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1. Introduction. Let an eigenvalue problem be given in the form of a homo-

geneous linear differential equation
(1) Ly = Ay,

with homogeneous linear boundary conditions, denoted by (C). It is assumed
that the parameter A does not appear in the boundary conditions. The region
R of the problem may be of any number of dimensions; the symbol [f(P)dP
will mean an integral over R, dP standing for the Euclidean volume element;
(f, g) will stand for [f(P)g(P)dP; and ||f||, for (f, f)'/% The symbol
[(F (P, Q)dPdQ will mean an integral over the Cartesian product of R with
itself. We assume that the problem (1)+ (C) is positive definite and self-
adjoint; that is, (¢, Lep) > 0 and (¢, Lyy) = (Lep, ) for any admissible func-
tions ¢ and ¢/, an admissible function being a real-valued function, not identi-
cally zero, which satisfies the boundary conditions (C) and is continuously
differentiable up to derivatives of the order of the operator L. The class of
admissible functions will be denoted by (.

The existence of eigenvalues for the problem (1) + (C) is assumed, and
these will be denoted by {A;}, 0 < XA; <X, <Az +++; and the corresponding
eigenfunctions, by {y;}, chosen so that (yi,y].) = 5ij . We assume that a Green’s
function G(P, Q) exists for the problem Ly = 0 with boundary conditions (C),
which is symmetric in P and ¢ and which has the property that, for any con-

tinuous function f(P), the function

y(P) = [6(P, 0)/(0)d0

is the unique solution, if it exists, of the equation Ly = f which satisfies (C).
We also assume that the integral [[G?(P, Q)dPdQ is finite and that the in-
tegral [G2(P, Q)dQ is uniformly bounded for all P. Then any admissible func-
tion ¢ can be represented by the uniformly convergent series i ¢; ¥;» where

¢ = (¢, y;). Since
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(L¢y yl) = (¢9 Ly,) = )‘t Ciy

we also have the Parseval equations
(¢ Lp) = 2 Nic}
i=1
and
(Lo, Lp) = 3= A2 c}.
i=1
The eigenvalues are characterized by the following minimum property*:

(¢, Lg)
(¢ ¢)

(2) A, = min (€0 (hyy)=0,i=1,2, 00, k=1];

and by the following maximum-minimum property? in which the functions v; are
any continuous functions:

(¢, Lg)

(3) )\k = max min

—_ (¢ €0, (pyv,)=0,i=1,2,+0+,k=11.
” (% B) $ &0 () =0,

The minimum property (2) forms the basis of the Rayleigh-Ritz method of ap-

proximating the eigenvalues and eigenfunctions.

Let {¢;} be a sequence of independent admissible functions; and let ¥, be
the class of all functions which are linear combinations of ¥, ¢, ++, ¢ . If
we ask for the minimum of (¢, L¢) /(¢ &) under the condition that ¢ € V,,

we are led to the following nth order equation in A:

n

(4) |b;; = Aayly = 0,

where a;; = (5 l/l]-) and bi/' =(y,, L(/:]. ); and, for each root A of (4), there is

a corresponding function ¢ € V,, not identically zero, such that
(¢ Lgp) = A, ¢).

! This follows easily from the Parseval equation for (¢, L¢). See also 1 vol. ],
pp. 345-348] and [ 8, pp. 10-11].

2See [1 vol. I, pp. 351-353] or [ 8, pp. 12-13].
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Let the n roots of (4) be denoted by

p; = p;(n) with 0 < py S py oo <o

and let the corresponding functions be f,, f,, +++, f,, where
f= [.(P) = [.(P;n),

chosen so that (f, f].) = 8;']" We then have, for k=1, 2, ¢+, n:

. (¢ L) :
(5) yk=mm—(m (€ Vay (&5 f)=0,i=1,2,++,k-11;
and
y L
(6) pk=mgjcmin %%2 [¢€Vn,(¢,vi)=0,i=1,2,..,,k_1].3

2. Reduction to least square method. It can easily be seen, by comparing
(3) and (6), that A, < p,; but there is no simple method as yet for estimating
the difference p; — A, . We shall derive here an estimate for this difference
which, for its application, depends on the solution of another problem in least

square approximation.

