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1. Cf the two expressions

1 27 1 27 r{w+m/2)
M =-/ 2(w)d =_/ (f 'd)d-
] 2 Jo ) do 2 Jo -r{w=m/2) lpldp)do

for the area | M| of a plane domain M, given in polar coordinates p, w by the

inequalities 0 < p < r(w), 0 < w < 27, the first has the well-known extension
(1) ]W*:l/ r(u)do”
n Y8 u

to n dimensions. Here €, is the surface of the unit sphere in the n-dimensional
FEuclidean space, da)Z is its area element at the point u, and M is given by
0<p<r(u),u€Q,.

In the second expression, |p| may be interpreted as (1-dimensional) volume
of the simplex with one vertex at the origin z and the other at a variable point
p=(p, w £7/2) in the cross-section of M with the line normal to w. The pur-
pose of the present note is the proof and the application of the following ex-

tension of this second expression ton — 1 sets My, ««o , My_y in E:

(2) \Mll"’an-ll

Ly .
= LR *a e n- s e n- n
2 Qn M (u) M, () T(pl’ s Ppoys Z)dV;)l d% dwu ¢

n-1

Here M;(u) is the cross-section of M; with the hyperplane H (1) through z normal
to the unit vector u, the point p; varies in Mj(u), the differential dV}"! is the
({n — 1)-dimensional) volume element of Mj(u) at Pjs and T(p , -+ ,] Ppoyr 2)

is the volume of the simplex with vertices Pis*** s Ppys 2
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Replacing the sets M, _;4;, -+« , }M,., by the unit sphere U, with center z
yields expressions for | #, | <+« [ M, ;| in terms of the volume T (p,+++,p,_,2),

in particular (1) for r=n - 1.

With the notation
kn = |Un| = r(

+1),

Steiner’s symmetrization leads from (2) to the following result:

(SR

If M, «ee , M,_, are convex bodies in E, (n > 3) with interior points, z
is a given point in E,, and Mj(u) the cross-section of M; with the plane normal

to u and through z, then

1 Kn-2
(3) My | vee ! Mpy] > = — / [ M () |0 | My () |2/ D) o
" K’rlt-l o ‘

and the equality sign holds only when the M; are homothetic ellipsoids with

center z.
It follows in particular for a convex body M that, for n > 3,

Kn-2

L1 /
(4) M|t >~ o, [M)" o7,

Kn-1

with the equality (if |M]| > 0) only for ellipsoids with center z. The efforts to
prove this inequality, which has applications in Finsler spaces, led to the

present investigation. The—because of Jensen’s inequality —weaker estimate

1-/(-)/ /(n-1)
(5) M) 2 = D fo M) 00 do,

=

with equality sign (if |M]| > 0) only for the spheres with center z, was found
previously by L. A. Santald who communicated it to the author. It is also the

special case M,_; =M, M. = U, forj < n-1, of (3).
P i

2. Let M, «+«, M,.; be bounded Jordan measurable sets in £, n > 3, such
that the intersection of #/; with any ;-dimensional linear subspace (which in the

future will be indicated Ly L.} through a fixed given point z possesscs a
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v~-dimensional Jordan measure. Since the subscripts run sometimes from 1 to
n and other times from 1 to n—1, we agree to use «, 3 for the former type,

and J, k for the latter, and may then omit mentioning the range.

l.et x, be rectangular coordinates in £, with z as origin. Take n ~ 1 copies

I{l of I, with coordinates xi, and let M/.’ be the image of M]- in E{l; that is,

xJ € 4] if and only if the point x with x_=x/ lies in ¥;. Then x/ may be con-
j a a ] a

sidered as rectangular coordinates in the product space
. L’ e .7
E=FE, x oo x EF! =I—Ib,],;
hence

(6) [Tim1 =TTiMt = /.dxll eedry e ddT oo dalt

’
Hu
In £ we introduce new coordinates

—1 -1 —n-i -1
xl,...,x ,1)1,...,951 gy ese 4 X

v
n-1

n-1’ “n-1
through the relations

S N X/
(7) Xy o= Xy, X, = U X et Up g X
These equations fail to define v, if |« |- \"x]; =0, i.e. if the points x/ in L, are
contained in an L, with v < n ~ 2, or if the L,_; spanned by the %/ is parallel
to the x,-axis. The geometric meaning of the right side of (2) shows that a

special discussion of this case is superfluous.

