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LINEAR FUNCTIONALS AND ANALYTIC
CONTINUATION PROBLEMS

P H I L I P DAVIS AND H E N R Y P O L L A K

1. Introduction. According to the Weierstrass principle of analytic continu-

ation, a single-valued analytic function is completely determined by its values

in a neighborhood of a point z0. These values often are given by a power series

representation at z0

oo

(1.1) f(z) = £ an(z-z0)
n, where an = / ( n ) (0)/n !

and numerous classical theorems relate preassigned properties of the function

f(z) in the large to the sequence of coefficients { an }. It is frequently conven-

ient to think of these results as associating to a given class of functions a

subset of the space A of formal sequences j an K Since power series are es-

pecially pertinent to circles, it is natural that these theorems have dealt largely

with subsets of functions analytic in circles. In order to study classes of func-

tions which are analytic in an arbitrary domain β, it is no longer natural to use

power series. It is, for example, far more relevant to use expansions in terms of

a set \φ ( z ) \ of functions which are complete and orthonormal over B in some

metric.

Such sets of orthonormal functions are sufficiently numerous so that we may

require additional properties. In particular, suppose that an arbitrary region B

and a set of linear functionals LQ9 Lί9 ••• , are given. It is then possible to

find a set of functions {φn(z)\ analytic in B which are not only complete and

orthonormal over B with respect to an inner product (/, g ) β , but are simultane-

ously biorthonormal to a set of linear combinations of {Ln }. In terms of the set

\φn(z)\9 a function f{z) which is regular in B (and of a certain class) pos-

sesses an expansion

(1.2) /(*)= £ L*nW K{z)>
71=0
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with

(1.3) L ^ < ) = δ m n

and

L*n = Σ «nk Lk.

The coefficients L^(f) in (1.2) may be written in the alternate, but equivalent,

form

(1.5) L*(f)^{f,φ*n)B.

The significance of the equality (1.5) lies in the fact that the functionals Ln

(and hence L%) may be defined over a wider class of analytic functions than is

the inner product (/, g) β The development of a general theory of orthonormal

analytic systems from this point of view may be found in [11], of which the

pertinent parts have been incorporated in § 2. This section also contains state-

ments as to conditions under which the above results are valid. Earlier work in

this direction is due to S. Bergman, who considered several special systems of

orthogonal functions of the type dealt with here. (Cf. [2] for complete refer-

ences. )

The above process is thus seen to have "two degrees of freedom," in that

(subject to fairly general conditions) we may select both B and Ln quite arbi-

trarily. For example, let there be given a region B, and the particular set of

functionals

(1.6) Ln(f) = fM{z0) ( n - 0 , 1, . . . * 0 G B ) .

The resulting { L^ ! and {0* (z ) \ are then pertinent to the study of functions

defined by the Taylor series (1.1), but continuable to B and of finite norm

(f,nB.
The general theory may be carried out for a variety of inner products (/, g)o

In this paper, however, we shall restrict our attention to the inner product

(1.7) {f,g)B = jffgdxdy U = * + iy).
B

The general theorems of § 2 will hold with other inner products leading to a

Hubert space; the particular importance of (1.7) will appear in §4.
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For a given complete set of bounded linear functionals \ Ln\, the introduc-

tion of the complete orthonormal system \φ (z) \ related to \ Ln\ and B enables

us to characterize the function / ( z ) in the large in terms of the functional values

Ln(f) (n = 0, 1, ••• ). In § 3 we apply these methods to the following problem:

Given a region B9 and k fixed points on the boundary of B, derive necessary and

sufficient conditions on the functional values \Ln(f)\ in order that a function

analytic in B possess singularities (of any kind) at these points. Letting these

points become dense on the boundary, we obtain a set of conditions, each neces-

sary, and in their totality sufficient, in order that f have B as its complete do-

main of existence. The conditions which we shall give are not of the usual

Hadamard type, but are readily formulated in terms of linear transformations of

the coefficient space A.

In § 4 these results are used to derive a "change of sign" theorem of the

Fatou-Pόlya type for arbitrary regions, while in § 5 we obtain a gap theorem for

functions represented by an orthogonal expansion.

Our methods are of considerable interest in that they exhibit the power of

orthogonal functions to answer a number of questions hitherto attacked by other

means, and in that they allow us to extend to general regions theorems which

are usually confined to circles. Finally, it should be pointed out that most of

the present methods are applicable to the theory of functions of several complex

variables; cf. [ l ] .

2. Linear functionals and orthonormal systems. Let β be a region lying in

in the complex z-plane (z - x + iy). By L2(B) we shall designate the set of

functions which are regular and single-valued in B, with

( 2 . D l l / l l β = ( / , / ) 1 / 2 < o o ,

where we have used the abbreviation

(2.2) (/,g) = fffgdxdy.
B

By S we shall designate a fairly general set of analytic functions for which

L2 (B ) C 5. Let there be given a set of linear functionals \Ln\ (n = 0, 1, ),

each of which is defined over S and sat is f ies the following conditions:

( a ) Each Ln i s bounded over L2 (B ).