Let us consider the problem of minimizing the quotient (L¢, L¢p)/ (¢, ¢)
under the condition ¢ € V. This problem leads to the following equation in A:

(7) |Cij = Aay 7 = 0,

ij
where Cij =(Ly, L ¢zi ). Let the roots of (7) be denoted by
V,f = v]f(n) with 0 < vy < vy <eee X 1y
For each £ from 1 to n there is a corresponding function
g, = & (P) =g (P;n) €V,

such that (g;, g].) = Si]. and

3 Equations (5) and (6) follow from the extremum properties of the eigenvalues and
eigenvectors of quadratic forms. See [ 1, vol. I, pp. 26-27{
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(8) (Lg,, Lgy) = v -

The numbers v? are characterized by the properties:
k y prop

Lo, L
(9) Vk2=min(%’;’¢;:;) [¢€Vn9(¢!gi)=0,i=112v°"1k"‘1]’
and
Lg, L
(10) V,§=mzxming—(z—,¢—(f—) [p € Vpy (pyv;) =0,i=1,2,¢00 , k=11,

By the Schwarz inequality, we have

(¢, Lp)? < (L¢, L)
(¢ )2 ~ (b g)

and, therefore, by (6) and (10), we get

(11) I_Lk_<_]/k,k=1’2,...’n.

Now let us consider the eigenvalue problem associated with an integral
operator over the region R. We assume that the function K(P, Q) is sufficiently
regular so as to give rise to a completely continuous operator in the Hilbert

space sense, and we write the equation

(12) y () = A [K(P, @)y ()40

We also assume that K (P, Q) is symmetric in P and () and that

fK(P, Q) ¢(P) ¢(Q)dPdQ > 0

for any continuous function ¢ which is not identically zero. The eigenvalues
of (12) are then all positive and will be denoted by {/;}, with 0 < I, < I,<
Iy oo

Let { w; } be a complete orthonormal set of continuous functions on R, and let

(13) An (P, Q) = 3 ajw (P) w;j(Q),

i,j=1

where
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(14) % =f K (P, Q) w; (P) w; (Q)dPdQ.

Then A, (P, Q) is the best approximation to K(P, Q) in the L? sense over
R x R by a sum of the given form. The integral equation

(15) y(P) = A [, (P, Q) y(Q)d0

will have eigenfunctions of the form i B; w;, and its eigenvalues will be the

roots of the equation

(16) |8ij—)\0{,;j|:l=0,

which we shall denote by u; < u, <+++ < u,. We can now make an estimate
for the differences of corresponding eigenvalues of equations (12) and (15) by
using the minimum-maximum principle for the eigenvalues of an integral equation

with a symmetric kernel. *

Let z,, z5,+++, z, be the eigenfunctions of (15), assumed to be orthonormal.

Then, letting ¢ be a continuous function subject to the conditions
(s ¢) =1, (¢, 2;) =0 (i=1,2 00, k-1),

we have:

E < m;x/K(P,O)¢(P)¢(Q)deQ

IA

mw/]% (P, Q)¢ (P) ¢(Q)dPdQ + max [/(K—An) #(P) ¢(Q)dPdQ.
@ ¢

The first term on the right is ul'tl, and we apply the Schwarz inequality to the

second term. Hence
(17) l;‘ < ul + o€,

where

1/2

€= cn) =[/(1< - An)?dpdg]'?.
In order to connect the original differential problem with the least square
method for integral operators, we let

* This estimate and the method used in its derivation are given by Aronszajn [6]
for completely continuous, positive definite operators in Hilbert space.
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(19) K(P,Q):fG(P,X)G(X,Q)dX,

so that l; = A}, and we assume that the functions {4} used in the variational
problems are related to the functions {w;} which are used in the least square

problem by

(20) w; = L¢

L

(i=1,23 ).
Then, since
0, (P) = [P, Q) wi (010,
(14) becomes
Gij = (Y ¥) = aij»
and
Cij = (Lpys L) = (wi5 wy) = 8.