To evaluate ]| (M;)I in the new coordinates, observe that the first n rows
in the n(n—1)rowed Jacobian / of the transformation (7) are in blocks of

n X n matrices:

0 -..0 0 00 ««.0 0 0 0 .- 0
01 -..0 0 0 0 «..0 0 0 0 -+« 0
e eas o . e e see . e e eee
0 0 -.-1 0 0 0 <« 0 0 00 .+« 0

-1
Vg Uy cee Upoy X4

o O O O

hence
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(8) I =1=).
The unit normal u in £, to the plane

Xp = % Uy teee+Xpoy Upay

is, with w = (1+vf+---+v’f_l)1/2

, either

1]

-1 - -
u]' vjw /Z,un=—w1/2 or uj=-—v-w‘/2,

i u, = wt’2,

_Then w™ = |cos 0|, where 0 is the angle between u and the x,-axis, so that
dw, =w duy ««+ du,., is the area element of {,. Here we disregard again planes

parallel to the x,-axis. Now

2 2
w® - vl —vyvy e ~Up Upoy
Ou; 2 2
T e | TU2 VL WR S Uy eee =g Uy
duy . . .
2 2
~Vp.1 Uy —Upeg Uy cee Wi —vr

Since all principal minors of the determinant |-v; vy | of order greater than 1
vanish, it follows (compare [ 4, pp. 125, 126]) that

9uj = w3n-1) (y2(n-1) _ wz(n—z)zv?) = @l
dug !

and

(9) do, = w'™™ U do, evidugly = | cos™| duy e dopoy .

The volume element dV;;.'l of the hyperplane xfl = ijk v, is

(10) dI';"i'l = dx{ ceo dxf;_l | sec 1.

1

If we now interpret the points x!,-«., x""! as lying in the same £, then

(8) shows that |J|/(n —1)!is the volume of the projection of the simplex with

n-1

vertices x!, <<+, x" !, z on the plane x, = 0. Since these points determine a

hyperplane H (u) with normal u through z,



w
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(11) (n— 1) T(x'y eeey 2™, 2) = | [ sec 0].
Replacing % by p]., we briefly summarize the results (9), (10), (11) as

) 1A ) )
(12) dp dl

1 n-1

= (n._l)' T(pl’.."pn-l’ z)dI/F'::.l.u- d]/ﬂ."l dw;l.

n-1

After observing that in (2) by integrating over Q, every 4//(u) is counted twice

(once for u and once for —u), we see that the relation (2) follows from (12).

For brevity we introduce, for sets M, «++ , M, in E; with r < s, the notation

T (Myy ooy, My 2) =‘41 ‘/A;r T(pl,...,pr,z)dp’psl.,,dl};ss’

and may then write (2) in the form

{n-1)! n
(13) M‘l[ ! te }Mn-li =T Jg Tn-1 (Ml(u)’ St Mn-l(u)’ Z)dwu'
n
3. In order to obtain expressions for |}, | «++ | ¥, | withr < n-1, we re-

place successively V., «+«, ¥,.;4; by the unit sphere U,. The contribution
of the latter sets to the right side of (13) can then be integrated out by using

the following fact:

Let an L, 0 < p < n~1, through the center z of the unit sphere Up,.; in
Ep.y, intersect U,y in U,. For any point ¢ in U,.,, denote by r the distance
gz, and by ¢ the angle between the ray gz and the L. Then

Wyay

(14) U/r\sin¢;|dV;'l =

n~1 Wy

¢ Kps V=N — [

where w, =v.x, = 27¥/2 T1 (1/2) is the area of the surface Q, of U,, in

particalar w, = 2.

