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NORMAL-A-TUPLES

JOHN E. MAXFIELD

1. Introduction. This paper is an extension to k dimensions of most of the

known theorems on normal numbers, along with several new r e s u l t s . Certain re-

sul ts are obtained showing some sufficient conditions under which the sum of

normal numbers is normal.

D E F I N I T I O N 1. A k-tuple β is the A>tuple (al9 α 2 , ••• , oc&), each otj be-

ing a real number.

D E F I N I T I O N 2. The nth k-dίgit of a λ-tuple to base r is

bn = {an

ι9a», ••-,<*£),

where α^ is the nth digit of the fractional part of 0ίs to base (or sca le ) r.

DEFINITION 3. A ά-tuple β is said to be simply normal to the base r if

the number nc of occurrences of the A -digit c in the first n A -digits of the frac-

tional part of β has the property

nc 1
lim — = —

n —»oo n j k

for each of the r possible values of c.

DEFINITION 4. A Zr-tuple β is said to be normal to the scale r if β , rβ,

r2β, are each simply normal to all the scales r, r 2, , where

rsβ = ( r s a l 9 r s ( λ 2 , . . . , rs a k ) .

NOTE. If β^ = ( α t , α2» ••• » (X&) is normal, then any m-tuple, m < k,

having any distinct m of the Cί; as components is normal.

2. The correspondent and its use. We make the following definition.
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DEFINITION 5. The correspondent number to the scale r to a A>tuple β is

tlie number (X = ,α t α2 to the scale r such that

α ( n - l ) / c + l ' " ' ank

is the nth λ-digit of β to the scale r.

THEOREM 1. /I k-tuple is normal to the scale r if and only if its corre-

spondent number to the scale r is normal to the scale r.

Proof. Suppose β to be a normal A -tuple. Its correspondent (X is simply

normal to the sca les r 9 r , ••• . Also r (X, r2 Cί, ••• are simply normal to

the sca les r 9 r2 , . Thus (X is simply normal to the scale r , and by a

r e s u l t 1 of Wall [ 4 ] is normal to the scale r.

Let Cί, a normal number, be the correspondent of β. Then (X, r Cί, r2 ex,

are simply normal to the sca les r 9 r2 , ••• , and β is normal to the s e a l e r .

COROLLARY 1. Given integers 0 <̂  cι < c2 < < Cj < m, and a normal

k-tuple β9 delete all k-digits except those in positions congruent to c x or c2 or

• or CJ (mod m ). The resulting k-tuple is normal.

COROLLARY 2. // β is a normal k-tuple to scale rs

9 then β is normal to

scale r.

THEOREM 2. A necessary and sufficient condition that a k-tuple β be

be normal to scale r is that every sequence of v k-digits occur with a frequency

of l/rkv for all v.

Proof. By application of Theorem 1 and the Niven-Zuckerman paper [3] ,

this result follows immediately,

THEOREM 3. A necessary and sufficient condition that a k-tuple β be

normal to scale r is that β be simply normal to the scales r9 r , .

Proof. This theorem follows immediately from Theorem 1 and a theorem of

S. S. Pillai [ 4 ] .

THEOREM 4. Let P be any permutation of the digits 0, 1, , r - 1, and

let Pd be the number obtained from (λ by performing this permutation on all

the digits of a.

If β — (θClf CX2j ••• j Otfc ) is normal to the scale r, then so are:

This result can be obtained easily by a counting process.
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( 1 ) ( α 1 ? . . . , c c / . 1 , P a i f a / + l , ••• , α ^ ) ,

(2) the k-tuple obtained from β by the application of P to the k-digits bm>

^2m> b3m, . . . , giving β'.

Proof. Since applying P to at replaces each sequence of digits of Cί; by a

prescribed other sequence of digits, (1) follows immediately.

To prove (2), one proceeds as follows. Form y, the correspondent number

to β. Then y is normal to scale r . Now, considering y to be written to scale

r , form the m-dimensional correspondent δ of y. This is normal to scale r,

but the mth component of δ is formed from the imth ^-digits of β (i = 1, 2, »)•

Performing the alterations (2) on jβ will merely replace each digit of the mth

component of δ by another uniquely. Call the resulting number δ ' . Thus a one-

to-one correspondence will exist between sequences of m-digits of δ and those

of δ ' .

