Pacific Journal of

Mathematics

RECURRENCE-TIME MOMENTS IN RANDOM WALKS

JOSEPH LAWSON HODGES, JR. AND MURRAY ROSENBLATT




RECURRENCE-TIME MOMENTS IN RANDOM WALKS

J. L. HHODGES, JR. AND M. ROSENBLATT

1. Introduction. Consider an irreducible time-homogeneous Markov chain
with discrete time. The recurrence-time moments of the states of such stochastic
processes are studied. We point out that if the recurrence time of one state has
its first £ moments finite, then the recurrence times of all the other states have
their first k& moments finite. We then specialize and investigate the recurrence-
time moments of random walks. The main result of the paper consists of exhibit-
ing random walks whose first & — 1 recurrence-time moments exist and whose
higher moments are infinite, for k=1, 2, «++ . A comparison theorem is derived
that permits the moment properties of recurrence times of a large class of random

walks to be determined.
2. Preliminary considerations. We begin with the following:

DEFINITION. By the index of the random variable X, denoted by I(X), we
shall mean the largest integer k such that E(X*) < w. If all moments of X are
finite, we write /{X) = w. Clearly /(X) > 0. We shall consider only nonnegative

random variables.

Lemma 1.' (a) If X,,+++, X, are independent random wvariables, then
I(Xy + e+ X)) = min {1(X)), oo, T(Xp)

(b) If X has the geometric distribution

P(X=n)=p(1-p)*t (p>0),

then 1(X)=w.

(¢) If N, Xy, X,, +++ are independent random variables, N is

positive integer valued, X, X,, «++ are identically distributed, and then

! The proof of these simple facts is omitted.
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T(X, ++ee+ Xy) = min {T(N), (X))}

We adopt the terminology and notation for Markov chains used by Feller
[1, Chap. 15). Let £, £,, «++ be a denumerable set of states. We assume the
chain is irreducible; i.e., for every pair E;, Ej there exists n(i, j) such that
transition from £; to Ej in n (i, j) steps has positive probability. Let R; be the
random number of steps for first return to £;, and let R;; be the random number
of steps for first passage from E; to £, starting at £;. It is well known [1]
that if, for any j, P(Rj < ) =1, then this holds true for all j, and we shall

assume this to be the case; i.e., our process is assumed to be recurrent.

LEMMA 2.% (a) I(R;) has a constant value, say I(C), forall i=1,2, ...

(b) For every pairi # j,
I(Rl) = min{I(Ri]'), ](R]l)}-

This lemma is related to the well-known result that in a recurrent irreducible
time-homogeneous Markov chain, if the expected time for first return to any
state is finite, then the same holds for all states. In the language of [1, Chap.
15], if any state is null, then every state is null. The lemma extends this result

from first moment to arbitrary moments.

Examples of Markov chains of index % are to be found in a class of Markov
chains considered by Feller [1]. Let X(n) be the Markov chain, and let

pi= PLX(n) = £, | X(n=1) = E1,

q'=1_p]_ P{X(n):EllX(ﬂ—l)r-E]-}’]':l’z!""

Then

n-1 n-1 n
PR =n)=Q~p) [Tp,=]1p~1In-
i=1 i=1 =1

We obviously obtain a Markov chain with E(Rf) < o, E(Rf+i)=oo, where
i > 1, if the p; are such that

n-1 C

[Ip-11p=—— (0<e<1),
1

L nk+1+e

2 After obtaining this result we learned that it had been obtained earlier by K. L.
Chung and by R. N. Snow, in a more general form (unpublished). We omit the proof.
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where

> 1
cy—— - 1.

+1+
nk €

3. Comparison theorem for random walks. We shall now specialize from
Markov chains to random walks. There is no loss of generality in taking the
states of the walk to be consecutive integers, and we shall let p, denote the
probability of transitionfrom i to i+ 1. To ensure irreducibility, we shall re-
quire 0 < p, <1 for all interior states. To apply Lemma 2, we must have the
walk recurrent, so we shall assume that the boundaries, if any, are reflecting,
and that (if the walk is unbounded in one or both directions) the probability
of escape to infinity is 0. Denote the walk by ¥ and its index by I(W).

TueorEM 1. (a) I(R;}) has a constant value, say IR, for all i > j, and

a constant value, say I¥, for all i < j.

(b) Further, (W) = min {I%, IR},

Proof. We shall first show that I(R;4,, ;) =1I(R; j.;). Consider a walk
starting at i and indefinitely prolonged. It is certain eventually to reach i~ 1;
let M denote the number of times the walk is at i, including the start, before
reaching i — 1; M has the distribution

P(M=m)=(1-p,)pl"";

and given M = m, the walk consists of m~1 steps from i to i+ 1, m—1 first

(m-1) ) and a terminal

passages from i + 1 to i (denote these by R L. , Riﬂ,;

i+i,1?
step from i to i —~ 1. Thus

=M+ RW L R
1

i, i i41,1 i+1, 1

Apply Lemma 1 (b), (¢), (a).