To prove (14), let the L,y normal to the L, through g intersect U, in p,
and U,., in the sphere S,_;. If p=pz then S,., has radius o= (1~ p?)'/2,
Then s = pg =7 |sin ¢ |; hence

U/ r|sin ¢| qu"'l = -/U ( S/s quV"> de“,

n-i M vel

If do¥"! denotes the area element of the ,.; with center p in the L., at the
q
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point g of the ray pg, then

o v w
_/s ¥t = / / s sV dsdo? ' =L @ = (1o p2ywe L
q Q 0 q v v-1

V=1 v-1 124

Therefore, with a similar notation,

W,
/rlsingbldV"'l: Vl/ /1(1—p2)y/2 p# 1t dp dwt
Ugy 9 v Q.Y p

Wyoy Dy C(p/2Y T(v/2+1) Oy.y Wy D(p/2)v/2T(v/2)  wyy
v o (/2 +v/2+1) v 20 (n/2+1) Wy

= Kp e

Returning to (13), we replace ¥,,_, by U,. Then ¥,_,(z) becomes the (n~1)-
dimensional unit sphere U,(u) in the hyperplane with normal u. If ¢»is the angle
between the ray zp, _, and the L,., spanned by Pis st s Pyygr 2 then, with
r=zp,_ .,

T(pyyvvesp, s 2) = (n= 1) rlsing| T(pyensspy_p2)e

Hence, carrying out the integration over Uy(u), by (14) we obtain

|,

i an-2

oKn

®
(n-—2)!;—l-Kn./(; ’[n_l(Ml(u),...,Mn_2(u),z)da);l
2 sin

N |

or

(15) ‘Ml e ‘Mn-zl

-2
=(”2 ) 4 Tpey (My (@), oee s Mpop(u), 2) doy
m n

If now M, _, is replaced by U,, then because of (14) the factor

1 W3
— Kp
ﬂ'—'z C£)3
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is introduced on the right. Continuing in this manner leads to the general re-

lation

—r)!
(16) 4y ] oee M| = 27

/&;n Tnor (MiQu)y ooy M,l_,(u),z)dwz.

Jr

The integrand occurs in many // (u), and it would be more natural to replace
the integration over (!, by an integration over all L,.,. The results of integral
geometry [ 5] lead to such a reduction for general r; however, we restrict our
attention here to the two simplest cases, where no new formulas of the type

(12) are required.

It is clear that the last formula in the sequence (16),

1
]..r'y.fl] - 0_/(; Tn-t (M (u), z)dm;l,
_)n =-n

must be essentially identical with (1). Indeed, if ¥, can be represented in the
form 0 < p < r(u), u € Q,, and we write the induced representation of ¥,(u)

in the form

0<p<r(v), v € Qa(u)=Hu)nQ,,

then, with pz = p, we have
(M (u), z) = / pan-l ___/ /r(l') P pn-z de 1
nen My(u) P Quo1w) Jy v

1
= — r"(v)dwﬁ'l

n Qn-l(u)

and

1
M| = — '/g;n('/(.ln-l(u) r”(v)da):}"2) dwl:l.

e Wp-2

Now according to the results on cinematic measure on the sphere (see [5], for
n =3 already [3]), integrating over the v-normal to u first, and then over u,
leads to the same result as integrating over the H(w) that contain v, that is,
those for which w is normal to v, and then over v. The first of the latter two

integrations yields wp.,r™*(v), and (1) follows.
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As second example, we indicate briefly the reduction of (15). Denoting by
LP_  the L _ spanned by p , -+, p, _,, z, and by MP the intersection of M; with
L5_2, we obtain from (12) that if LS_Z lies in #(u) and has there the normal

v, then

Tn-l (Ml(u), LICIL I Mn_z(u), Z)