( b ) The set \Ln\ i s independent; that i s , for each n (n = 0, 1, ) there

exist functions fO9fί9 , fn ζLL2 (B) such that the Gram determinant | Li (fj)\
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satisfies

Condition ( a ) implies, of course, that within L2(B) each functional L/ posses-

ses an inner product representation. But the requirement that Li be defined over

a wider class S means, in effect, that we are in possession of an independent

definition of Lj which is applicable to all functions of S. Thus, for example,

each L{ may be a differential or a "point" operator of the usual kind met in

interpolatory function-theory and applicable to all functions which are analytic

in an appropriate region; or they may be given by an inner product rule in a

Hubert space which is wider than but totally unrelated to L2(B ).

For the set of nonnegative integers n9 let us set up the following set of mini-

mum p r o b l e m s Qn: To determine that function φn(z) of class L 2 (3) which sat-

isfies the conditions

(2.3) L0(φn) = V 0 n ) = ... = Ln_^n) = 0, Ln(φn) = 1,

and which minimizes the integral \\φn\\β ^ n e following theorem summarizes

the situation ( cf. [ l l ] ) .

T H E O R E M 1. Under conditions ( a ) and ( b ) , the problem Qn has, for each

nonnegative integer n 9 a unique solution φ ( z ) of class L ( B ) . The set of

minimal functions \ φ ( z ) } is orthogonal over B . The set is complete in L {B)

if and only if the set { L n ! is complete in L 2 (B ), that is, if and only if

(2.4) Ln{f) = 0 (n = 0, 1, . . . )> f CL2(B)

implies that f vanishes identically.

We shall designate the normalized functions φ by φn. Thus we have

(2.5) 0 * ( * ) = ^ Λ U ) A B ( n - 0 , 1 , •••),

where

(2.6) * B - I I * J I B - U n W * ) ) ] " 1 -

It can be shown that the orthonormal set {<£*(z) } can be obtained by taking the

set of functions

(2.7) hn(w) = L KB{z,w) ( B = 0 , 1, . . . ) ,
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and orthonormalizing them according to the Gram-Schmidt process of orthogonal-

ization. Here Kβ(z, w) designates the Bergman analytic kernel function of the

region B ( cf. [ 2]), while the subscript z in Ln z indicates that the functional

operation Ln is to be carried out on Kβ considered as an analytic function of the

complex variable z. It is clear that explicit determinantal expressions for φn(z )

and kn can be derived; but inasmuch as we shall not require a knowledge of

their precise structure, it will not be necessary to display them.

Let us next introduce a set of linear functionals {L* \ which are related to

Ln by finite linear combination, as follows:

(2.8a) r (/) =

L0(φ*0)

Ln(φ*) Ln{φ*) . . . Ln{f)

for n = 1, 2, , and

(2.8b)

It is clear that we may write

< * „ * , •*„

(2.9) K = Σ ank Lk'

where the constants a . are, essentially, the cofactors υί the last column of

(2.8a). The constants a^ may be obtained explicitly from the values

and the values of the inner products

( L KB(z,w))

(ΓΛ, n = 0, 1, •• ),

(m, n = 0, 1, , )

by elementary operations.

Inasmuch as the functionals Ln have been obtained by finite linear combina-

tion, it is clear that they are also defined over all functions of the larger class

S. The principal facts about { L* ! are as follows. For all / C L 2 (B), we have
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(2.10) L*n{f) = (/",<£*) (n = 0 , 1, . . . ) .

In particular, then, the sets \ 0* | and ! L* ! are biorthonormal in the sense that

(2.11) L*m(ΦV= 8mn { m ' n = 0 , 1 , - . . ) .8mn

The functions ψ may therefore be considered as a doubly orthogonal set, or-

thogonal once in the sense of the inner product (2.2) and once in the sense of

(2.11).

When the set ί </>* (z ) } (or, what is equivalent, { L n S) is complete for L2 (3),

the Fourier expansion of a function / £ L2 (B ) may be written as

oo

(2.i2) / u ) = Σ (f><f>l) </>l(z)>

n =0

or in the equivalent form
oc

(2.13) f(z) = Σ, ίHΠΦ*n(z)
n =0

It should be pointed out that a series (2.13) may be defined for all functions /of

the wider class S. In some cases (depending upon ί Ln !) it has even been possi-

ble to show [ l l ] that the series (2.13) will represent /even if / is regular only

in a subregion of /]. The following theorem is now' a consequence of the fore-

going remarks.

THEOREM 2. Let there be given a set of linear functionals \ Ln } satisfying

(a) and (b) and defined over a linear class S of functions where S is larger than

L2(B). Suppose, furthermore, that \Ln\ is complete with respect to S. Then a

given f C S is of class L2 (B ) if and only if

(2.14) Σ,
n =0

We shall give here a brief indication of the proof of this theorem. Assume

that f CL2(B). Then by (2.10) and the Riesz-Fischer theorem (cf. [ 2 ] ) for

the space L2(B), (2.14) must hold. Conversely, let there be given an / C S with

(2.14) holding, and construct the function
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g(z) = Σ, KλO Φ*(*)
n - o

B y t h e H i e s z - F i s c h e r t h e o r e m w e h a v e g ( z ) C L 2 ( h ) . F r o m ( a ) a n d ( 2 . 1 1 ) w e

o b t a i n

and therefore

£ * ( / - g ) = 0 ( z = 0, 1, . . . ) .

Hence, by our assumption that \ Ln \ is complete in S, it follows that /== g.

