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Intreduction. In a previous paper [ 3] a study was made of the projectivities
between the points of a simple relatively complemented lattice of finite dimen-
sion. It was shown that for a given dimension there is an upper bound for the
number of transposes required to establish the projectivities between the points.
The examples given in which this upper bound is attained have a particularly
simple structure —they are closely related to a direct union. We shall prove here
some general structure theorems for relatively complemented lattices and then

apply these to the case of maximal projectivities.

The notation will be that of [ 3], The lattice L to which we refer is always

relatively complemented.

1. Structure Theorems. Our arguments depend heavily upon the simplicity or
indecomposability [ 2] of L, and it is convenient to have the following character-

ization of a direct union:

TuEOREM 1.1. If L has dimension n, and a, b are two elements of L, then
L2=a/2V b/z if and only if

(1) pla) + p(b) < n, and
(2) p C aifand only if p i b for all points p € L.
Preof. Certainly if L % o/z V b/z, conditions (1) and (2) will hold. Sup-

pose (1) and (2) hold in L. We shall proceed by induction on n. The theorem is

true when n = 1, 2. Suppose it is true for all lattices of dimension less than z,
but L $ a/z \ b/z.

It is clear that
x=(anx)u(bnx)

for all x € L. Consider the mapping

Received March 31, 1952.

Pacific J. Math. 3 (1953), 197- 208
197



198

J. E. McLAUGHLIN

X —0x =

(a nx, bnx)Ca/z Vb/z.

Now x D y if and only if

anxdany and b nx D bny;

and the latter occurs if and only if ox D o y. llence L is isomorphic, as a partial-

ly ordered set, to a subset of a/z 1" b/z, where

ou=1"(a b), 0z =(z,2).
These remarks show that if any two elements a, b of L satisfy (2),we must have
pla) + p(b) > n.

IfL 45 a/z V' b/z, there are points p C a and g C b such that p/z P, q/z.

Hence there is a maximal element m such that mj’)_p, m¥q. Then s, and s,
exist with

a>812mna, b>322mnb.
Furthermore,

Let u=xy >x, >

+>%Xp-y > %, =z be a complete chain in L. This chain
maps onto

ou ={a, b) > oxX >eee>0%, > 0X, = (z,z).

Either (i) ox, =(a, t,), where b>¢,, or (ii) ox, =(¢t;, b), where a > ¢;. Sup-

pose the former is true. The points of x; are in either a or ¢,, but not both. Then
a and ¢, satisfy (2) in x,/z, and since

p(xl)=n~1’

we have

pla) + p(t2) >n-—1.
But

pla) + p(b) <n, so plt,) = p(b) - 1.

~

Then by the induction hypothesis, xl/z

a/z V t,/z. This gives the exist-
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ence of a chain from s, through a to u of length 1 + p(b) =1+ 1, or p(b) + 1.
By Lemma 3.6 of [ 3], there is a chain from b to z of length at least p(b) + 1,
which is a contradiction. A similar contradiction arises if ox; = (¢;,5). There-

fore L = a/z v b/z, and thus the theorem is proved.

The following theorem gives more information about the quotient lattices

ag/z introduced in LLemma 3.5 of [ 3].

Tueowriwm L2, Let L be simple of dimension n> 1. If p is any point and k
is a nonnegative integer such that h <[ (n + 1)/2], then ag/z has dimension at
least 2k + 1.

Proof. The theorem is true when % = 0. Suppose it is true for all £ less than
the one in which we are interested. Then a{;-l has dimension at least 2k -1,

) k k-1
and a; 2 ap

U a{,f = u, we are through, so assume D a;g. Then there is a point
s € L with g ¢_a;§, but s/z P, t/z for some ¢ € Cg. llence there is a maximal
element m such that m ;t S, mi} a,;f. Since s € Cg, we have m D a® -1, Therefore

p
ag ) alg_l, and the dimension of a‘f,‘/z is at least 2k. Suppose dim (a;f/z )=2k.

k

Let b be the join of all points of L which are not in ap

. All of these points are

in xl; = ﬂM}I,‘, where
ﬂ[ﬁs‘{mCL | u > mia,;-l}.

