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Introduction. The normal completion of a partially ordered set C is a com-
plete lattice C whose elements are subsets of C. However, in practice a par-
tially ordered set C is usually given as a subset of a complete lattice B, and it
seems desirable to be able to describe directly a subset of B which contains C
and which is isomorphic with C. Such a construction is given in <1 below. The
idea of the construction is suggested by the method of formation of the normal
completion itself, and is undoubtedly known. However, it does not seem to ap-
pear explicitly in the literature. In § 2 we treat the case where C is the lattice
of real-valued continuous functions on a topologic space X, and B is the lattice
of all real-valued functions on X. This leads to a simple proof of a result of
Dilworth [2]. In § 3 we extend another result of Dilworth in proving that for any
two topologic spaces, the lattices of regular open sets are isomorphic if and

only if the lattices of normal lower semicontinuous functions are isomorphic.

Notations and definitions. If S is a subset of a partially ordered set P,
then ZP (S) and HP (S) will be used to denote the least upper bound and the
greatest lower bound of S, respectively. If S is empty, ZP(S) is the least
element of P, and ﬂP(S) is the greatest element of P. A subset of P will
always be given the order induced by that of P. If x € P, S C P, we shall write
x > S whenever x > y for all y in S. Two partially ordered sets P; and P, are
said to be isomorphic, in symbols P; ~ P,, if there exists a function f on P, on-
to P, such that

x <y e flx) < f(y).

This implies that f is one-to-one.

If 4 is a subset of a topologic space, we use 44, and C 4 for the interior
and the closure of A. A set S is called regular open if S=JdCS, and regular
closed if S=CJdS. A zero-dimensional space is one whose open sets have a

basis each member of which is both open and closed. A space shall be called
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138 ALFRED HORN

extremally disconnected if every regular open set is closed, that is, if the clo-
sure of every open set is open. Contrary to the usual custom, we do not require
a completely regular space to satisfy any of the separation axioms. If 4 is a
set, k, will stand for the characteristic function of 4. If [ is a function, we use

L(f > M) todenote £y (f(x) > A).

1. The normal completion of a subset of a complete lattice. I.et 5 be a
complete lattice on which are defined a ‘“closure operation” x* and a ‘‘dual

closure operation’ x, with the following properties:

i) (x,)y = 2y, (x%)* = x*,
iii) x <y —>x, <y, and x* < y*,
As a simple consequence, we have
iv) (((x)*), )% = (x,)* and (((x*),)*)y = (x%),.

Throughout this section, 2-(S) and TI(S) will be used to denote ZZB(S) and
IT,(S). Let

L =Ey(x=x,), and U= Ey(x = x%).
A proof of the following theorem is given in [ 1, p.49].
THEOREM 1. L and U are complete lattices in which
2, =28, I =Tk,
Z,5 =2, s = T,
Now let
NL = E,(x = (x*),), and NU = E,(x = (x,)*).
We note that NL C L and NU C U, by ii).

THEOREM 2. NL and NU are isomorphic complete lattices in which

L (8) = (2Zs)m., T, ) = T,
28 =228+, I, 9 = sy
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Proof. It is easy to verify by i), ii), iii), and iv) that (x*), is a closure

operation in L. By Theorem 1 it follows that NL is a complete lattice in which

2, (5) = (2, (1), = (2, [1, ) =TI s) = Tls),.

For the other half of the proof, we define the dual closure operation (x,)* in
U, and apply Theorem 1 again. The mapping f (x) = x* is easily seen to be an

isomorphism of NL onto NU whose inverse is f~!(x)=x,.
As an example, if B is the lattice of all subsets of a topologic space, and
X, = &x, x* = Cx,

then L and U are the lattices of open sets and closed sets, while AL and NU

are the lattices of regular open sets and regular closed sets respectively.

The normal completion (completion by cuts) of a partially ordered set C is
a canonical-embedding of C in a complete lattice C which preserves all existing

sums and products. See [1, p.58] for details. Now C may be constructed as

follows. If S C C, let
S"= Ey(x€C,x>S5) and S=E,(x €C, x <S™).
Then S is a closure operation in the lattice of all subsets of C. The class
C=Es(S=9)
is the normal completion of C; C is embedded in C by the mapping
f(x) =35,

where S, is the class whose only member is x.