Let us make here an observation which will be of use in the sequel. Suppose

that all the hypotheses of Theorem 2 are fulfilled except that no assumption is

made with respect to the completeness of { L* !. Then, if for some / G S we

have

oo

(2.15) Σ, ! £ * ( / ) I 2 = oo,
n = o

it follows from the Riesz-Fischer theorem that f ηi L2 (B).

It should be remarked that the set { φ^(z)\ depends both upon the domain B

and upon the preassigned set of functionals { Ln ί; when we wish to emphasize

this fact we shall write φ ( z , B; { L i ) , designating thereby the unique func-

tions constructed in the manner previously described.

A further result taken from [ i l l , and which we shall find of use in the se-

quel, is the following. Let B be a bounded region containing the origin such that

the boundary of B consis ts of a finite number of mutually disjoint Jordan curves.

Let there be given a sequence of points { an \ lying in B for which 1

(2.16) lim α = 0.
n—>°c

Introduce the set of functionals ί Ln !, defined by

(2.17) L π (/) = / ( α n ) ,

and construct the orthogonal functions

1 Condition (2.16) may be generalized.
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' ii f n ' j '

If now /( z ) is analytic in B, then the interpolation series

oo

(2.18) f(z) ~ 22 L l ( f ϊ Φl^z^
n = 0

converges to / ( z ) uniformly in any closed subset of B> Furthermore, we have

(2.19) limsup | L * ( / ) | 1 / n < 1.
n —* oo

Conversely, if a ser ies (2.18) is given for which (2 .19) holds, then the sum of

the ser ies is analytic throughout B, and the function represented has the given

series (2 .18) as i ts formal expansion found by interpolation in the points z = OL^.

It should be observed that when / G L2 (B) we have, by ( 2 . 1 0 ) ,

(2.20)

A corresponding result holds when the points Cin coincide at z — 0. In this case,

the functionals Ln are to be interpreted as

For complete details the reader is referred to [11] .

Theorem 2 is the point of departure for the investigations of this paper. De-

velopments analogous to those presented here are valid for classes of functions

other than L2(B), In particular, they are valid for functions of several complex

variables. In this case, we deal with the space L2 (B^2n') of single-valued ana-

lytic functions of n complex variables /( zx, •« , zn ) for which

(2.21) / j / | 2 dw < oo dw = dx dy ••• dx dγ/ j f\2 dw < oo dw - dx^ dyχ

TΛ2n)

n dyn

( z . = x. + iy. / = 1, 2, , n ) .

Generalizations to nonschlicht domains in the space of one or several complex

variables can also be effected. The contents of Theorem 2 can be given a more

abstract formulation, but we shall not do so here inasmuch as our principal con-

cern is with its application to analytic function theory.

3. Criteria for analytic continuation. At the outset we shall introduce the
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following notation. The set of all sequences of complex numbers { an \ shall be

designated by A. The sequential Hubert space, that is, the subset of A for

which

oo

Σ Kl 2 < oo,
n - o

will be designated by H2. Given the sequence a = \ an !, we shall designate by

b = Ta the sequence b = { bn \ obtained from a by means of a linear triangular

transformation of the form

K= Σ C
nk

Our approach to the problem of analytic continuation can be described in the

following general way. Let there be given an extensive class of analytic func-

tions S and a set \Ln\ of linear functionals which is complete in S. In addition,

let there be given a distinguished subset S* of S. It will be supposed that the

distinguished subset S* can be characterized geometrically as follows. We shall

suppose that there exists one [and possibly two] 2 sequences of regions ί Bn \

[and \Cn\] such that L2(Bn) C S [ and L 2 (Cn ) C S] while / G S* if and only

if

(3.2) f €L2(Bn) (n = 0, 1, . . . )

[ and

(3.2') fφL2(Cn) (π = 0, 1 , . . . ) ] .

Furthermore, we make the assumption that each functional Ln satisfies con-

ditions (a) and (b) with respect to all the regions Bj [and C;]. Let there now

be given an / G S*. This function is determined in a unique way within S by the

values Ln(f) {n = 0, 1, ••• ). We may therefore ask for a criterion phrased in

terms of the values Ln(f) which will tell us whether or not / is, in addition, a

member of the distinguished subclass S . Such a criterion now follows from

(3.2) and Theorem 2. For each region Bj [and C^], let us construct the ortho-

normal systems

In dealing with certain classes S* we may need to include the conditions and con-
struction given in brackets throughout the remainder of this paragraph. Cf. the examples
which follow immediately.
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By means of (2.8) these sets of orthonormal systems, we then construct the re-

lated functionals {L \ [and {L , }]. A necessary and sufficient condition

that / G S* is that

(3.3) Σ, \L*n,j(D\2 < °° 0" = 0 , 1 , . . . )
n =0

[ and

(3.3') £ I ^ , A ( / ) I 2 = c° <* = 0 , 1 , . . - ) ] .
= 0

Inasmuch as the LR's are linear combinations of the functionals Ln, we may say

that there exists one [and possibly two] sequences of transformations { 7V ι ' J

[ a n d { Γ / 2 ) Π such that

(3.4) Tj<
ιmn(f)}€ IP ( / = 0 , 1 , - . . )

[ and

(3.4') T™\Ln{f)

are necessary and sufficient conditions that / G S*. Equations (3.4) and (3.4')

may be employed to study the topology of the set S* in the coefficient space A,

and therefore the question as to what distinguished classes S* possess criteria

of the type (3.4) is an interesting one which deserves attention. We shall now

give a number of examples which will elucidate these general remarks.