(See proof of Lemma 3.5 of [3].) Hence xf) Dband b n al;, = z. The latter follows
from the assumption dim (aiﬁ/z): 2k, since, by Theorem 3.1 of [3] for any
point ¢ we would have ¢ C a;‘, if and only if ¢ € Cl;,- On the other hand, it is
shown, in the proof of Lemma 3.5 of [ 3], that ¢ € Cl/'f if and only if ¢ ¢ xﬁ

Since L is simple, there exists an x such that
u>x,x¥ak,x¥b.
p
Butx 3 b implies x D a’;“. Then

xzaﬁ_lu(bnx), and u=bux=aﬁ_1ub.

Hence if u>m we have m D alg'l,if and only if m D b. Therefore ag, ak=1, and b
satisfy the conditions of Lemma 3.6 of [ 3], and there exists a chain of length at
least 2% from u to b. Then

p(b) <n - 2k, so p(al;) +p(b) < n.

But by Theorem 1.1 we would have L = a]; z VY b/z, contrary to the simplicity
of L. Therefore p(ag) > 2k + 1forallk <[(n+1)/2]
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Let B denote the partially ordered subset of L consisting of u, the maximal
elements, the points, and z. Let 3, be the normal completion of . Consider the
mapping A—UA from %, into L. (4 is a normally closed subset of L.) If
A D B, then U4 > UB. Suppose UA > UB; then x € A implies x D a, all a€ 4
implies x D UA, so x D UB, and hence xD b all b € B and x € B*; therefore
A* C B*, so (A*)x D (B*)4, or A D B. Thus the mapping is order preserving
both ways.

Suppose a € L,a#u a# z Set

P(a)={p&ERladp>zi,

Ma)={m € P | u>mDal.

Now x D p, all p € P (a), if and only if x > a, so M(a) C (P (a))*. Also
P(a)C(P(a)*)x. Suppose y € (P(a)")«; then y Cx, all x € P(a)* implies
y Cm, all m € M(a) implies y C a. Suppose a’Dy, all y € (P(a)*)x; then
a’dp,allp € P(a) implies a’D a, so a = U(P(a)* ). If a = u, then a = U(u);
if =z then a=U(z). (Here (x) denotes the principal ideal generated by x.)
Hence each a € L has an inverse image under the above mapping, and P, = L;
see [ 2]. This proves the following:

THEOREM 1.3. The structure of L is completely determined by the structure

of %.

REMARK. From the nature of the proof it is seen that the above theorem will

be true for any lattice each of whose elements is a join of points and the meet of
maximal elements.

2. Lattices with maximal projectivities. In this section we shall study sim-
ple lattices of odd dimension in which there occurs a maximal projectivity. We
shall show that these lattices are quite close to a direct union in the sense that
their structure can be completely described in terms of sublattices. Throughout
this section [ will be a simple lattice of dimension 2n + 1, and p, ¢ are two

points in L such that p/z P q/z requires 2n + 2 transposes. Then we have:

THeEOREM 2.1. If k < n, the following statements are true:

(1) p(a};) =2k + 1, p(az_k) = 2n -2k + 1;

k _ n-k n~k _ k.
(2) Xy o= ag Ty x U =g

(3) aﬁ/z has a maximal projectivity if and only if az—k/z has a maximal
projectivity;
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(4) if o* /2 has a maximal projectivity then a na™% = 1 > z, otherwise
0 proj y >

k n-k 7

a na = z.

p q
Proof. Note that s € C.Z_k implies s EI C]g implies s C xlg implies az_k C ;\/Z,

Suppose there is a maximal element m such that m D allg !

, mep If m/z is
simple, we contradict the assumption of a maximal projectivity between p/z and

q/ z, since p(m) < 2n. Write
V’

m/z:Ll\/LZV-.-VL

where the L; are simple nontrivial quotient lattices, and v > 1. Now aq k/z and
g 1/2 are both simple; if they are in the same L;, we again contradict our max-
imal projectivity asdumption. Hence they are in different components and we

must have
p(ag—l) + p(az—k) < 2n.
By Theorem 1.2,
plaf™t) > 2k - 1 p(al™) > 2n ~ 2k + 1.
Therefore

p(ag—’“) = 2n - 2k + 1.
The elements aﬁ"‘ and ag_k are in different L;, so
p(ag_1 u a;_k) = p(ag_l) + p(az—k) > 2n,
and hence
m = a;f-l U a:;—k or m/z = a/;—l/z \ a;_k/z.

Now let s>z,s~hxp Thensd:Ck, so sgt'_a . But mlxg, so mD s, and
therefore s C aq ~k. This shows that x* Caq , and hence xlg = a; k. Thus we
have shown that 1fap uxlg;éu, then xp~aq andp(az k)=2n-2k+l.