Now suppose C is an arbitrary subset of B. Cur aim is to describe a subset
of B which is isomorphic with €. If x € B, we define

xo = Ly (y €C, y <x) and x°=E (y€C y>x).

Now let

X, = Z(x0 ), x* = ﬂ(x").

It is easily verified that x* and x, are closure and dual closure operations on

B. To check property ii), we need only note that if v~ C, then
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y <xy >y < x.

We also remark that
x €C—x* =x = x,.

We now consider the lattices L, U, NL, and NU obtained from this particular
definition of x*, x,. Cbviously € C NL, C C NU, and the following theorem

shows that NL and NU are extensions of C.
THeorem 3. If
v = 2.(8), y =118,

then

x= 2, ()= 2, (8) and y = 11 (s)=T1

wu ().

Proof. First
wWEC w>22(S)—>w€C, w>S —>w> 2.(5) = x.

lience

22(5)° > x,

and therefore

2o (5)* > .
Also

2 (S)* <x
since x € C and x > 2-(S). Thus
x = 22(5)" = 2, (5).
Also, since x € C,

¥ = xa = (22(5)%), = 2oy, (S).

We omit the proof of the dual statement.

THEOREM 4. NL (and hence NU) is isomorphic with C.
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Proof. Let S be any subset of C. We first note that S” = 22(S)° and that
x < 22(5)° if and only if x < 22(S)*. Hence

(1) S=E(x €C, x < 22(8)").
It follows that

(2) 2-(5) = (2(5)"),.

Thus if S = S, then 2(S) € NL.
We now define a mapping ¢ of C onto NL by
$(5) = 22(8).

¢ is onto NL because

xENL o>x €L Hx = Z(xo),
and by (2),
B(7o) = 2(To) = (x%), = x.

Finally if S ¢ T €, then ¢(S) < ¢(T), while by (1),

G(S) < HT)—S = Ey(x € C, x < $(S)*) CE(xE€C, x < ¢(T))=T.

Using Theorem 4, we can show that C may be characterized as follows:
Let A be a complete lattice ‘which contains a subset D isomorphic with C and
such that, for any S C D, whenever ZD(S) or HD(S) exists then it is equal
to 2, (S) or HA (S). If no proper subset of 4 which contains D is a complete

lattice, then 4 is isomorphic with C.

As applications of Theorem 4 we have the following examples. If C is the
class of open and closed subsets of a zero-dimensional space Z, then C is
isomorphic with the lattice of regular open sets of Z. For it is easily seen that

if x is any subset of Z, then
x* = Cx, and x, = dx.

If C is a class of subsets of a set 4 which contains all one-point subsets and
their complements, then € is isomorphic with the lattice of all subsets of 4. For

x = x, = x* whenever x C A, Our main application is given in the next section.
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A special result which we shall use later is the following,
THEOREM 5. [If B has the property that

x ana = Z(xnxa)

for any family { x,}, and
IT.s) =Tl
for any finite subset S of C, then
[T, )= T1es) ane T1,, (s) = Tles)
for any finite subset S of L and NL respectively.
Proof. Letxyy «++ 2 be elements of L. Then
% = 2

where the y_ are elements of (x;) . By [ 1, Theorem 14, p.146], we have

., - 2,1,

IO

aéliya,i’

where f ranges over all functions such that f (i) Cli. Since Yf () L EC i
follows that

[, -5

where ¥ € C. Hence nxi € L, since L is closed under 2, and therefore

HL(xi) =I_Ixi.

Y

If x; € NL, then

I, -T1 5 - Tl

NL % L% it

2. The normal completion of lattices of continuous functions. Hereafter B
will stand for the set of all real-valued functions on a topologic space X. We
allow the functions in B to assume ®w and —c as values; B is then a complete

lattice in which

Z(S)(x)=fs;1psf(x).
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We define in B the operations {_, {~, where

f(x) = sup inf  f(y),
A€ Nx)y €A

f~(x) inf sup f(y),

A€ N(x) y €A

I

N(x) standing for the class of neighborhoods of x. It is well known that {~ and
f_ are closure and dual closure operations on B. In accordance with Theorem 1,

define

LS = ke(f=f), US=E(f=[").