E X A M P L E 1. Let 5 be the class of functions which are regular at z = 0, and

let Ln{{) = fM (0) (n = 0, 1, •«« ). Let S* be the class of functions which are

regular and single-valued in the entire (finite) plane with the exception of k

(single-valued) singularities located at the k fixed points zi9 ••• , z, {z{ ^ 0 )

which have been prescribed in advance. For the regions Cn, we may take k

regions, the i of which contains the points 2 = 0 and z - Z{ Let r designate

max I z. I .
1 < i < k ι

For Bn, take the circle | z \ < r + 1 + n from which has been deleted the k smaller

circles I z - z{ I < \/n {i = 1, 2, « , k ). Suppose now that / G S*. Then it is

clear that fCL2{Bn) and / (£ L2 (Cn) {n = 0, 1, «« ). Conversely, if we have

f £_L2 (Bn) (n - 0, 1, ••• ), then surely / is regular in the entire (finite) plane,
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with the possible exception of the points z - Z{ {i = 1, 2, , k), while f

L2(Cn) (n = 1, 2, , k ) ensures that singularities occur at these points.

Conditions (3.4) and (3.4 '), or (3.3) and (3.3"), interpreted through (2.8a), are

thus necessary and sufficient for the Taylor coefficients in order that the func-

tion be regular and single-valued in the finite plane with the exception of singu-

larities at k specified points.

Several remarks are now appropriate. It is clear, in the first place, that the

sequences of regions { Bn \ and { Cn } may be selected in a variety of ways, each

selection yielding a necessary and sufficient condition. Secondly, the points at

which the function is to have singularities need not be finite or even denumer-

ably infinite, but may comprise quite general point sets. The criterion just given

(and those given in subsequent examples) is, in principle, completely construct-

able. For, the kernel function Kβ{z, w) of a simply or multiply connected do-

main B may be determined [2] through the orthonormalization of a set of func-

tions complete for L2{B); the orthonormal functions 0* may then be computed

through the orthogonalization of the functions LUyZ Kβ{zy w), and finally, the

coefficients α r in the expression

k = 0

Lk

may be computed through (2.8a). Thus, the sequences of coefficients which

occur in Tj \ T j ^ 2 ^ may be completely specified beforehand, and are indepen-

dent of the particular / which is to be tested. Our criteria are, therefore, true

necessary and sufficient conditions; but in most cases, because of their com-

plexity, these conditions will be rather inaccessible for further analytic work.

While the cases which yield further results are of prime importance, all cases

are none the less of interest in so far as they show what classes of analytic

functions S can be characterized by transformations of the type considered in

the coefficient space A.

EXAMPLE 2. Let B be a region which contains the origin in its interior and

is bounded by a finite number of nonintersecting Jordan curves. Let S designate

the class of functions regular at z — 0. Let S designate the class of functions

which are regular in B and possess B as their total regions of existence; that is

the boundary b of B is the natural boundary for each function of class S . Let us

now construct two sequences of regions Bn, Cn as follows. For Bn take any

sequence of regions whose closures lie entirely interior to B and such that
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B = V B
n = 0

Let now zn be a sequence of points which is dense on b. Let Vn designate the

circle I z - zn I < 1/n, and set Cn = B u Vn. We may now show that / ( z ) is of

class S that is, j(z) is regular throughout B and possesses the boundary of B

as a natural boundary if and only if

(3.5a) f€L2(Bn) (n = 0 , 1 , 2 , ••• ) ,

(3.5b) f^L2(Cn) (n = 0, 1 , 2 , . . . ) .

For suppose, first of all, that / £ S . If B' is any subregion lying entirely in 5,

then it is clear that / £ L2 (£ ' ) , so that α fortiori (3.5a) holds. If / £ L2 (Cy)

for some /, / would be regular in the region B u Vj which is larger than B, and

this would contradict the hypothesis that / cannot be continued analytically to a

larger region. Thus, (3.5b) is established. Conversely, let there be given an /

for which (3.5a) and (3.5b) hold. From (3.5a) and the fact that

oo

5 = Σ Bn>
n = 0

it is clear that / must be regular in B. If now / could be continued analytically

across some portion of the boundary b, then there would exist a point z' £ b and

a circle F' : | z — z ' | < r such that / would be regular in B u V. Since the points

zn are dense in b and the radii of Vn tend to 0, we may surely find a point zn £

b π {/' such that VncV. Then Cn = B u Vn lies entirely interior to B u V\ so

that / £ L 2 (Cn) This is a contradiction, and therefore / cannot be continued

analytically across any portion of the boundary of B.

Let us now select

Lj(f) = / ( / ) ( 0 ) (/ = 0, 1, . . . ),

and construct the functions <£* (z, Bn; { Lj \), the corresponding functions for the

regions Cn, and the related functionals L* .. Then (3.3) and (3.3') are neces-

sary and sufficient conditions on the Taylor coefficients of a function f in order

that f be regular in B and possess the boundary of B as a natural boundary.

