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THE NORM FUNCTION OF AN ALGEBRAIC FIELD EXTENSION

HARLEY FLANDERS

1. Introduction. Let k be an algebraic field, K a finite extension field of

degree n over k, and ωl9 ••• , ωn a linear basis of K over k. (For the standard

results of field theory which we have used in this paper, the reader is referred

to the texts [2; 4; 5l.) If ^ = (Xl9 ••• , Xm ) is a set of indeterminates over K,

then [K(X) : k(X)] - n9 and in fact ωϊ9 ,ωn is a basis of K(X) over

k(X). We set m = n and form the so-called general element

Ξ = ωί Xϊ + + ωn Xn

of K over k. We may, without confusion, use the symbol Nκ/k both for the norm

function of K/k and for that of K(X)/k(X). The general norm of K over k is the

polynomial

N(X) = N(Xu...,Xn) = Nκ/k{B)Ck[X].

We propose here to discuss the factorization of this polynomial and the possi-

bility of characterizing the norm function Nκ/k °f K/k intrinsically. We are in-

debted to Professor E. Artin for a helpful suggestion communicated orally.

2. F a c t o r i z a t i o n o f t h e g e n e r a l norm. If w e t a k e a n e w b a s i s η , ••• , ηn,

we simply effect a nonsingular linear transformation on the n variables Xf, hence

nothing essential is changed. The possibility of selecting a convenient basis

will be used to advantage in the proofs below. Our first result, while not com-

plete, admits a simple proof; consequently we give it before giving a more gener-

al result.

THEOREM 1. Let K = k(θ) be a simple extension of k. Then the general

norm N{X) is irreducible in k[X],

Proof. Let f(X) = (X - θx) (X - θn) be the minimum function of θ - θx

over k9 and take 1, θ, , θn~ι as a basis of K over k. Then
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N{X) =

Since this is a complete factorization of N{X) into linear factors, it follows

that any factor of N{X) must be the product of a constant and certain of the

linear factors displayed. Consequently, if G(X) is an irreducible factor of

N{X) in k[X] with

deg G(X) = r (1 < r < n),

then, by properly renumbering and adjusting the coefficient of λ^, we have

r
G(X) = )

It follows that G(X, - 1 , 0, • •• , 0) C k[X]. But this means that

Y[{X-θi)Ck[X].
1 = 1

Since f(X) i s irreducible over k9 we must have r = n.

We can generalize this theorem as follows.

THEOREM 2. Let [K : k] = n, αrcd Zeί m = max { [&(<9) : k] for θ C K\.

Then m divides n, and the complete factorization in k[X] of the general norm

N(X) of K over k is given by

N(X) = [F(X)]n/m,

where F (X) is an irreducible polynomial in k[X].

Proof. If K/k is a separable extension, then it is a simple one and Theorem

1 applies. Consequently, we may assume that k has finite characteristic p, and

that K/k is inseparable. Let S be the maximal separable subfield of K over k,

and let s = [S : k], so that n = s p u . We let e denote the least whole number

such that KP C S. Then 1 < e < u and it is known [2; 4; 5] that m - spe.

Finally, we let α be a generator of S/k, thus S - k(d); and let

Ω t = 1, Ω2, . . . ,ίlpU
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be a linear basis of K/S with

(tij)Pe = βj C S.

The general element Ξ of K/k is given by

a = Δ^a \ljAij u = υ, , s - I, / = l, , p ,

and the general norm by

N(X) =

with

This is the case because

and

Λfe/s ^ = ̂ p " = ( ^ p β ) p U " β for A € K.

We next assert that the polynomial

is irreducible in the ring S[A] . Suppose this is not the case and let Γ(Λ^) be

an irreducible factor. We normalize the coefficient of the highest power of

A^ol in V(X); we may thus write

where 0 < / < e and (v, p) = 1, We clearly have

and so there exist rational integers α, b such that
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p*υa + peb = p*.

This implies that

hence

^ €S[X], EalPf (Qj)Pf Xpf CS[X].

Thus, for each i and (i ~ 0, , s - 1; / = 1, , pu), we have

a(Pf (Qj)Pf C S.

In particular, setting i = 0, we obtain

(Ωj)PfCS for / = 1 , . . . , p B .

Hence K C S, a contradiction of the definition of e

It will be convenient in the remainder of the proof to have a "sufficiently

large" field at our disposal. We form the splitting field U over k of any poly-

nomial f(X) in A; [A] which has amongst its roots the quantities CX, Ωι, ,Ω α

Then we may assume k C S C K C ί/, and any relative isomorphism on K over

k into any field containing K is already into U.