These are the classes of lower and upper semicontinuous f[unctions on X. We

also define the complete lattices
NLS = [L‘f(f= (f7)), NUS = Lf(f= (),

and call their members normal lower and upper semicontinuous. It is well known
that (€ LS (f € US) if and only if £(f > A) (E(f <A)) is open for each
finite A. We now let C = LS n US, the class of continuous, real-valued functions
on A. lf A is a subset of X, then

(/fA)—=kCA, (kA)_=/c&A.

Hence k, is in C, LS, US, NLS, or NUS if and only if 4 is open and closed,

open, closed, regular open, or regular closed, respectively.

In terms of the present definitions of B and C, let us now define the opera-
tions [*, f, and the classes L, U, NL, and NU as in § 1. Theorem 4 specializes

to:

THEOREM 6. The normal completion of the class of continuous, real-valued

functions on an arbitrary topologic space X is isomorphic with the class of NL

(or NU) functions on X.

The lattice operations in the class NL are described in Theorem 3. It is
easily seen that the hypotheses of Theorem 5 are satisfied in the present case.
It follows that the greatest lower bound of a finite family of L functions is also

an L function, and that the same is true of NL.

We now investigate the relations between the classes LS, NLS, L, and NL.

We shall not state, but shall feel free to use, the duals of the next theorems.
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THEOREM 7. If { € B, then f, < f_. Hence L C LS.
Proof. 1f g € C, g < f,then g =g_ < f_. Hence
fo= 220 < [

COROLLARY. The relation
(f*)_ = (f_)* = f*

holds for every f € B.

Proof. We have

f*Sf_Sf'_’f* = (f*)* < (f_)* < f*;

and applying the theorem to f,, we have

f* = (f*)*f (f*)_Sf*~

THEOREM 8. A necessary and sufficient condition that f,=f_ for every
f€ B is that X be completely regular.

Proof. Suppose f, = f_for every f € B. Let x be any point of X. Let A be
any neighborhood of x, and set f =% ,. Then f € LS, and hence

Therefore there is a continuous function g with g < f, g(x) > 0. This es-
tablishes the complete regularity of X.

Conversely, if X is completely regular, suppose that for some f € B there
is an x with

f*(x) < f__ (x).

Then there is a neighborhood 4 of x with

inf f(y)>A> f.(x).
y €A

Let g € C with g(x)=1, g(y) =0 for y outside 4, and 0 < g(z) < 1 for all
z € X. Define

h(y) = A+ logg(y),
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with the convention that log 0 = — . Then
h<f, h€C, and h(x) > f,(x).
This contradiction completes the proof.
COROLLARY. If X is completely regular then € =~ NLS.
We now obtain two characterizations of the class NLS.
LEMMA. Forany { € B and any finite X\,
E(f_>XN)=0,8E(f>Xx~1/n).

Proof. We have
[ (x)> XA <> foreveryn, x CIE(f> A = 1/n).

THEOREM 9. If f € LS, then f€ NLS if and only if £ (f > \) is an inter-

section of regular open sets for each finite A [2].

Proof. 1f f € NLS, then

E(f>M=EWf_> 2N =n03E( > x=1/n),
by the Lemma. The result now follows from the fact that f~ € US.
Conversely, if f € LS, and E(f > \) is an intersection of regular open sets
for each finite A, we have
f=1f_ <.
Suppose
flx) <X < (f7)_(x)
for some x. Then for some neighborhood 4 of x we have

inf  f7(y) > A,
y € A

But £(f < A) is a union of regular closed sets. llence there is an open set B
with x € C B and f(y) < A for each y € C B, Thus [~ (y) < A for y € B. But
B nA # 0, since x € C B, This contradiction completes the proof.
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THEOREM 10. If f€ LS, then f C NLS if and only if SE(f> A) is a

regular open set for each finite A.