Hence, equation (16) becomes identical with (7) and u, = VI?, k=1,2,++s,n.
Therefore, from (11) and (17), we obtain

(21) A2 - e <y <t <A (k=1,2¢00,n).

This inequality shows that, for any fixed £,

nli_r‘noo vy, (n) = nhrr; e () = Ay
The problem of getting an actual estimate on g — A, or on v, — A, is reduced
to that of getting an estimate on €(n). There is probably no general way of
treating this problem since the regularity properties of the function K(P, Q)
and the possible choices of the sequence {w;} depend on the special nature of
a given problem. From the practical point of view, the choice of the sequence
{w;} is limited by the fact that the corresponding sequence {; } must lend it-
self easily to numerical computations. In this paper we shall leave this problem

to one side and consider only how estimates can be made in terms of €(n).

3. Uniform approximations. We now take up the problem of uniform approxi-

mation of the eigenfunctions.® There does not seem to be any simple condition

5 This problem has been studied in various cases by Courant [ 2, 3, and 4.
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on the sequence {; } which will guarantee uniform convergence of the functions
fk(P; n) to corresponding eigenfunctions. However, on the basis of the assump-
tions already made, we can prove such convergence for the functions 8y (P; n).
Stated precisely, it will be shown that the difference between g, and some
eigenfunction corresponding to A, is, for fixed k, of the order of magnitude

€'/2, uniformly over the region R.

The first step in the proof is to establish mean convergence. For this pur-
pose we use the analogue of (2) with (¢, L) replaced by (L¢, L) and A, re-
placed by )\Z.G Let us assume that

Ap = Ay =cee= A < Aksrs
and consider the function
=g =gy )y~ = (8, %)%

This function satisfies (C) and is orthogonal to y, y,, +++, 7, ; hence

(L, L) 2 A2, (¢, 6).

This gives
K K
2 .
V12 = A Z(gx’ y)? > Ay, |1 - 22 (gys yi)2 ’
=1 i=1
hence
K A~y
(22) > (gl,yi)2_>_L“__’_ =1-e,
i=1 A2 A2
K+1 1
where
v2 A2
1 1
(23) e1=el(n)=—;
2 2
)‘KH - Al

and when €(n) is sufficiently small, e; will be less than a fixed constant

times €(n).

®This minimum principle can be deduced from the Parsaval equation for (Lo, L),
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Because of the multiplicity of the eigenvalue A;, the eigenfunctions y ,
¥,» *** s ¥, are determined only to within an orthogonal transformation. We could

equally well take a set Y, Yy, ++«, Y for the first « eigenfunctions, in which

Copn vy + e+ (8 9, )y
Yl = ’
(g y)%+ o0+ (g, 3212

so that, from (22),
(24) (8, %) > (1-e)V2>1-¢,,

where it is assumed that n is so large that e¢; < 1.

Let us now assume that it is possible to choose the eigenfunctions y,, y,,«+-

in such a way that
(25) (g, y) > (1 -e)'/? (i=1,2,-,k),

where e; is less than a constant, depending only on i, times €(n); and that

e; <1 (i=1,2,+e+,k < n), Then

(g;» }’i) >1-e;, Hg,‘ - y,'HZ < 2,

and

(26) (gkq.l’ }’,-)2 = (gk+1’ yi —gi)z S Hy,’—gi”2 < 26,’ (l = 19 29 s ’k)'
Let

Mot = Mgy =00 = Nguy < Mespers

and let
k+M

D=8y~ 2= (Brap )Y
=1

Since ¢ satisfies (C) and is orthogonal to y,, ¥,, «++ , ¥, 4> We have

(Lo, Lp) > Az+M+l (¢, $b);
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hence
k k+M
2 2 2
(27) Vk2+1 - Z )\,? (gk+1’ )’i) - )\kﬂ kz (gk+1’ yi)
i=1 i=k+1

k+M
2 2
> Apayer (1= 22 (B ¥)7 1
=1

From (27) we get

2 2
k+M , Vk“—)\k“
(28) Z (gk+l’ )’L) Z 1 - 2 )
i=k+1 )‘k+M+1_)‘k+1

k 2 2
=t ey = A (ghyp )