Suppose ak ! uxlg = u. Then for each maximal element m, m>D a;,f_l if and

only if m_t xp. We have p(ak 1Y>2k -1, so dim (u/a )< 2n+2-2k.
Since L is 51mple, dim (u ) > 2k, by Theorem 1.1. Hence p(xp) < 2n -

2k + 1. But xp p) aZ &, and p(aq ky > 2n — 2k + 1. Hence, in all cases,
xg—a',; % and p(ag” k)y=2n-2k+1. By a similar argument, xg k=a£ and

p(ap)— 2k + 1. This demonstrates (1) and (2).
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Suppose r> z, r C alg such that r/z P p/z requires 2% + 2 transposes. Now
r ¢ C[’§ implies r g_xg = az—k. Furthermore, r ga;)f = xz_k implies r EI. Cz_k im-
plies that r/z P q/z requires 2n — 24k + 2 transposes. The argument is sym-
metric in p and g, and this proves (3).

Suppose s > z and s/z r p/z requires 2n + 2 transposes. Then xg =ag=

s = ag = ¢, so there is at most one point g such that p/z P q/z requires 2n + 2
transposes, l'his shows that the r in the preceding paragraph, if it exists, is

unique, and we have (4).

We are now in a position to characterize the maximal elements of L in terms

of the structure of a)/,f/z and agﬂk/z. When we know these maximal elements, we

will know the structure of L, by Theorem 1.3. First we prove two useful lemmas.

L.mma 2.1, There is a chain of length 2n + 1 through a;ﬁ.
Suppose ag u ai}_k"l = u. Then the maximal elements of L are in two disjoint

classes—those containing ag and those containing ag-k'l; and by Theorem 1.1,
dim(u/a];) + dim (u/ag~k'l) >2n + 1.
But
dim(u/aﬁ) <2n+1-(2k+1);
dim (u/aZ*’“"l) <2n+1-(2n=-2k-1).
Hence dim (u/allg) = 2n - 2k.
k n-k—-1

p Y9
m D p, m 2 g. Suppose

Suppose u>mD a . Now m/z is not simple, since p(m) < 2n and

m/z =L VL, V-:-VL,
where v > 1. Then a{ﬁ/z and ag_k_l/z are in different components and again
there is a chain from ag to u of length at least 2n — 2% since p(ag—k_l )=2n—

2% — 1. This proves the lemma.

LEMMma 2.2, If s > 2z, ai) S, bis, but a u b D s, then there are points s, C a,
sy Cbsuch thats,/z Py s/z andsz/z P, s/z.

Letsub>xDb, and let x” be a relative complement of s u b in a v b/x
such that a u b > x”. Then x'j} a, x'i s; hence x'isl, for some point s; C a.

Therefore s/z T avu b/x' T s,/ z. Similarly we can show the existence of s,.



STRUCTURED THEOREMS FOR RELATIVELY COMPLEMENTED LATTICES 203

proving the lemma,
LEsya 2.3, The following relation holds: dim (a* ag—l )= 2.

For since L is simple there is a maximal m, such that m, i} allf, mo i as_

Then mq D ag—l, mg D aél"k_l Assume a/f > a/; !, Then mq n aﬁ: a;f—l. Set
w=ay" k army. Then y exmts such that ag” & >y D'w. Since mqg = alpc Yo ow, we

have u = ag 1 Uy=wu ap Since there is a chain of length 2% from (13 k to u,
there exists a maximal m such that mi aq k and such that there exists a chain

k-1

of lenpth at least 2% from m to y. Now mJ} ap since ak uy=u. ButmD ap and

m/z = a,f /z \% y/z in contradiction with the length of the chain from y to m.

lience a 1 and we must have dim (ap/ap~1 ) =

CoRroLLARY. The following relation holds:
dim (a”—k/an_k_1 ) = 2.
q q

This follows by symmetry.

k naq —k # z. The following theorem gives the

3. Maximal elements when a,
possibilities for maximal elements when ap/ and ag” k/z each have a maximal

projectivity. We assume throughout that 1 <4 <n - 1.

THEOREM 3.1. Let a]; n ag—k =r>z,and let u>m. If mDr, either

(1) mD ag and a'qz—k >mn ag_k,
or

(2 )ap>mna§andm3a"k

’fm_tr then alg>a{,f n m and ag” k>aq * o m.