To complete the proof of (a), represent a walk from i to j, i > j, as the sum

Ry j=Ri i + Rioy icas + o0+ + Rjuy,j,

and apply Lemma 1 (a). As for (b), this follows from Lemma 2 (b).

It is clear that in a walk over finitely many states, the index is w. (See

[1, problem 8, p.345].) Similarly, passages away f\rom a reflecting boundary
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have moments of all orders. The interest attaches to passages away from an
unbounded side, and by virtue of Theorem 1 (b) we may consider the two sides
separately. We may therefore, without loss of generality, consider only passages
to the left in semi-infinite walks unbounded on the right, and we may take the
states to be nonnegative integers. We now approach the following general ques-
tion: given the sequence of transition probabilities p , p,, «++ of such a walk,

to determine the index of first passages from right to left.

This question is somewhat analogous to the question of determining the
minimum integer k£ such that the series EXlk is convergent. As in the conver-
gence of series, all that matters is the performance of {p,} in the tail —any
finite number of terms may be changed or suppressed without altering the result.

We also have a “‘comparison’’ theorem.

THEOREM 2. Consider two random walks, W and V, with transition prob-
abilities {p;} and {q;}, respectively. If p; < q; for every i=1,2, .+, then
(W) > 1(V).

Proof. We may assume that the walks begin at the same state. Refer both
walks to the same infinite process X;, X,, +++, where X, X,, « .. are mutually
independent random variables, each uniformly distributed over (0, 1). If the
walk W is at state j for trial i, it proceeds to the right if and only if X; < Pj»
and similarly for walk ¥V, which proceeds to the right if and only if X, < q;

Consider X,, X,, ... fixed at observed values x,, %5, -+ . Observe that
W and V always differ by an even number and that this difference changes by
either 0 or 2 on each step. We shall show that walk W can never be to the right
walk V. If it were, there would have to be a first time on which this occurred,
and on the preceding time, say trial i, the walks would coincide, say at state j.

But p; < gj» SO that x; < p; and x; > g; are contradictory.

As an application, we remark: if lim sup p; < 1/2, then the index is ac; and
if lim inf p; > 1/2, when the walk is nonrecurrent. This fact follows from com-

parison with the classical walk with constant transition probability p.

The fact just cited indicates that the interest will lie in those sequences
tp;} for which lim sup p, > 1/2 and lim inf p; < 1/2. We shall in the next
section investigate a class of walks in which lim p; = 1/2, and these will serve,

together with the comparison theorem, to handle a large class of problems.

4. A class of random walks. We now consider a class of random walks which
are related to the ordinary unbiased coin tossing. The random walk has as its

possible states the integersr, r +1,r+ 2, «++ . Let
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p,=PlX(n)=k+11 X(n-1) = ki,
1-p, = g, = P{X(n)=k-11X(n-1) = &},
9k, = P lgoing from & to r for the first time in n steps } (k> r).
Then
Tontr = Pedksi,n + U Thetyn (k> r).

The state r will be an absorbing barrier. This implies that
q, o = 1, while ¢, =0 if n > 0.
We shall set g,_, = 0 for all n as a convenient convention. Note that

qr+1’1 =G, 41 while qk,l =0 if k> r + 1;

qk,o=0ifk>r.

Define

(k=r-=1, r,r+1,:.+),

|
™ s
=
‘3
[V,)
b~}

G, (s) =

and observe that
Gro(s)=0, G(s)=1.

Let

1 r 1 r
pk=-2— 1'-‘1;), qk=5 1+7£') (k=r, r+1,-.0).

Note that r = 0 gives us the ordinary case of unbtased coin tossing.

The generating functions satisfy the following equations:

G (s) = psG, (s) + g,.s6,_ (s) (k>r),

G.(s) = psG., (s)+qsG _(s)+1 =q,sG,_ (s) + 1.
Let
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G(t, s) = Z Gk(s)tk =
k=r

s[G(t, s)-t srf [t tG(t, s)-t"
—|— + tG(t, s)| + T+ — fG(t,s)dt—/ —_ dt
2 t 2 0 0 t2

We now differentiate with respect to ¢ (0 < £ < 1), use [1 - (s/2) (1/t+¢)]™*!

as an integrating factor, and integrate the differential equation between the
limits ¢t and 0 = [1 - (1 ~s2)'/2]/s, where 0 < ¢t < 0. We then obtain

r+t
(1) —G(t,S)[l—g(—l--l-t)]

2

_ o[sT™? re1 s{1 r

= + 1T 1—={—+ T)| dT.
t 2 2\ 7T

Let .p, denote the cth factorial moment of the first passage time from % to r.

It is easily seen that the i, (c fixed), if they are finite, cannot increase with
k more than exponentially. Therefore, if g, < o for some positive ¢ and some
k > r, then

00

k-c
Z P ¢
k=r

is convergent for sufficiently small t. Therefore

lim Gty s) = > the
s> 1- dsc k=r

exists for sufficiently small ¢ if and only if jp; < w for some k£ > r (and hence

forall £ > r).