, 2 =1-e.
)‘k+M+1 - )‘kﬂ

where, by (26),

k
2 2 ! 2 2
VR =My #2200 (AR, — M

i

e,

i

(29) €4y <

2 2
Ak+M+1 - ’\k+1

By a suitable orthogonal transformation we can carry the eigenfunctions y, , ,

“s Y4y intoanewsetY . ,..., Y, ., where

y (Bhays Vet Vhar 0+ (Bhy i Yown ) Yiw

k+1 =

211/2
{(gk+l’ yk+1)2+"'+(gk+ly yk+M) } /

and (28) then becomes

(Bpap Vo) 2 (1= )2

We see, therefore, that, for any fixed value of & and for n sufficiently large,
the function g, (P; n) differs in the mean from some eigenfunction corresponding
to A, by an amount which is less than a constant, depending only on %, times

€'/2(n). In this statement, the phrase ‘““for n sufficiently large’’ is needed to



162 FULTON KOEHLER

ensure that e; < 1 and that viz ~ A} is less than a constant, depending only
on i, times €(n) for i =1, 2, ..., k. The latter condition is guaranteed by
(21) if e(n) < )t;2. The actual numerical estimates are obtained from (21),
(23), and (29).

Let us now consider the uniform approximation of g, to y, under the assump-

tion
(g )2 (L-e)V?>1-¢,,
where ¢, = ¢, (n) = O(&(n). We have
6.P) = [6(P, ) Lg, ()40,
2P) = &, [6(P, Q) 3, (0)dg.

By subtraction and the Schwarz inequality, we get
(30)  |g(P)-y (P)| < M||Lg, - N3, || = M{vZ =207 (g, 3,) + AZ}/2
< MUyl - 20 (L —e) + A7}/ 2= Mu] - A% + 2 A2} /2,

where

M = Lub. {fGZ(P, 0)d0 3172,

Hence, for n sufficiently large, | g, (P;n) -y, (P)| is less than a constant,
depending only on %, times €'/%(n).

It is possible to carry through the proof of mean convergence for the func-
tions f,(P; n) by the same type of argument as is used above for the functions
g;(P; n). The only changes necessary are to replace (L¢, Le) by (¢, Lep),
)tf by A;, v? by t;> and g; by f;. The argument used for uniform convergence of
gy» however, does not go through for f;. This is an illustration of a principle
which has been discussed by Courant: namely, that in the solution of a dif-
ferential problem by variational methods, the more weight given to the higher

derivatives, the better the results in the way of uniform approximations.

There are, however, some problems in which the functions fk(P; n) can be
shown to give uniform approximations to eigenfunctions with an error that can

be estimated in terms of €(n). We shall consider a class of such problems;
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namely, those for which the Green’s function G (P, (}) is bounded, say G (P,Q) <
B. This class will include, for example, the usual one-dimensional problems
and the two-dimensional problem of the normal modes of vibration of a clamped

plate.

We shall use the O notation here since it is obvious how explicit estimates

may be obtained from the methods used. The function f, can be represented by
. . 200 .

the uniformly convergent series 2,=; c;y;, where ¢; = (f,,y;) and where it

is assumed that ¢, =1 - O(¢€). The Parseval equation gives
me= U L) = 22 el
=1

Letting >’ stand for Z?:l, the term with { = £ being omitted, we have
= )\k =Z' ciz)ti + (c,f - 1)A,,
from which it follows that

(31) 2 N = = A+ (1= cP)r, = 0Ce).

We now write
(32) fk—yk=z' c;y;, + (e = 1y,

and estimate the first term on the right side as follows:
2

Yi
|Z’ ¢; yi‘z < Z' Ciz Ai Z'T= O(E),

i

by (31) and from the fact that

2

y.
Z’T'g G(P, P) < B.

]

Hence |f, — v, | = O( €'/2) uniformly over the region R.
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