= LN ] * e n-l . & & n-l
——-/l;'ll(u) -/&;n_z(u)T(pl’ ’ Pn_z, Z)del dV

pn-2

(n-2)! / / / T2 n-2 'n-2 n-1
~ = Jopw Jr e, (pys =2+ Ppugs 2 AVI2 e dVI72 dT 1

n-2

Substituting this in (15) leads besides the integrations over the MP to inte-
grations over Q,_;{u) and Q,. Similarly as in the preceding case, these latter
two may be reduced to one integration by using the cinematic measure dLf_ on
Qp of the Q,.; in which LP  intersects Q, (compare [5]). The result (given

without verification because it will not be used) is

(A7) [My ] eee [ My,

~ [(n—2)!]2/ /
=—Jg Jpp
1

2
4. To obtain the estimate (3) we use Steiner’s symmetrization in the form

.fMp T2(pys + o s Py 2)AV2 e V2 dLE .

n n-2 ne2

suggested by Blaschke’s treatment of Sylvester’s Problem (compare [1, § 241).

In the following the subscripts i, 2 run from 1 to m.

Let M, -+«+, M, be convex bodies with interior points in £,. In an arbitrary
system of rectangular coordinates with origin z, symmetrize each M; with respect
to the (x,+«+,%p. -plane P; that is, slide a segment in which a line L, paral-
lel to the x,-axis intersects M; along L, such that its center falls on P. Call
M; the image of M; under this transformation, and p, the image in M; of a given
point p, in M;. The mapping preserves volume, de":’ = dV};:‘. We are going to

show that T, (M,, -++, M,;, z) does not increase. ’

If p, € M;, denote by p; the point symmetric to p; with respect to the center
of that chord of M; parallel to the x,-axis which goes through p;. If pl.‘,- R

are the coordinates of p,, then with 7 =1/m!

rd 4 ’h
iT(pl’”' ,pm,z)=qlp?|, J_rT(pl,...,pm,z) =7]]pi l.
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The images p; of p, and p/ of p/ satisfy the relation

PR = - 157"
hence
- _ — — —h —shy
ZT(Pla""Pm,z) = ZT(Pl""9Pm’Z)=77\[p,' l - .Pi 1\‘
But

ph=p/h=ph =P for L<h<m-1, and p" — p/™ = pI" - p/™ .
—h —sh h hy,
‘P,"—IP,' I=tpil_‘Pi s

hence

(18) T(Plv"‘,Pm,z)"‘T(Pl'a"'aP”:’ Z)Z 2T(—P_1!""—I;m; z).

Since

Tm(Mp"‘)Mm, z) = '/M.l .."/A;m T(Pls'--,Pm, z)dV;z"'de

’ ’, m m
'41... /M.m T(pl,...,pm,z)dVP; ceedv,

we conclude from (18) and

dV2 = dV™, dUT = dV™
p; p; P; p;

that
(19) Tm(Mp"'staZ)ZTm(M—U'"?Mm: z).

To discuss the equality sign, consider points p, in #; which are centers of
chords parallel to the x,-axis. Then p, = p/, and the points p, = p/ lie in P, so
that the right side of (18) vanishes. Therefore the equality sign can hold in

(18) only when the points Pys*** s Py Z are coplanar. Choosing Pyrt* s Piyps
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P; 415 *** s P, such that they and z do not lie in an L,,_, (the M; have interior
points!) we see that all centers of chords of M; parallel to the x,-axis must
lie in the L;,_, spanned by p , «++, p,_ ;s p;yis** s Py 2. Moreover, this same
L,,.1 must contain the centers of the chords parallel to the x,-axis of all the

other #,. Thus we have proved:

(20) IfM,,..., M, are convex bodies in E,, with interior points, then simul-
taneous symmetrization of the M; with respect to any plane P through z de-
creases T, (M, ..., M, z) unless z and the centers of the chords perpen-

dicular to P of all #; are coplanar.