If, in particular, B is selected as the circle | z \ < 1, then our criterion gives

necessary and sufficient conditions on the coefficients of
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n = 0

in order that / possess \ z\ = I as a natural boundary. In this special case, we

may select as zn9 the points zn - e2ΊJlτn where { rn \ designates the set of ration-

ale x for which 0 < x < 1. The region Cn is now the region composed of all points

in I z I < 1 and | z — zn \ < 1/n. Cn may be mapped onto the interior of a circle by

an elementary function φn(z) which is compounded of a VJδbius transformation

plus a root extraction. Inasmuch as the kernel function K , (z, w) may be ob-

obtained from φ ( z ) by means of the formula

Kc {z9w) = φ'n(z) φ'n(w)/π(l~φ(z, φ{w))2 ,

it is clear that K (z9 w)9 and hence the constants a , appearing in

m

T * ( Γ \ — S ^ ( Λ ) T
LjmKUn) ~ £s amk Lk>

k =0

may be computed in an elementary fashion. Despite this fact, it would seem that

no very great simplification in the criteria given can be expected. The orthogo-

nalization of the functions Ln z A ( z, w) which is met in (2.8) introduces con-

siderable algebraic complexities. Let /V designate the class of analytic func-

tions which possess \z\ = 1 as a natural boundary. That a necessary and suf-

ficient condition for / G /V ought to be fairly involved may be inferred from the

fact that N possesses no simple algebraic structure; given fl9 f2 G /V, then we

cannot assert that any of the usual algebraic combinations f^ + f2, fι f29 fγ/f29

fι ( ί i) t here ] f2 \ < 1 ] must of necessity belong to N.3

For general regions B9 the regions Bn may be constructed by the usual de-

vice of covering B by a grid. (See, for example, [9, p 7-8],) As regards the

regions Cn9 it suffices for applications that there exists a set { Cn \ satisfying

the following conditions:

(c) B C Cn (n = 0, l f . , . ) ,

( d ) if B C /?*, B ^ £ * , then there exis ts an index / such that Cj C 5 * .

We may then show by means of arguments similar to those just used that / G S

if and only if / G L2 ( B n ), f ^ L2 ( C n ) (n = 0, 1, - ). We shall not examine

the question as to what regions p o s s e s s systems { Cn \ satisfying ( c ) and ( d ) .

In our applications we shall deal with explicitly constructed se t s { Cn \.

For a topological discussion of the set N in the coefficient space A, see [ 8 ] .
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We need not adhere to the selection Ln(f) = f^ (0) . As another interesting

choice, let G be a fixed region interior to B and possessing a complete ortho-

normal set \ φ ( z ) \. Introduce

ίί -
G.ό) Ln(f) = // f φ dxdy.

B

In this case, our criterion yields a necessary and sufficient condition on the

Fourier coefficients of / (with respect to \φn\) that / have B as its natural

region of existence.

E X A M P L E 3. Although the present example is not concerned with the ques-

tion of analytic continuation, it provides an additional application of our meth-

ods. Considerable work has been done on functions which are bounded in the

unit circle | f( z ) | < 1, | z \ < 1. In particular, the coefficient problem for bounded

functions, that is, the problem of determining the necessary and sufficient condi-

tions on the coefficients of

(X)

/ ( * ) = T a z n

in order that / be bounded in the unit circle, has been solved by I. Schur. ( See,

for example, [ 3> p 138-145]). We turn our attention here to the corresponding

problem for an arbitrary region, and show how Theorem 2 gives us an answer to

this question.

At first we remark that Theorem 2 may be written in the following stronger

f o r m . Let there be given a set of linear functionals \ L n 1 satisfying ( a ) and ( b )

and defined over a linear class of junctions S larger than L (3). Suppose also

that \ L n \ is complete with respect to S . Then a given f C S if of class L 2 (3)

and possesses a norm

If 1 dxdy = M2

J j
B

if and only if

(3.7) £ \L*n{f)\2 =M2.

n =o

Let B be a bounded region which is assumed to contain z = 0 in its interior.
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I t i s e a s i l y s h o w n t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t \f(z) | < 1 i n B

i s t h a t

( 3 . 8 ) fj I /( z ) I 2 dx dy < area (B ') for all B'C 13 .

It will be convenient for our purposes to obtain a condition of type (3.8) which

utilizes only a sequence of subregions, each subregion containing the origin in

its interior. One way in which this can be accomplished is as follows. Let { zn \

be a sequence of points which is dense in B. Let Cn designate the circle

1 "
< p , p = min I — , d i s t (zR to b o u n d a r y of β ) | .

Since we are dealing with a connected set, it is possible to find an arc joining

z - 0 and z — zn and lying interior to β. It is therefore also possible to find a

curvilinear strip Un issuing from Cn9 lying interior to β, containing the origin in

its interior, and such that

area (LJ

n) <: — area (CR ) U = 0, 1, •« ) .

Designate the simply connected region Cn u Jjn by Sn We now show that a neces-

sary and sufficient condition that \ f( z) | < 1 in B is that

(3.9) jf \f(z)\2 dxdy <area(S n ) {n = 0, 1, 2, . ).