Now let σ be any relative isomorphism of S over k into U. The fact that

Π(A) is irreducible over S[A] clearly implies that Hσ{X) is irreducible over

5 σ [ A ] , We also assert that if σ ^ L, the identity isomorphism, then Π(A) and

and Hσ(X) are relatively prime in U[X~\» To prove this, we first note that,

since K is a pure inseparable extension of S, σ has a unique prolongation to an

isomorphism (also denoted by σ) of K/k, Thus

= Ά P \ Π σ U ) = (Ξσ)Pe.

These can have a proper common factor if and only if

λΞ = %σ for λ in K.

If this is the case, then we compare the coefficients on either side of A o l and

Xll9 obtaining λ = 1 and (X = Cίσ, an impossibility if σ φ t .
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T o c o m p l e t e the proof, we l e t σi9 ••• , oκ be a l l of the r e l a t i v e i s o m o r p h i s m s

of S over k i n t o ί'. We h a v e

Let G(X) be any irreducible factor of F ( X ) in A: [ Λ ]. It follows from the facts

(a) each \fh ( A'.) is irreducible in S°"Λ [ A j and ( b ) the s polynomials IΓ^ ( X )

of t ' lA] are pairwise relatively prime—an immediate consequence of the result

of the last paragraph—that G (Λ ), after a trivial modification of leading coef-

ficient, is necessarily of the form

r

G(X) = Π LΠσ Λ(-Y)l ( 1 < r < s),

where, of course, we have rearranged the indices h as needed. Since

A: [A], it follows that the polynomial

which results from the specialization

[A'ol = X, Xχι = - 1, Xij = 0 for all other i, ] ,

is in k[ A]. This implies r = s, G(X) = F (A ), as desired.

3 . C h a r a c t e r i z a t i o n o f t h e norm f u n c t i o n . 1 I n t h i s s e c t i o n , l e t k,K b e f i e l d s

such that [K : k] = n. The norm function ^κ/k n a s t n e following properties:

(Λ\) Nκ/k{AB)^{Nκ/kA) {Nκ/kB) for all 4, β € K,

(^2) Nκ/k{a) = α" for all o C A.

These properties mean that Λ'χ/ &0 = 0 and that Nκ/k 1S a homomorphism on the

multiplicative group K* of nonzero elements of K into k* such that

Nκ/ka = αΛ on A*.

A somewhat different characterization is given in L 1 J
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DEFINITION 1. A function /on K into A; is a norm-like function if

(/Vt) f(AB) = f(A) f(B) for all A, B C K,

(N2) f(a) = an for all α € k.

It is evident from group-theoretic considerations that in general there are

many norm-like functions. We wish here to impose further restrictions which will

distinguish the norm function ^ji/k from amongst all norm-like functions. The

considerations of § 1 suggest a "continuity" condition which we proceed to

formulate.

DEFINITION 2. Let L be an ^-dimensional linear space over a field k. A

function / on L into k will be called a polynomial function if there is a basis
x\t *' * 9 xn °f ^ a n d a polynomial

F U ι , . . . t X n ) C k[X]

such that whenever

Λ; = ά^ a>ι X( £ L,

then

/(%) = ^ ( α ^ . . . , an).

It is clear that there is no real dependence on a particular basis in this

definition. Similarly we may define a homogeneous polynomial function of degree

m on L to k by insisting that F(X) be homogeneous of degree m. The norm

function Nκ/k 1S a homogeneous norm-like function of degree n on K into k,

THEOREM 3. Let k be an infinite field, [K : k] = n, and let f be a poly-

nomial norm-like function on K into k.Then f—

Proof. Let ωi - 1, ω 2 , ••• , ωn be a bas is of K/k, F{Xί9 , Xn) a

polynomial such that

fiλ^aicόi) = F(al9 . . . , α^).

Since k is infinite, F is necessarily unique. It is known that there exist poly-

nomials gι(X), ••• , gn(X) ^ k[X] such that if

A = Z^αj ω; G X
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and we set

then ΛB = Nκ/kA. Thus

f(AB) = f(A)f{B)={Nκ/kA)n,

and so we have

F ( « ! , ••• , an ) F(gί(aι, ••• , an ) , . . . ) = I ̂ ( α ^ , αΓ< ) ] " ,

where /V(,Y) is the general norm of K/k, Since k is infinite, this is an identity;

that is,

F{X)F(gι(X), . . . , g π

By Theorem 2, we have

where M(X) is irreducible in A;[A!]. It follows that

F(X) = cM(X)Γ

for some power r and c £ k. We specialize:

X — > ( α , 0 , . . . , 0 ) ,

obtaining

an = F ( α , 0, . . . , 0) = cM(α, 0, . . , 0 ) Γ .

We raise to the /ι-power, noting that

N(a, 0, . . . , 0 ) - α " ; α" / ι = c Λ α n Γ .

This is true for all a £. A; hence

nλ = nr, A = r, ch = 1, F(X) = c M ( ^ ) Λ = c/V(,Y).

It is immediate that c — 1, and hence / = Nκ/k
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In the case that A: is a finite field we get a somewhat different result unless

we strengthen the hypotheses. We first have the following result.