Given e > 0, there exists an Λ such that every fixed sequence of m-digits

of length s, say cs, of δ satisfies the condition

e for n > Λ'
ms

where nc is the number of occurrences of the sequence cs among the first n

m-digits of δ. Under the correspondence, since a fixed sequence in δ cor-

responds to a fixed sequence (not necessarily the same) in δ ' , we have

: 6 for n > N .

Thus δ ' is normal to scale r. Thus by Theorem 1, /3' is normal to scale r.

3. An application of uniform distribution theory. We now need some more

definitions.

DEFINITION 6. The symbol \f{x)} represents the nonnegative fractional

part of the real function of a real variable f(x).

DEFINITION 7. [ 2 , p. 9 0 ] . Let n be a given integer, and 3 an infinite

sequence of intervals Q ««« (a <^ x < b) (a and b in tegers) . Let the number

N = N {Q) be the number of latt ice points [x] of Q, where N (Q) increases with-

out bound the Q run through 3 .

To each Q let there correspond a system of n real functions f^x), which

are defined for each latt ice point [x] of Q This function system
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Fix, n) = [/.(%)]

is said to be uniformly distributed (mod 1), or u d. (mod 1), in the intervals

Q of ό if for each fixed set of numbers y , y , ••• , y , with 0 < y. < 1, the

number

/ V ' = / V ' φ ) = Λ ί ' ( ρ ; y i , γ 2 , .. , y n )

of lattice points [%] of 0 for which

0 < {/. } < y (i = 1, 2, . . . , /ι)

satisfies the condition

as Q runs through the infinite sequence c3.

LEMMA A [2, p. 90]. // the system [f^x)] is defined at each lattice point

[x] of the intervals Q, and (X/, βι are real numbers^ where

CLi < βi < at + 1 (i = 1, 2, . . . , n),

and

N'iQ) = N'iQ a^βr, α 2 , β2; ••• am βn)

is the number of lattice points of Q satisfying

α, <\fi(χ)\<βi ( * = 1 , 2 , . . . , # ι ) ,

[f^{x)] is u d. (mod 1) , then

Λ ( < ? ) Λ
lim — = Π (β- - α ) .

LEMMA B [2, p. 92, Th. 7l. 77ie sysίem [/s(x:)] is u.d. (mod 1) if and only

if, f o r e a c h f i x e d s e t of i n t e g e r s ( h l t Λ 2 > ••• ? h ^ ) Φ ( 0 , 0 , ••• , 0 ) ,

1 V 2 7 τ f ( A 1 / 1 U ) + . . . + AJfc/fc(*))
lim ώ ^ e = 0 .
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LEMMA C [2, p. 94]. The real function f(x) of a real variable x is u. d.

(mod 1) if for each fixed q = 1, 2, , the function f{x + q ) — f(x) is u d.

(mod 1).

T H E O R E M 5 . 2 The k-tuple β = (al9 α 2 J ••• ? (X&) is normal to scale rmif

and only if the function system defined by

/ . ( * ) = Cί. r* (t = 1, 2, . . . , * )

is u. d (mod 1).

Proof. Assume that

[/",(*). / " 2 U ) . • • • . 4 U ) ] = F ( χ i )

is u. d. (mod 1) . Consider the sequence'of A:-digits

c = cι c2 cs = [ α! α 2 as 9 b { b2 bs, , d ί d2 ds J,

the βj from Oίi, όj from (X25 ••• ? d{ from Oί̂  We shall count the occurrences

of c in β. Let

£i = 1*—' 62 = L T ' "•' 6A
 = Σ 7 ' a n d -n = —•

The frequency of occurrence of the sequence of digits c in β is the frequency

with which

6i <\fi(x)\<ei + η

for all i - 1, 2, , A;. From the conclusion of Lemma A this frequency is

k k 1

Π (e* + *? - ei) = Π /̂ = —

By Theorem 2, jS is normal to scale r.

