density

condition (i) of that theorem in case any one of the following is true:

(i) Every subarc (of positive length) of T'y contains points either in the
continuous spectrum or in the resolvent set.

(ii)  No subarc (of positive length) of I'y consists entirely of points in the
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point spectrum of the adjoint T* of T.
(iii) The space X is reflexive and v(A) =1 is an index function for T.

(iv) The space X is reflexive and the adjoint T* satisfies the boundedness
condition (ii) of 3.11.

(v)  The operator T is completely continuous.
The first statement is obvious since if £ is in either the resolvent set or

the continuous spectrum we have ?Rf = X. The second statement is equally clear

since it is seen from the Hahn-Banach theorem that ¢ is in the point spectrum

of the adjoint if and only if %é # X. Next, if (iii) holds, let

§= ()\’ 8)’ 60 = g(/\s 0)9

so that
[(£=-&) TMO] < [8T(H)] < 1.
Now
(E- &) TOE - T) = E= & - (- &) T(H),
and hence
(*) lim (&= &) T(&) (¢ - T)=0.

50

Now let x be an arbitrary vector in X. Since X is reflexive, the set
(f" §0) T(é_)xy 0<o < 8() ’

is weakly compact, and there is a vector y € X and a sequence 8, — 0 such

that for fn = £(A, §,) we have

(&, - &) T(E) x—y weakly.

The equation (*) shows that y € Mg, . To see that x — y € N, let x*mfo =0.
Then

(€ =€) T(&) = 2,
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and so x*(x—y)=0. Hence Mz +Ng =AX. To prove the fourth statement
we note first that, since o(7) = o(T*) and | T =] T* (&) |, the adjoint T*
satisfies 2.1, and any index function v(A) for T is also an index function for
T*. By 2.9, then, Mg (T*) Tig ( T*) = 0 for £ interior to any interval upon which
an index function is constant. Such ¢ are by 2.3 dense on [y, Let & be such a

point on Iy, and let

x*mf =0 = x*mf .

It will suffice to prove that x* = 0. Since x*%g =0, we have x* € W?é:(T* ).
To see that x* € Rg (T*) (which will prove x* = 0), it will suffice, since X is
reflexive, to show that x*x, = 0 for every x, with ¥z (T*)x4 = 0, that is, for

every x, with
y*¥(E=T)xy = 0, y* € V™,

But such an x, is in Mg, and so x*x, = 0. The final statement (v) follows from
the fact that the spectrum of a completely continuous operator is at most de-

numerable.

N. B. As the above proof shows, the condition that X be reflexive (in (iv))
may be replaced by the statement that, for £ in a dense set on 'y, the manifold
Ng ( T*) is regularly closed. Also in (iii) the condition of reflexivity may be
replaced by the assumption that the set of vectors (& — fo YT (E)x, 0 < 6 < by,

is weakly compact.

3.13. THEOREM. Let X be a reflexive space and T a bounded linear oper-
ator in X whose spectrum lies in the rectifiable Jordan curve T'y and whose
resolvent satisfies the growth condition 2.1. Then T is a spectral operator and

satisfies the equation

7 (&) .
f(T) = 2 fm —— (T = &) dbg fEF(T),

if and only if there is a constant K such that all the residues (x*x), satisfy
the inequality.

(&%, %) | < Kfx| |2*].

The residue condition is clearly necessary since
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(x*x), = x*E x.

To see that it is sufficient we note first that it implies the condition (ii) of
Theorem 3.11. Since X is reflexive, the residue (x*, x), is equal to the residue
(x**, x*), calculated for the adjoint T* (here x**x* = x*x, x* € X*) and so
the residue condition of 3.13 implies that the adjoint T* satisfies (ii) of 3.11.
The present theorem then follows from 3.11 and 3.12 (iv).

We now turn our attention to stating the requirement (of 3.11 or 3.13) that
the residues be bounded, in a form which, in some instances, is more readily

applied.