THEOREM 4. Let k be a finite field of q elements and let [K : k] = n.

Suppose that f is a norm-like function on K into k. Then either f - (/V^//C)Γ,

where 0 < r < q - 1 and nr = n (mod q - 1), or n = 0 (mod q - 1) and f is

given by / (0) = 0 and f(A) - 1 for all A φ 0. Conversely, each such function

is norm-like.

Proof. Let A be a generator of the (cyclic) group K . Then

α = Nκ/kA = A"

is a generator of &*. Here we have set u ~ {qn — 1 ) / ( q — 1) for convenience.

The norm-like function /, being a homomorphism on K , is completely determined

by its effect on /I. Thus we have f{A)- aτ for some rational integer r. Since

α^" 1 = 1, we may assume that 0 < r < qr — 1. I f / ? £ K*, then B ~ Ac and so

f(B) = /(,})<• = (Nκ/kA)re = (/Vκ M Λ c ) r = (Nκ/kB)r.

Thus our function / is given by

f(B) = (Nκ/kB)r for B ^ 0, / (0) = 0.

So far we have used only the property (/Vt ). Property (/V2 ) asserts that f(a) =

α^. Hut in our case we have

/ ( α ) = (/V x / / t α) r = α" Γ ;

hence an = α r ι r is a necessary and sufficient condition that /be norm-like. This

is equivalent to

nr = n (mod q — 1 ) ,

since k* = ( α ) is a cyclic group of q — 1 elements.

In our next proof we shall use the following results of Chevalley [3]. Let

A; be a finite field of q elements, and let L denote the linear space of all n-

tuples a = ( α t , , an) of elements of k. Let / denote the ideal in k [ Xu , Xn]

of all polynomials F(X) such that F ( a ) = 0 identically on L. Then

/ = (At - A ,̂ , Aft - Xn).
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If F{X) C k[X], then there is a unique polynomial F*(X) such that (a)

F = F (mod /) and (b) deg χ F < q - 1 for each i = 1, , n. The polynomial

F* is called the reduced form of F, and has degree at most that of F. Finally,

if F ( a ) = 1 for all a φ 0 and F ( 0 ) = 0, then

F* = ( - 1 Γ (XΓl ~ l ) . . U Γ l - D + 1.

THEOREM 5. Lei k be a finite field and let [K : k] = n. Suppose that f is

a normΊike function on K into k, and that f is also a polynomial function of

degree at most n. Then f—

Proof. As before, we let q be the number of elements of k9 and we may apply

Theorem 4 If q = 2, we clearly have / = N%/^ since

/ ( 0 ) = 0 = Nκ/k0;

whilst if A £ 0, then {(A) φ 0, and hence

= 1= Nκ/kA.

We may henceforth assume that q > 2.

Next, let ωj, ••• , ωn be a basis of K/k, and let Λ^(Z) be the general norm

of K/k with respect to this basis. By hypothesis, there exists a polynomial

F(X) of degree at most n such that

f{A) = F(al9 •• , an ) for all A = 2^α { ω t .

Suppose that the second alternative of Theorem 4 is the case. Then

/(0) = 0 and f(A) = 1 for all ^ ^ 0.

This implies that

F* = (-D'- 'dΓ 1 - i) •••UΓ - D+ l,

and so

(^ — 1)n = deg F < deg F = n.

Hence ςr — 1 _< 1, q - 2. We have already ruled out this possibility.

Finally suppose that / = (Λ^χ//c)Γ, where 1 < r < q — 1. We set
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G(X) = F(X)[N(X)]q'ι'r,

and have G(0) = 0. If a φ 0, then

A = 2saiωi Φ 0,

and

C(a) = f(A)(Nκ/kA)q-ι-r = (Nκ/kA)q-1 = 1.

This implies that

hence

(q - 1)n - deg G <C deg G < n + (g — 1 — r)τι = (qr — r)τι,

so that

g ~ l < ^ ~ r , r £ 1, r = l .

We are left with the single possibility / = Nκ/k* a s desired.

It is worth noting that the proof can still be pushed through under the weaker

assumption that / is a polynomial function of degree at most 2n — 1. However,

the most interesting case is that in which / is a homogeneous polynomial func-

tion of degree n.

4. Conjecture. It would be interesting to prove Theorem 3 under weakened

conditions. We make the following definition.

DEFINITION 3. Let L be an rc-dimensional linear space over a field k. A

function / on L to k will be called an algebraic function if there is a basis

xl9 , xn of L and a polynomial

F{X0,Xl9.-.f Xn)Ck[X],

such that F{X) φ 0, and such that whenever x - Σ α j X{ then

F(f(x), aί9 . . . , an) = 0 .

Our conjecture is the following.
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/ / k is an infinite field, [K : k] = n9 and f is an algebraic norm-like function

on K into k, then / =
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