The condition obviously is necessary. Suppose, now, that ( 3 . 9 ) holds, while

| / ( z ' ) | > £> 1. By continuity, we have | / ( z ) | > t in a neighborhood /V of z'\

hence, for an appropriate selection if indices n^ (k - 0, 1, ), we have also

\f{z)\> t throughout Cn (k = 0, 1, • ). Now
k

Ik. I/U)|2 dA Jln
\f(z)\2dl

k
> > > i

area {Sn ) ( 1 + 1/n, ) area ( Cn ) 1 + 1 nL

for k sufficiently large. This contradicts ( 3 . 9 ) and proves the statement.

Let

LAI) = f{n) (0)/n\;
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and let

/*(*) = y O(A) i
n £-^ nm m

m = 0

be those functionals associated with \Ln\ and {

necessary and sufficient condition that

\ through ( 2 . 8 ) . By ( 3 . 7 ) , a

n =o

satisfy | /( z) \ < 1 in B is that

(3.10)

n =0

< area (Sk \ (k = 0, 1. . ) .

It is to be emphasized that the coefficients cr ' depend only on S,, and may

therefore be computed in advance. Conditions (3.10) may be made the source of

numerous inequalities to be satisfied by the individual coefficients.

4. Change-of-sign theorems. The following theorem was originally con-

jectured by Fatou [ 6] . Let

n =0

possess the circle \ z \ = 1 as a circle of convergence. Then there exists a se-

quence βn in which each €n is either + 1 or — 1 and such that the function

n = 0

possesses \ z \ = 1 as a natural boundary. The first proof of Fatou's conjecture

is due to Pόlya [ 7 ] . A frequently quoted proof (See for example, Bieberbach

[ 3 , vol. 2, p. 2^9-300].) is due to Hurwitz [ 7 ] . In the present section we shall

show how certain generalizations of this theorem may be attacked by the method

developed in Example 2 above.

In what follows, we shall assume that there has been given a region B for

which a sequence of regions Cn satisfying properties (c) and (d) above may be
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found, by S Ln \ we shall designate a set of linear functionals which are defined

over a c lass S of function which is larger than L2{B), The set \Ln\ will be

assumed complete with respect to S, and in addition, for each f d L 2 ( B ) and

for each n, it will be assumed that we have a representation of the form

U.I) M/)=
R

where pn (z ) £ L 2 (/i ) (n - 0, 1, ), and \ pn ( z ) \ is a complete and ortho-

nornial set for L1 (B ). Thus, the quantities Ln (/), for / C S may be regarded as

generalized Fourier coefficients of f with respect to the orthonormal set \pn (z )}.

We shall now mention several examples of such sets of functionals.

(1) Let B be such that L2{B) possesses a complete orthonormal set \pn(z )\

each function of which is regular in a region β ' which contains B completely in

its interior. For instance, suppose that B is such that there is a complete ortho-

normal set of polynomials.4 Then the functionals (4.1 ) are defined not only for

/ C L2 (li ), but for all f belonging to the larger class f = Lι ( /; of all single-

valued analytic functions, regular in B, for which

I /( z ) \ dxdy < oo.

B

(2) Let Ln(f) = £ * ( / ) , where the L* are now the (normalized) functionals

described in (2.17)-( 2.18). The functionals £ * ( / ) are defined over the class S

of functions possessing definitions at z — α^; and, in view of (2.20), Ln has a

representation of form (4.1).

(3) Indeed, selecting \ Ln\ as any set of functionals defined over a set

S D L2{B), satisfying ( a ) and ( b ) , and construcing L* in accordance with

§ 2, we may then set Ln = L^.

THEOREM 3. Let f{z) be a function which is regular in B% which possesses

the generalized Fourier coefficients

(4.2) V i , ( ί ) U-0,1,...),

but which is not of class L2(B). Then there exists a change of sign €n, £n =

-f 1 or - 1, such that if

(4.3) α* = en an (n = 0, 1, 2, . . . )

4See [5] for sufficient conditions on the boundary of B.
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are the generalized Fourier coefficients of a function f ( z) which is regular in

5, then this latter function f (z) cannot be continued analytically across any

portion of the boundary of li.

Before giving the proof of Theorem 3, we shall make a number of remarks as

to its statement. As far as the proof of the theorem in the general form given

above is concerned, it is necessary to make the hypothesis that / not be of class

L2 (B). It is clear that some sort of restrictive hypothesis is necessary in order

to prevent the original f{z)9 and hence (possibly) the modified f , from being

analytic in a larger region. For the special case in which B is the unit circle,

it is thus seen that the present change-of-sign theorem is weaker than the class-

ical one, and although it has been found possible to modify the argument which

follows so that it applies to a much wider class of functions than those which

are not of L2 (B), the proof of the full theorem along these lines has not been

forthcoming.