Proof. Letu > m D r, and suppose m 1)_ ag, m L ag_k. Then m D ag—l

m> ag—k_l, for otherwise we would not have a maximal projectivity in L. For

, and

the same reason, we have r¢ ag_ b r¢ az—k—l. Then since
p(a;f-l)=z/c-1, plak) = 2k + 1,

plal™t) = 2n - 2k - 1, plap™) = 2n - 2k + 1,

we must have

I
~
c
Q
)
=]
=%
Q

ak>mnak
p p

Hence
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k—l)

m={rva ""k'l)
p

k k
a ad = = .
u(ruq nd w=a, vm=a;ua

Similarly, u = ag_k u ag—l.

By ILemma 2.1, there is a chain from ag to u of length 2n — 2k, Since L is

relatively complemented, it is easy to see that v exists such that u > v, v nall,f =

ru ag_‘, and there is a chain from r v a;f*l to v of length at least 2n - 24.
There is an s € ,\[k such that s ¢ag‘l u r. Hence s i v, and this implies
vD ag—k—l. Therefore v O m and v = m. Then by Theorem 1.1,

m/z = a];_l ) r/z \ az—k—l/ﬂ

1

but this contradicts the existence of a chain from a;f— urtom of length 21 —

2k. Hence we must have either m D a[/g, orm> az_k.

Z"k, but af,f >xDm na[l,f. let y be a relative complement of x

in ai,f/ag a m. Then y D af, n m, since afff > x. llence mig x, m_'ig y, SO

Suppose m D a

X u aq”_k =y u ag—k = u.
Since
p(ag) = p(a}]f’l) +2 and ru alg'l p) al;“,

it follows that m§ aﬁ_l. Hence either xjg a;)f-l or y:t ag—l. Suppose the latter
is the case. Then there is an s € C;f—l such that s {y. But s Cu=yu ag_k.
lence, by Lemma 2.2, s/z Pon—gk+s q/z and p/z P, q/z contrary to our

assumption of a maximal projectivity between p/z and q/z. A similar contra-

diction arises if x 1) alg_l. Hence all,f > ag n m. The roles of p and ¢ are sym-

metric, so if mD allg, then ag“k >mn az~k.

k- n-k

Now let u > m¥ r. Since mi} r, we have m 2 ap Vand m2 ag ~1. Suppose

k k-1 _ k d n—-k > > n~k-1 _ n-k nom
ap>x>ap uapnman aq Y aq a .

Let x” be a relative complement of x in a];/ag—l. Suppose x'ig r, and let x” be
a relative complement of ag in u/x'. Since ap > x, we can assume u > x”. Now

x”? r, so x”2a% %71, Hence x” = m, contrary to ag"l =mn ag. A similar

q
contradiction arises if x_t r; and since ag"l ? r, we must have a;}‘ >m n a;f.

Therefore either
ak>mnakora_>mna"".
p p q q

Suppose
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ag >mn a’; > a;f—l but ag"k >y > ag"k"l =mn ag”k.
As before, v exists with 4 > v, v n a{f =mn a.;,‘, and there is a chain from m nag
to v of length at least 2n — 2k. There is a point s € C{; such that s ¢ mn ag,
and hence s ¢ v. Therefore v D ag_k_l, so v =m. But m/z, by Theorem 1.1, is
equal to m n ag/z v ag_k"l/z in contradiction with ‘the length of the chain
from m n ag to v = m. lience ag_k >mn ag-k; and whenever y > m k r, we have
k k - -k
ap>mnap,azk>mnaz .

The converse of this theorem is not true; however we do have the following

result:

THEOREM 3.2. [f ag >x D r, then u>xu az_k, while if azhk >y D, then
u>aguy. If aII§>xir and ag"k>yigr, then u>x vy if and only if for any
points t C x, s C vy, we havetusjgr.

Proof. Let alg >xDr, and let x” be a relative complement of ag in u/x such
that > 2" Then by Theorem 3.1 we have x”D> az—k and x"=x u az—k. A similar

argument shows that if az_k >y Dr, thenu> ag Uy,

Suppose
a';>x12r,ag_k2yi>_r.
If
xDt>z and yD s>z,
such that s u £ D r, then
xuyDdrand xuy=(xur)ulyuvr)=u.