3.14. THEOREM. Let &= &(A, 8) have continuous first partial derivatives,
and let &= £(\, ~8). Then the residues (x*, x), and x, will have a bound of

the form K| x| | x*| in case

d o&”
Lub. [ |x*[T(§) 5)%_ T(&) aiA

]xld)\ < Mix| |x*|.
0<8<fy

Let 0 < A; < )\]-' < 1, let C]- = C(/\j, Aj) be as in 2.4, and let C be the set
Cj, (j=1,++n). Suppose that C lies in the domain of analyticity of x*x (€).
Then

. « (N 9& ., 9"
[ o= £ L 20 - 26 = far e 10),

j=t

where /(8) is a sum of integrals fx*x(rf)d(f taken along the ares £(X;, ),
ENy 1), =8 < p < 8. Thus limg_o /(8) = 0, and

lim sup | Jc‘x*x(f)d‘fl

§—0

x*[T(f) % - T(£7) %Jx

< la.b. jfll

0<8< 8y

dx < M x| |x*].

The condition of 3.13 is far from necessary, and is not satisfied by the
resolvent 7 (&) if its rate of growth for & near o (T) is not that of the inverse
of the distance from & to o(T). To avoid this objection a similar condition, as

is evident from the above proof, may be stated.
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3.15. THEOREM. Let T(&)=U(E) + V(E), where x*V (&)x is the deriva-
tive of a single valued analytic function at each point & where x*T (&) x is
analytic. Then the residues (x*, x*), and x, will have a bound of the forms

K|x| |x*| provided that U(§) satisfies the condition of 3.14.

Operators of finite type

As is to be expected from the analogy with the elementary divisor theory

for a finite matrix, certain spectral operators should satisfy the formula

m-1 f(n)(f)
(=3 [ —— (T~ &) dBg, [ € F (D).
n=0 :

One might expect this to be true if the spectrum o (7) is nowhere dense and if

the resolvent 7 (&) has for & near o(7T) the same rate of growth as
Ldis (&, o (TYT™.
We have been able to prove this only in the case where o(7) is restricted to

lie in a sufficiently smooth Jordan curve.

We shall assume throughout the following discussion that the function £(X, 1)
defining the net described in 2.1 has continuous second partial derivatives. The
purpose of this assumption is to assure that the length of the contour C (A, A,)
of 2.4 is at most K&, provided that A; < A, and § = A, — A;. Also the diameter
of C(A{, A,) is at most K& for 6 =X, — ;.

3.16. LEMMA. (Assumption 2.1.) Let d( &) be the distance from & to the
spectrum o (T). If | d™ (&) T(&)| is bounded for & near o (T), then

2m N
L1 6) (T =™ dig = 0
for every T-uniform f(o, &).
We may and shall assume that ¥(A) = m is an index function for T, so that
|8™ Tgyl <1, 0< 8] <8, A€ [-1,1].

Let Ay <Ay, Ay =A; < 8y. Let C(Ay, A;) be the contour defined in 2.4 with
8 =Xz = A;. Let A be the closed subarc of Iy defined by £(A, 0), Ay < A < A,
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Let I(A\;, A,) be the integral defined in 2.4 with v; = v, =m and P(&)=1.
Let A, < Ay, Ay < ppy Ay — Ay, pn — Ay By 2.4, we have (A, A;) —0,
I1(Xy, pn)— 0. Also, by 2.4, 1.39 (ii), 2.5, and 1.12, we have FA [ (p,,A,) = 0.
If £ = £(X), 0) (j=1,2), then

(T—fl)m(T_fz)m = I(Am )\1) + [()‘p )\2) + I()\zy #n) + 1(#71, Aﬂ)?
and so we have
EA(T—fl)m (T—f2)”’ = EAT(A;, M),

But by 2.4, we have o(I(A;, A,)x) C A; hence by 1.39 (i) it is seen that
l()\l, Az) = EAI(/\I’ A2)0 Thus

(*) EACT = €)™ (T = €)™ = 100, Ay).
Now, since 6 = A, — A, there are constants K,;, K, such that

max [ €A, +8) - £(A,0)] < K85,
A <A <Ay

and
length C()\l, Az) _<_ K25.
It follows from the definition of (X, A;) therefore that

() 1A A) ] < K38™.

Let the interval [—1, 1] be partitioned into n intervals [)\j.. " )‘j] each of length
2/n, and let Aj be the corresponding subarcs of I'y with end points fj-hfj-
Statements (*) and (1) then give

Ex fUT, ) (T= &)™ (T— & ™ Bn | < Ko™

Hence, by 3.5, we have

L(T)F(T, E (T-&*" dEs = 0.
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3.17. LEMMA. Under the hypothesis of 3.16, we have

(T - O™ E) =0,

where (&) is the set consisting of the single point £.