Proof. 1f f C NLS, then, by Theorem 8, E(f > A) is an intersection of
regular open sets, and hence its interior is regular open. Conversely, suppose
JE(f > )) is regular open for each finite A. We have

E(f>p) CAE( > pu) CE(f > )
for each finite ;. Hence
ECf>N) = Nuch E(f> p) = NpenE(f > p) = Nux JE(f > p),
and the last is an intersection of regular open sets.

Other characterizations of NLS are given in [ 2, Theorem 3.1], and in Theo-

rem 14 below.

We now define C, as the class of finite real-valued continuous functions on
X, and C, as the class of bounded real-valued continuous functions on X, and
investigate the normal completions of these lattices. We shall use «c to denote

the function which is identically cw, and similarly for —cc.

THEOREM 11. Let M be the lattice consisting of all NLS functions which
are bounded above and below by members of C, together with the functions

a, — . If X is completely regular, then éx ~ M.

Proof. We shall say that a function is dominated above or below if it is
bounded above or below by a member of C,. Let f° f* be defined as in § 1,
where C, is used instead of C. We first note that if f is dominated above, then

f*=f" and both are dominated above. Indeed, if f < A € C,, then
f*= nng,gécl g=nh252f,g€ ¢ &
=Hh282f:géc &= [l >fgect™ =

by the dual of Theorem 8. On the other hand, if f° = 0, then [* = w.

Now the normal completion of C, is isomorphic with
NL, = Ef(f = (f*)*)-

If f is a finite-valued member of M, then f* = f~ is dominated above and below.
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Hence
(Fe == =f,

and f € NL,. Conversely, if fE€ NL, and f # 0, f # — @, then f must be domi-

nated above. For otherwise f* = o, and therefore

(f)e =f= .
Hlence f*= {7, and f* is dominated above. Also f~ is dominated below, for
otherwise
f=(T)y =~
Therefore
f=0") == (),
and [ € .

In a similar manner we can prove:

THEOREM 12. If X is completely regular, then 62 is isomorphic with the
lattice consisting of all bounded NLS functions together with the functions

a, —o[2].
We now prove a theorem of Stone [ 5] and Nakano [ 4].

THEOREM 13. If X is extremally disconnected, then C is complete. If C is

complete and X is completely regular, then X is extremally disconnected.

Proof. Suppose X is extremally disconnected. Then by the lemma preceeding
Theorem 9,

fEUS—f E€US —f E€C.

For any f€ B, we have f* € U C US. Therefore (f*)_€ C. Consequently,
for any f in NL,

f=0) == (F*)_,

by the corollary of Theorem 9. Thus NL = C, and C is complete.

Conversely, let 4 be any regular open set. Then by Theorem 8,
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kA € NLS = NL = C.
Therefore 4 is closed.

3. Regular open sets and NLS functions. Let R(X), or simply R, denote
the lattice of regular open sets of X. According to Theorem 3, R is a complete

lattice in which
[T,(5) = 3ncs), 2,(5)=3Cus).

It is well known that R.is in fact a complete Boolean algebra. By Stone’s Theo-
rem, R is isomorphic with the open and closed sets of an extremally discon-
nected, zero-dimensional, compact Hausdorff space, which we shall call the

representation space of R.

THEOREM 14. A necessary and sufficient condition that f be normal lower
semicontinuous is the existence of a family {x)\ J, —c < A< o, of regular

open sets with the properties
i) xy Cx, for X >y,
ii) f(p) = sup E/\(pr)\).
In this case we have
i) JE(f >0 =Tl ,oyx,
If f €NLS, we may choose Xy = SE(f>N).
Proof. Suppose [ € NLS. et
Xy = SEf>N).

Theorem 10 shows that xy € R, and the proof of that theorem shows that iii)

holds. Since i) is obvious, it remains to prove ii). Suppose A < f(p). Then

p EE(f>N) Cxy.
Hence
sup EA(p CxA)Z f(p).

On the other hand, if A > f(p), then
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p Ef>)N)D x,.

Therefore
sup £y (p Cx)\) < f(p).

Now suppose {x,} is a family of eegular open sets satisfying i), and let
f be defined by ii). If f(p) > A, then p Cx# for some p > A. DBut

f(g) > u>A foquxﬂ.