Suppose x u ¥ = u. Since

xkr,ykr,

it follows that

xDak‘l,y_D_a

n-k-1
—_— p .

q

Ifx = ag_l ory= ag"k“l, Lemma 2.2 tells us that r € Cf, orr € Cg—k. Hence

-1 n-k—1

d y >
and y > a,

x>ak
p

So points s and ¢ exist such that x =t u okt

_ n-k-1
“ and y =su ag . Therefore
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k-1

a utusuan_k_lD
P q

r;

and applying Lemma 2.2 twice we get t u s O 7. All that is required to finish the
proof of the theorem is to show that if u>m> xuy, then m = x uy. Suppose

m > r; then
mO(xur)ulyur)=u.
So mk r. Hence, by Theorem 3.1, m = x; u y,, where

k n-k
ap>x1$randaq >y1¥r.

But this implies x =x,, y = y;, and m =x u y.
4. Maximal elements when afpc n ag_k = z. Here as before we assume that
1<k<n-1.

THEOREM 4.1, If u> m then m is one of the following three types:
(1) mD alg, a;’_k > aZ’k n mig ag_k"l, or dually;

(2) m> ag, af}_k nm= aZ"k—l, or dually;
k- n-k

k

(3) a§>mnap_)_ ap~ !, and ag >mna3_k2a2"k-x.

Proof. Suppose

u>mD aﬁ, mng az—kﬂ, but ag—k >x D ag_k nm.

Then not all elements of aZ”k/z covering m n ag"k will contain ag—k_l. On the
other hand,

-k k
m=(mnag )uap,
so for any point
s C aZ"k, s (_i'_ m n an"vk,

we have
n~k k n-k-1
N D a
ulmna ) u ap 2 j
Then by LLemma 2.2 we must have
-k k-
sulmn ag ) D ag t

contrary to the above assertion. Therefore if



STRUCTURED THEOREMS FOR RELATIVELY COMPLEMENTED LATTICES 207

u>mD ag and mi)az—k-l,

n-k n-k
then ag " >mnag

Now suppose u > m D a,lf and m 2 ag-kﬂ. If m/z is simple, we contradict
our maximal projectivity assumption; but arguing as before on the direct split of

m/z, we see that

m/z = a/;/z \ a;—k—l/z’

and hence m n az_k = a(']“k"‘.
Finally suppose u > m, but mi a;f, m% ag_k. Then m D> ul}ghl and m D a'ql'k_l.
k k- k

Assume m n ap = ap 1 and let ap > x> ap—l, hy Lemma 2.3. Let v be a relative

complement of aé in u/x such that u > v. Since Uﬁt af,f, we have v D ag—k—l. Now

v # m, so a;_k >mn aZ—k. Then m’ exists such that u > m”, m'i ag_k, and there

is a chain from m n a'(}_k to m” of length at least 2%. Since m” "_k, it follows

a

q
that m”> a;;'l, and hence m” = m. But m/z is not simple; alg_l and af]l"k n m are
in different components. This is contrary to the length of the above chain, since

p(a{;_l ) =2k — 1. Hence we must have allﬁ >mn allg, and dually ag“k >mn a;hk.

Iixamples show that it is impossible from the structures of ag/z and ag—k/z

to tell whether u > ag u ag_k_l or u= ag u ag—k'l, and dually. However, for the

other maximal elements we have:
THEOREM 4.2. [f
n-k n-k-1
aq > Y i aq ’
then u>y v ag, and dually. If

k-1 n-k n-k-1
> x D
a, > x 2 ag and ag " >y 2a, )

then uw > x v y if and only if for every pair of points s C x, t C y the lattice

sut/zis a Boolean algebra.

Proof. Suppose

a;'k >y D a" % and 4 = aﬁ uUy.
Then there is a point ¢ gag_k_l such that ¢ ¢y, ¢ ¢ ag, but ¢ ga’; v y; and using

I.emma 2.2 we obtain a contradiction of our maximal projectivity hypothesis. On

the other hand, if u>mD ag u v, then by Theorem 4.1 we get m = ag uYy.

Let ag >x D alpf"l and az—k >y D ag—k—l. By Theorem 4.1, either u=x uy
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oru>xuy. lfu=xuy, there are points s C %, t C y such that

k-1 n-k-1 n-k
a 2ea .
tua™ usua, 2 a,
Then by Lemma 2.2, we have
tusua® k_l_)_ag;k,
thus ¢t u ag"k z is not a direct union, so there is another point r g_a;f such that

tusu ag_k_lg r, and hence ¢ u s D r. But this tells us that ¢t u s/z is not a

Boolean algebra.

if u>xuy, we must have x u y/z = x/z \ y/z, and the condition is satis-
fied.

Here again, then, save for the one exception, the structure of L is determined

by the structure of sublattices and the relations between points.
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