For given positive values | M, |,+-+,| M, |, the expression Ty, ( Vi, ««+, My, 2)
can therefore be minimal only if the centers of every family of parallel chords
of the different ¥; lie on the same plane thrcugh z. This implies, first, that

1

each M; is an ellipsoid with center z,' and then that all these ellipsoids are

homothetic.

That the minimum is actually reached in this case is proved by the follow-
ing standard argument (see [ 1, §241). Using a suitable sequence P, of planes
through z, and symmetrizing M, <+, M,, successively in P, B, ..+, yields
a sequence MY, ..., M? of convex bodies which tend to spheres S, ..., S,
with center z and, of course, |S;| = |MY| = |M;| (compare [2, $41).

The functional T,,(M,, .-, M,, z) is monotone [that is, ML.' C Mi implies

Tm(Ml’, cee, M';l, z2) < Tp(My,+ve, M, 2)] and positive homogeneous:
Tm(/\Mp ey /\Mm, z) = ,\m(m+1) Tm(‘”U coey M, z) for A > 0.

For a given € > 0, choose N(€) > O such that S; C (1 + E)Miy for v > N(¢)
and all i. Then for v > N(¢€), because of (20) and the two mentioned properties,

we have

T (Syyeee s Sy 2) < (La ™D (M2 oee MY, 2)

(1+)™m*) v (M, oee, My, 2),

IA

which proves Tp,(S;, s+, Sm, 2) < Tp{(My,+++, My, z) and hence the mini-

1The proofs found in the literature all refer to the cases m= 2, 3; for references
{2, §70]. However, the extension to arbitrary m is immediate. A particularly simple
proof, which works for all m and is not found in the literature, is obtained by using
Loewner’s result, that there is exactly one ellipsoid which has a given center, contains
a given convex body, and has minimal volume.
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mum property for homothetic ellipsoids with center z.

To evaluate Tp(S,,-++, Sy, z), denote the radius of S; by r;. Then the

results of section 3 show that

1 Wy
+
Tm:(Sp ey Sm; z) =— rz b — Km+1 Tm(Sl’ ttt Sm-l’ z)
m CU2
TS R PO R S (Syyeney S z2)mnen
m(m=1) @, m Mt Smen minp i A
2 Kn
1 @y 1 m+1
m+1 m (m+1)/m
=__‘Hri Km+l = 1 I_Iisl‘ .
m! WOm+1 m: Wm+1 Km+1
m

Therefore we have:

(21) IfM,, .-, M, are convex bodies in E,, with interior points, then

9 Kmul
m+1
cae ] (m+l)/
T (Mo eeeo Mo 20 2 sy o TG0,
m

and the equality sign holds only for homothetic ellipsoids with center z.

Applying this result to (13) yields the inequalities (3) and (4) with the
conditions for the equality sign. The latter result may also be formulated as

follows:

Among all convex bodies M with a given volume, the ellipsoids with center
z (and only these) maximize {Q | M (u)|" dol.
n

To ask for the minimum is senseless since for any convex body M the in-
tegral fQ | M(u)|" do, will tend to zero when M moves to infinity. However,
it is a mganingful, but unsolved, problem to find the minimum of this integral
for all convex bodies with a given volume and center z. This is equivalent to
the problem of finding the smallest constant K such that for any convex ¥ with

center z the inequality

K Jq, IM)]" dof > |yt

holds. The existence of K follows readily from (2).
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Finally (5) shows:

Among all convex bodies with center z the spheres (and only these) yield

the maximum of

min M;’(u,)ln 1@]11'".
u

The corresponding mipimum maximum problem seems quite difficult.