The proof of the theorem in no way uses the existence of a function f for

which (4.2) holds, but only the fact that

n =0

However, even if the numbers { an \ are the generalized Fourier coefficients of a

function which is regular in B, it is by no means clear that the numbers ί 6n an \

are again the Fourier coefficients of a second function /* regular in 8. For this

reason the hypothesis has been introduced into the statement of the theorem. In-

deed, this property would seem to depend in part upon the choice of the complete

orthonormal system { pn (z ) j . But we can show that for all B bounded by a finite

number of Jordan curves there are complete orthonormal systems for which this

will be true. One important case is that in which the functionals Ln are the L'n
given by (2.16), (2.17). By the discussion following (2.17), it is clear that if

/ is regular in B then

limsup | L * ( / ) | ι / n < 1
n -+oo

and

and so there exists a function f* regular in B such that
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We turn now to the proof of Theorem 3. Let \ Cn\ be the family of regions

satisfying (c) and (d) above whose existence has been assumed. Let us fix

our attention upon a particular region Cj. Since B C Cj, we get L2{Cj) C L2 (B\

and so each functional Ln of the set \ Ln\ is defined over a class S wider than

L2 (Cj). Let us now verify briefly that the conditions of Theorem 2 hold for the

set \Ln\. ( The region B of Theorem 2 is now to be identified with the present

region Cj.) We need only show that each Ln is bounded over L2(Cj). This is

clear, for by (4.1) and for / £ L2 {Cj) we have

(4.4) L π ( / ) =

so that

(4.5) \Ln{{)\2 < jf \{\2 dxdγ < ff\i\2dxdy.
B Cj

By Theorem 2 and the remarks following it, we know that there exist func-

tionals

= T αΨ Liii *-~t nk k
k = 0

such that if for some g C S we have

(4.7) Σ , \Ll{i) ^S)\2 = oo
n =0

then it must follow that g ^ L2(Cj). If, therefore, for a given g ( z ) which is

regular in B we have

(4.8) Σ \L*n

(ί) U ) l 2 = °° (/ = 0, 1, 2, . . . ) ,
n = 0

then, a s we previously have seen, by the very selection of the regions { Cj !, it

follows that B is the complete region of existence of g.

Let there now be given an f(z ) which is regular in B, possess ing the gener-

alized Fourier coefficients an ~ Ln{f), and not of c la s s L2{B). Thi s last state-
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ment when expressed in terms of Ln (/) means, in virtue of ( 4 . 1 ) , that

n =o n = 0

We shall show how a change of sign { £n \ may be selected such that

(4.10)

n =o
<—^ nk k k v s '

k =0

-oo (/ = 0, 1, . . . ) .

Assuming now that

for some function f* regular in β, then, by what we have just said, the function

/ must possess B as its entire region of existence.

In order to show how a change of sign ! en \ for which (4.10) holds may be

selected, we require two preliminary observations. The first is as follows. Let

there be given two arbitrary complex numbers zv z2, then for some change of

sign € = ± 1 we have

(4.11) I 2, + e z2\ > | z 2 | .

For it is evident geometrically that if | zx + z2 \ < | z2 \ then \ zγ — z2 \ > | z2 \ .

Secondly, it will be important to give an estimate of the quantity a^n'. From

(2.8a) and (2.9), it appears that

(4.12) «ίj' = kιf ky.-tf / . 0 (< />) M o ; 1 " ) . . . L n . 1 ( ό : ΐ ) ,

so that, by (2.6),

Now the functions 0* (/') are of class L2(Cj) and a fortiori of class L2(B).

Hence, by (4.1),

(4.14) V<
B

so that, by the Schwarz inequality,
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because of the normality of the function pn over B and the φn ^ over Cj. Thus

we have

(4.16) I a [ 0 I > 1 for all n and j .

We return now to the construction of the sequence { en j . First select a sequence

of integers n0 = 0, nί, n2, , such that

(4.17) (k = 0, I , . - - ) .

This is clearly possible because of (4.9). We shall next show how to select a

change of sign 60, €l9 , en so that

(4.18)
" 1

Σ k=o

> 1.

To this end, select 60 = 1; then by (4.16) we have

Having selected 60, el9 ••• , ep for 0 < p < n^ select

be that change of sign for which

as follows: let

(4.19)
P

Σ
k =o

This is possible by our first observation above and by (4.16). We proceed in a

step-by-step fashion, selecting one 6 after another, and we finally arrive at £0 ,
6i> ' * * > en for which it can be asserted that

(4.20)
P

Σ
k =o

>\Lp(f)\ = 0 , 1 , ••• , 7l 1 )

The inequality (4.18) now follows from (4.20) and (4.17).
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By precisely the same argument, it is possible to select changes of sign
€rct + i> €nι+2> # » en2

 s u c n t n a t

(4.21)
n = n ί + l k = 0

> 1.

For we may select eΛ + 1 as that change of sign for which

(4.22) Σ
k =o

, ( 0

the rest of the argument proceeding as before. We now proceed through the se-

quence of matrices T ~ ( α ^ ) ι n a n oscillatory fashion, returning to each

matrix an infinite number of times. To formalize this process, let us associate

with each matrix T^' an infinite number of intervals of integers (np + 1 < n <

Πp+ i) in the following way:

TQ: (nQ9nχ) U 2 + 1, * 3 ) ( Λ S + 1 , / » 6 ) •••

Thus to each matrix

vals

we have associated an infinite number of distinct inter-

0, 1,2, •.. )

Conversely, to each integer qr > 0 there is associated a unique integer / = j(q)

such that the interval (rig + 1, ^^ + ! ) is associated with the matrix Γ ^ ^ ^ . Having

now selected changes of sign 6Q, 6 , , en , we proceed to se lect changes of
s i g n % + i» e/ι g + 2» ••• » €/ιg + 1

 i n s u c h a w a y that

(4.23) > 1 ( / • = / ( ? ) ) .