It is now easily shown that the first r derivatives of the integral on the right
of (1) with respect to s are bounded in the closed interval (¢, 1), and hence
have finite limits as s — 1—-. The (r+ 1)st derivative, however, contains a

term with the factor do /ds, which diverges as s —1-.

The same techniques can be used to prove the following result:
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THEOREM 3. If one has a one-sided random walk with

1 o 1 o
R L A

a>0 (k=o, a+1,+-+) then p <o ifr-1/2 <& <r+1/2and k > «,

while oy = fore > rand kb > .

We shall now consider walks with p, > 1/2. It is clear from Theorem 2 that
for such walks the index is 0. The interest now attaches to the question of

whether first passages are certain to occur.

LeEMMA 3.° Consider a random walk over the states 0,1, 2, «++ . Assume
p, > € for some € > 0. The walk is recurrent if and only if the series

(&3] oqk
Z
k=1 p e pk

is divergent.

Proof. Consider first the finite walk over 0,1, 2, .+., n, and let P}(C") de-
note the probability that the walk, starting at %, reaches n before reaching 0.
Clearly

PO _ 0, P™ - 1
and
P{™ = p, P{®) 4 g, P") (k=1,2, -, n—1).
We may solve for P{™, P{™), ..., P") in terms of P{"), getting
qk<Pk(")" P;ﬁfﬁ)) = Pk(P,ff)l - P,f”)) (k=1,2,-++,n-1),
and hence
P o (14b +b +eeetb )P,

where b]- = (‘q1 99 )/(pl Py " Pj ). Now suppose ZI L b] = w. Since

5We were informed by the referee that this lemma and the following theorem have
also been obtained by T. E. Harris.
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n-i n-1
P(") P(") 1L+ b, _<_1/1+Z b | »
k=1 k=1

we must have Pl(")_; 0 as n—> o+ We conclude that the walk is recurrent.
Conversely, suppose 27:=1 b, < . Then Z;;l b, = b,, where b, is some

positive number. Using the fact that

(n) (n)
Pn?l pn-l + qn-l Pn?z ’

we have

n-i n-2
(
(1 + Z bk) Pl(n) = Puoy T Ipay (1 + Z bk) Pln) ’

and therefore

P(n)_l/[1+z b +b /b, 1]

Thus

lim P - 1/b, > 0,

n-— oo

whence the walk is nonrecurrent.

As an illustration, consider a random walk over the nonnegative integers

with reflecting barrier 0 and

1 1
pk=5(l+ﬁ) (k=1,2,--+3 B> 1)

THEOREM 4. The walk is recurrent if and only if 8 > 2.
Proof. Let

= P { walk never reaches 0, given that it starts at k} (k=1,2,...).

We have
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1 1 1 1 1 1
Pl: 5(1+'_8-)P2’ Pk:E(l_ﬁ_k) Pk-l + 5 (1+Z37)Pk+1 (k=2,3,°'°).

Rewriting, we have

B-1,

k-1
B+1 1’ Tkt P (P, - P

k Bk-{-l k k-l) (k=213"")-

P, —-P =

Thus

P, = Pl[1+ﬁ—l L B-1 2B +...+(B"l (k-l)ﬁ—l)].
B+l B+l 2641 B+l (k-1)B+1

Recalling the preceding lemma, we see that the recurrence of the walk is equi-

valent to the divergence of

B-1 pB-1 28-1 B-1 28-1 38-1
1 + + . + . . +.e0e=f(B).
B+1 B+1 28+1 B+1 28+1 3B8+1

We easily see that
f(2)=1 1,2
=]l4=4—=+¢ce0=00,
3 5

so the walk is recurrent when 8 = 2. That it is recurrent for 8 > 2 then follows
from the lemma. The series f(8) (1 < 8 < 2), may be shown to be convergent
as follows. For1 < 8 < 2,

f(B) =1+ g: ¥ 22: (1_ Z;f% fﬁ_+11 (1_2—6)(1_ 2-8 )+

b))

But

(1 _2_3)(1 _2"6).“ (1 _ 2"6)< e(2-B) (1/3+ 1/5 +e e + 1/2k41)
5 2k+1

e[-(Z-ﬁ)/‘*]lOg (2k+1) _ (2k+1) (2'5)/4.

Thus
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1 1 1 1 1
fB)Y <1+ —+=

4 o ————— t+ e < 0.
2 3 3(2-8)/4 4 5(2-;3)/4

The preceding class of examples of random walks together with the com-
parison theorem (Theorem 2) now permit us to determine the moment properties

of a large class of random walks. For example, the one-sided walks with

1 ol
pn=_(1+__) (n=1,2,.-)
2 B

have the same moment index as the walk with p =1/2 if « > 0, B > 1, while
if 8 <1, o < O the index is infinity (all moments exist). For o > 0, the walk
will be certain to return if 8 < 1, but not if 8 > 1.
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