From 3.16, we get

(T = & Egy = By [ ) (T = )" dE, = 0.
Thus

2m-1 (T _ ¢ E
T Egy= Y ———é)—- (&)
j=o (o = &yt

has a pole of order < 2m at & = & Since |d™ (o) T ()| is bounded for o near
£, the pole must be of order < m; that is, (T - &)™ Ey = 0.

3.18. LEMMA. Under the hypothesis of 3.16, we have

Ly (1,8 (T=6) dEg =0, j> m

for every T-uniform function f(o, &).

For £ = &(X,0) &€ I'yand 0 < || < &, let 58 = &(A, 8). Then
(E=T) T(&) = (&= &) T(&) + 1.

Now assume for the purposes of induction (the above equality is the case j=1,)
that

(E- TV T(&) = (=&Y T(E) + (E= & 4 (E=EV2 (6-T)
toent (E= &) (E=TV2 4+ (E-TY1,

Multiplying by (£ - T), we have
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(E=TYM T(&) = (£=TY (§=T) T(&) = (£=TV (E= &) T(&) +1]
= =&V T(E) + (=& + (E= &V (£-T)
teee (E=E) (E-TY 4 (£-TY.

Hence

(T, &) (&= TV* T(&) ~ (£~ TV

= (T, 6) [(E= VM T(E) + (E= &V 4een 4 (E= &) (£-TV].

Thus we may state:

(*) If for some j=1, 2, .-+ we have
i+
Loy (T 6 (E=TV™ T(&) dEg =0, 0<|5] < 5,

then

lim [ ) ST, €) (=& T(E)dE, == [ f(T, &) (6= TV dEg .

50

Now let 0 < | 8;| < &y, (i=1,2, -+, m). By 3.16, then,

S

o(T)

[T, ) (T= & T(& ) T(&; )eee T(&; ) dEg = 0.

To this equation we may apply (*) with § = 8,, and with (T, &) replaced by
[T, ) T(&, ) e T(£, ). Ths,

lim o (T, 8) (=& 27 T(& ) T(E; ) dEg

81—00

== Ly (1,6 (E=TP™E T (& )een T(E, VdEg.

Since

(€= &)™ T(& )] < K18, |™,
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the integrand on the right side of the preceeding equation approaches zero with
5, and uniformly with respect to & € (7). Thus

2m-1 _
Ligy [T 6 (E=TYM N T(E ) eee T(E, ) dEy -
A repetition of this process clearly yields the desired result:

Loy (T (6=TV dEz =0, j>m.

3.19. DEFINITION. Let m be a positive integer. A spectral operator 7 is
said to be of type m in case

) (&)

fT) = Z f(T) nl

(T - &) b,

for every f single valued and analytic on o (T), that is, for f € F(T).

Let us recall that for the case in hand (that is, ¥(A) =m is an index func-
tion), the manifolds ., N are respectively the zeros and the closure of
the range (T — &)™, Then if d(¢) is the distance from ¢ to the spectrum o(7)

we may state:

3.20. THEOREM. If X is weakly complete, T will be a spectral operator
and of type m providing
(i)  d™(&) T(€) is bounded for & near o(T),
(i) for £ ina set dense in Ty the manifold My + Ny is dense in X.

(iii) all residues x, have a bound of the form K | x|.
This theorem follows immediately from 3.11 and 3.18.

N. B. 1. As before, the condition (ii) is automatically satisfied if 7 enjoys
any one of the properties listed in 3.12. Also (iii) is satisfied if the resolvent
T(¢) satisfies the mean rate of growth condition of 3.14 or 3.15.

N. B. 2. In case X is not weakly complete it is still true that EA is defined
for every closed subarc of Iy (see proof of 2.11), and EA is completely additive,
in the strong topology of operators, on the Boolean algebra determined by such

arcs. Thus the integral
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f (&)

n
b —— (T-8)" dE;

may be defined and the operational calculus developed even though E, may not

be defined as an operator in X for every Borel set e.
An immediate corollary is (see 3.13):
3.21. THEOREM. If X is reflexive, then T will be a spectral operator of

type m if and only if

(i) d™(&) T(€) is bounded for & near a(T),

(i) all residues (x*, %), have a bound of the form K|x| [x* |.
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