Therefore £ (f > \) is open and f € LS. Also
E(f>\) = N, < X,
which implies iii). Theorem 10 now shows that f € NLS.

TneEOREM 15, If X and Y are any topologic spaces, then NLS(X) =~ NLS(Y)
if and only if R(X) = R(Y). In particular ([2] when X is completely regular),
if Z is the representation space of R(X), then NLS(X) ~ C(Z).

Proof. Suppose R(X) ~ R(Y). Let ¢ be a function on R(X) to R(Y) which
establishes this isomorphism. If f € NLS(X), let

% = E(f2 0,
Define Tf to be the function on Y defined by
Tf(p) = sup k) (p € ¢(x))).

By Theorem 14, Tf € NLS(Y). We now show that 7 is an isomorphic mapping
of NLS(X) onto NLS(Y). If f, g € NLS(X), let

xy = JE(f>N), yy = dE(g > \).
Clearly,
[>g— %, Dy — ¢(x)) D $(y))
for every A, and therefore 7f > Tg. Using Theorem 14, iii) twice, we have

o =TI

R(X), p< A %u>

which implies
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() = Ty Len d(x) = SECTT > M),
From this it follows that
Tf> Tg — SE(Tf> X) > JE(Tg > M) — $(x)) > (yy) —x) Dy

for every A. This implies f > g by Theorem 14, ii). Finally, if F € NLS(Y),
choose %) € R(X) so that

$(xy) = JE(F > 1),
and define f as in Theorem 14, ii). Then f € NLS(X) and
LAVERVE ) PP

and this last is x) because

¢(x)\) = I_IR(Y),LL<)\ ¢(xu).

This shows that Tf = F.

If Z is the representation space of R(X), then NLS(Z)= C(Z) by Theorem
13 and the corollary to Theorem 8.

Now suppose NLS(X) ~NLS(Y). Let Z, and Z, be the representation
spaces of R(X) and R(Y), respectively. Then

C(Z,) = C(Zy).

A theorem of Kaplansky [3] shows that Z, is homeomorphic with Z,. This
implies that

R(X) = R(Y),
and the proof is complete.

In Theorem 14, it is easily seen that f is bounded if and only if x = 0 for
all A outside some finite interval. It follows from the proof of Theorem 15 that

the bounded NLS functions on X are isomorphic with those on Y if and only if
NLS(X) ~ NLS(Y).
The same is not true of the finite valued NLS functions. If

R(X) =~ R(Y),



NORMAL COMPLETION OF SUBSET OF COMPLETE LATTICE 151

all we can say is that the classes of NLS functions [ on X and Y, respectively,
which are such that F (

f| = «) is nowhere dense, are isomorphic. This follows

from the fact that £ (f= ) is nowhere dense if and only if
HR x) = 0,
and £ (f=- ) is nowhere dense if and only if
2%y = X or Y.

The following theorem gives a corresponding result for the lattices of con-
tinuous functions. We recall that C,(X) denotes the lattice of bounded real-

valued continuous functions on X.
THEOREM 16. If X and Y are any topologic spaces, then
Cr(X) = C,(Y)
if and only if
C(X) = C(Y).

Proof. There exist completely regular Hausdorff spaces X’ Y’ such that

Co(X) = Co(X7), Cp(Y) = Cy)(Y?), C(X) >~ C(X?), and C(Y) =~ C(Y")

(one modifies Dilworth’s proof [2, § 21 by defining x ~ y if f(x) = f(y) for all
fE€C(X)). Now let BX*, BY’ be the Stone-Cech compactifications of X*, Y’.
Then

Cr(BX7) = Cy(X7).
Now the mapping
¢() = f/(L+1f])
carrier C (X”) into C, (X*). We use this to extend members of C(X*). Thus
C(BX*) =~ C(X").
Combining these facts, we have
C(X) > C(Y) e C(X") = C(Y") <> C(BX") =~ C(BY?")

<> BX’ is homeomorphic with BY*
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(by Kaplansky’s Theorem [3]), <>

C,(BX?) = C,(BY*) (again by [3]) <> Co(X*) = C,(Y*) < Cy(X) ~ C,(Y).

It would be of interest to give a more elementary proof of this theorem.
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