REFERENCES

1. W. Blaschke, Vorlesungen iber Differentialgeometrie, vol. II, Berlin, 1923, and
New York, 1949,

2. T. Bonnesen und W. Fenchel, Theorie der konvexen Korper, Berlin, 1934, and
New York, 1948.

3. P. Funk, Uber Flichen mit lauter geschlossenen geoditischen Linien, Math. Ann.
74 (1913), 278- 300.

4. G. Kowalewski, Einfithrung in die Determinantentheorie, Leipzig, 1909.

5. B. Petkantschin, Integralgeometrie 6. Zusammenhinge zwischen den Dichten der
linearen Unterraume im n-dimensionalen Raum, Abh. Math. Sem. Univ, Hamburg 11 (1936),
249-310.

UNIVERSITY OF SOUTHERN CALIFORNIA



PACIFIC JOURNAL OF

EDITORS

R. M. EOBINSON
University of California
Berkeley 4, California
E. HEwiTT

University of Washington
Seattle 5, Washington

MATHEMATICS

R. P. DiLworTH

California Institute of Technology
Pasadena 4, California

E. F. BECKENBACH

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN P. R. HALMOS
HERBERT FFDERER HEINZ HOPF
MARSHALL DALL R. D. JAMES

BORGE JESSEN
’
PAUL LEVY
’
GEORGE POLYA

J. J. STOKER
E. G. STRAUS
KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLQGY
UNIVERSITY OF CALIFORNIA, BERKELEY
UNIVERSITY OF CALIFORNIA, DAVIS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
UNIVERSITY OF CALIFORNIA, SANTA BARBARA
UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD RESEARCH INSTITUTE
STANFORD UNIVERSITY
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
* *

AMERICAN MATHEMATICAL SOCIETY
NATIONAL BUREAU OF STANDARDS,

INSTITUTE FOR NUMERICAL ANALYSIS

*

Vari-Type Composition by
Elaine Barth

Delores Wierman

With the cooperation of
E. F. Beckenbach
E. G. Straus

Printed in the United States of America by
Edwards Brothers, Inc., Ann Arbor, Michigan

UNIVERSITY OF CALIFORNIA PRESS * BERKELEY AND 1.OS ANGELES
COPYRIGHT 1953 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 3, No. 1 March, 1953

Herbert Busemann, Volume in terms of concurrent cross-sections . . ........ 1
L. Carlitz, Some special equations in a finite field . ....................... 13
Homer V. Craig and Billie Braden Townsend, On certain metric

EXTOIISOTS . . o vttt e e e et e e e e e e e e 25
Philip J. Davis and Henry Pollak, Linear functionals and analytic

continuation problems . .. .......... ... . i 47
Jacob C. E. Dekker, The constructivity of maximal dual ideals in certain

Boolean algebras ............... ... . 73
Harley M. Flanders, The norm function of an algebraic field extension ... .. 103
Marshall Hall, Subgroups of free products . .............................. 115
Israel (Yitzchak) Nathan Herstein, Finite multiplicative subgroups in

AIVISION FINGS . . o o ottt et e e ettt e iiiieee e 121
Joseph Lawson Hodges, Jr. and Murray Rosenblatt, Recurrence-time

moments in random walks . .. ........ ... . e 127
Alfred Horn, The normal completion of a subset of a complete lattice and

lattices of continuous functions ...............c.c.uuueiiueeenennnnns 137
Fulton Koehler, Estimates for the errors in the Rayleigh-Ritz method. . .. ... 153
M. H. Martin, The Monge-Ampére partial differential equation

FE— 82 A2 =0 o 165

John E. Maxfield, Normal k-tuples .....................

Jack E. McLaughlin, Structured theorems for relatively co
lattices . . ..o
William H. Mills, A system of quadratic Diophantine equ
T. S. Motzkin, Ernst Gabor Straus and F. A. Valentine, Th
fartheSt POINES .. .....vvv e
G. Power, Forces on the boundary of a dielectric. .. .....
Ralph Gordon Selfridge, Approximations with least maxi




	
	
	