A; = 0



LINEAR FUNCTIONALS AND ANALYTIC CONTINUATION PROBLEMS

This can be done for q — 0, 1, .

Let now j be any fixed integer > 0, and let

(n u) + 1, n ( ) ) (r = 0, 1, 2, ••• )
Pr Pr

 + 1

be the intervals associated with T ^ . Then

(4.24)

n = 0

n

Σ
= 0

n k k k

2

>

(X)

Σ
r = o

Σ
Pr

= 00

The first inequality follows from the fact that the left-hand member includes all

the terms of the middle number, while the divergence follows from (4.23). Thus,

our selection of { 6̂  \ has guaranteed the inequality (4.10), and the theorem is

established.

3. Gap theorems. It is instructive to apply the method of Theorem 3 to derive

gap theorems for series of orthogonal functions inasmuch as this method exhibits

clearly the role played by the deletion of coefficients. The theorem obtained by

this means assures the existence of gaps leading to natural boundaries, but

gives no information as to their density. These results are therefore of interest

for the case of general regions5 and for general functionals, but of little interest

for the case of power series in the unit circle which possesses a highly develop-

ed theory of gaps. In the present section, we retain all the assumptions of § 4,

regarding the region B and the set of functionals { Ln !. We assume moreover that

there is a fixed larger closed domain B' containing B in its interior such that

each function p ( z ) of the orthonormal set in (4.1) is regular in B '.

THEOREM 4. Let \θin\ be a sequence which is bounded away from zero:

(5.1) I α π I > a > 0 U = o,

There exists a sequence \ 8n !, dn = 0 or 1, such that if onan are the (general-

ized) Fourier coefficients (with respect to the system \pn(z)\) of a function f

which is regular in B:

(5.2) δnan = Ln<,()

then f possesses the boundary of B as a natural boundary.

3Cf. [ 10] where a related subject is investigated from a different point of view.



70 PHILIP DAVIS AND HENRY POLLAK

Proof. We may evidently select the set of regions C ^ so that C ^ C B'

(; = (), 1, •• ). Each function p^iz ) is of class L2 (B') and a fortiori of class

L 2 ( C ( > } ) . Thus we have

(5.3)

n =0
Σ «i

= 0

< 00 (k = 0, 1, = 0, 1, . . . ) ,

so that, in view of the orthonormality of {p^ ! over />, we have

(5.4) Σ K i } l 2 <o° u = o, l , . .

n=k

This means in particular that, for fixed j and k, we have

(5.5) lim a\β = 0.

As before, we have

(5.6) lαi^l > 1 U , 7 = 0, 1, 2, . . . ) .

We shall show that we can find a row in the zero-th matrix Γ ( o ) with index rι,

and numbers δ^ = 0 or 1 (n — 0, 1, ««« , r^ ), such that

(5.7) λ, arxk
k=0

a
—
2

This is clear; for we may select rt = 0 , 60 = 1, and (5.7) follows in view of

(5.6) and (5.1). We now use the oscillatory process of selection which was

employed in the proof of Theorem 3. Assume that we have selected rows r t in

r2 in r3 in r4 in r 5 in
t = ί (g) , and numbers δ n ( = 0 o r l ) ( r e = 0, l , , r ^ ) such that

rq in

(5.8) Σ -a 8* «
A; = 0

α

We shall now show how to select a row r in the matrix

δ n ( ^ + 1 < Λ < r^ + 1 ) , δ Λ = 0 or 1, such that

( ί = ί ( p ) ; p = 0, 1, . . . , q).

a n d n u m b e r s

(5.9)
k =0

α

2



LINEAR FUNCTIONALS AND ANALYTIC CONTINUATION PROBLEMS

In the matrix T ^ , we consider the first rq columns. By (5.5), we have,

(5.10) lim at{?+ι) = 0
"nk

hence, defining a quantity η by

T Σ lα*
k=o

we may select (by (5.5)) re so large that

(5.11) \a = 0,l, .

Designate the re chosen in this manner by r ? + 1 , and select 8n = 0 for r^ + 1 < re <

Γn+j — 1, while δ π = 1 for re = fq n Thus, the sum in (5.9) becomes

(5.12) 5^ a1

k=o

Σ aHq+ιlδ a + at{q+ι) 3 a
k=o q q q

= I A + B I > 11 B I - I A \ \,

where /I refers to the sum appearing in the middle of (5.12), while B designates

the isolated term. From (5.11) we have

(5.13)
α
λ

while from (5.6) and (5.1) we get

(5.14) | B | > α ,

so that (5.9) holds. For each fixed matrix T^J' we have an infinite number of in-

equalities of type (5.9) corresponding to an infinite number of its rows. Thus

clearly,

(5.15)
Λ = 0

*-•-' nA; A; A
A; = o

- Σ
n =0

Σ αφ L,£-^ nk h
k=0

00

(; = 0, 1, 2, ••• ),

and our theorem is proved. Again we should observe that under conditions (5.1)
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we have no assurance a priori that { δn o^] are the generalized Fourier coef-

ficients of a function which is regular in B. But the example mentioned in con-

nection with Theorem 3 shows that for all β bounded by a finite number of Jordan

curves, there are complete orthonormal systems for which this is the case.
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