Now assume that ( α 1 ? (X2j ••• , Ot^) i s normal to scale r. We must show

that the frequency of x's such that

[/, .(*) ! < rj. for 0 < ! ) ; < 1

This theorem in one dimension was proved by D. D. Wall [ 5 J .
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Case 1. Suppose first that ηγ and η2 and ••• and η^ are terminating deci-

mals in the scale r. Extend the shorter ones among these terminating decimals

to the length of the longest, say m, by adding O's. There are 77̂. rm sequences

of m digits which, regarded as decimals, are less than ηί thus there are

η η ...η^r that must be counted. However, each of these sequences

of /r-digits of length m occurs in β with frequency 1/r m, and thus the frequency

is η η 77£,, as was desired.

Case 2. Suppose now that η. is nonterrninating for some i. Pick a sequence

of terminating decimals ηl —> η. for every i = 1, 2, , k, We know by Case 1

that the frequency for each j is

rf'i v{ ' ' * ΉJk —» V1 V2 * ηk a s / — ^ oc .

C O R O L L A R Y . The k-tuple β = ( α t , 0 ί 2 5 ••• ? (X&) i s normal if and only

if Σ*i = ι h{ Cλj is α normal number for all

(A t , Λ2, ••• , AA) ^ (0, 0, . . . , 0 ) .

Proof. The result follows from Lemma B and Theorem 5.

DEFINITION 8. If β = (C^, C(2, •• , α ^ ) , then (mι)β is defined to be

the A -tuple (mΛ a ̂  m2 a^ , mk Cί̂  ) .

THEOREM 6. If β = (Cλι9 α 2 , ••• , α ^ ) is α normal k-tupley and A is a non-

singular k x k matrix with rational elements, then the transformed k-tuple γ = β A

is normal.

Proof. By Theorem 5 and Lemma B, when we take lattice points of the form

(mι h 9 m2 h2, , m^ h^ ), β is transformed to a new normal A -tuple if each

component Cί/ is multiplied by a nonzero integer mi To show that multiplication

of a component by a nonzero rational preserves normality, we first note that

any such rational can be expressed in one of the forms b/rs

9 b/rs (r — 1), where

b is an integer. (For 1/b has a scale r expansion containing a period of length

ί, while s depends on the point at which periodicity begins.)

Now multiplication by an integer b preserves normality, as shown above.

Division by rs is normality-preserving from the definition. We consider division

by r — 1. Let 8 be normal to scale r. Then it is normal to scale r . Taking δ

as written to scale r , we conclude that (r ^ — l)δ/(r —1), for any positive
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integer q, is also normal to scale r , since the operation involved is multiplica-

tion by an integer. Then by t ie corollary to Theorem 5,

K f r<*

is u. d. (mod 1) for all

( h u h2, . . . , hk) Φ ( 0 , 0 , . . . , 0 ) .

By Lemma C,

* hi O~i rtx

is u. d. (mod 1). Thus by the corollary to Theorem 5, δ/(rl ~- 1) is normal to

scale r , and hence, by Corollary 2 to Theorem 1, to scale r.

We have shown that multiplication of (X/ by a rational preserves normality. By

choosing h^h^+h' in Lemma B, we can show that replacement of CX by

Cίj + dj preserves normality. Interchange of two CX's does not affect normality.

Thus the elementary operations of which multiplication by the matrix A is

composed preserve normality.

THEOREM 7. Almost all k-tuples are normal.

Proof. This theorem follows immediately from the foregoing Theorem 5,

and Theorems 8 and 15 of [2; pp. 92 and 94].

THEOREM 8. The set of numbers simply normal to no scale is noncountable.

Proof. It is not difficult to show that the set of numbers simply normal to

a given scale forms a set of the first category [ 1, p. 134]; the sum of a count-

able number of sets of the first category is also of the first category [ 1, p. 137],

and thus the complementary set has the cardinal number of the continuum [l,

p. 136], and is thus noncountable.
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