Pacific Journal of

Mathematics

A SYSTEM OF QUADRATIC DIOPHANTINE EQUATIONS
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1. Introduction. In spite of the efforts of many mathematicians of the last
300 years, comparatively few general methods of solving nonlinear Diophantine
equations are available, and much of the literature on the subject consists of
isolated results. When it comes to systems of simultaneous nonlinear Diophantine
equations, the results become even more fragmentary, and a complete solution
of such a system is a rarity. In this paper we study a pair of simultaneous quad-
ratic Diophantine equations that can be solved easily and completely by differ-

ence equation methods.

The system in question,
(1) x|y +ay + 1, ylx? + ax + 1,

where a is a fixed integer, is essentially a pair of simultaneous quadratic e-
quations in four unknowns. This system is equivalent to a nonlinear second order
difference equation. Furthermore, every solution of this nonlinear difference e-
quation is also a solution of a linear difference equation with constant coeffi-
cients. We can thus obtain the complete solution of (1) in integers. With some

additional effort we can obtain all positive integral solutions.

The principal result is that if a # + 2, then there exists a finite number of
sequences such that x and y satisfy (1) if and only if they are consecutive
terms of one of these sequences. These sequences are similar to the Fibonacci
sequence in that there is a linear relation connecting any three consecutive
terms. For the special case a= 0, we obtain the following result: x and y are

positive integers such that

2

x|y +1 and y|x? + 1

if and only if x and y are consecutive elements of the sequence 1, 1, 2, 5, 13,
34, ++. obtained from the classical Fibonacci sequence by striking out alter-
nate terms. For a = + 2, the chief differences are that there is an infinite number

of sequences and that 0 can be a term of a sequence.
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Clearly the system (1) is closely related to the quadratic Diophantine e-
quations of the type

(2) x* —axy + y2 + ax + ay + 1 = 0.

An easy consequence of our main results is that for fixed a £ £ 2, (2) has inte-
gral solutions for ounly a finite number of integral values of a. These values of a

can easily be found by the methods of this paper.

It is possible that similar methods can be used to obtain further insight into
the general quadratic Diophantine equation in two unknowns. At any rate, there
is a large class of such equations that can be completely and easily solved this

way, and partial solutions can be obtained to many others.

2. Preliminary discussion. Let a be a fixed rational integer. Let x and y be

rational integers satisfying (1). Then there exists an integer z such that
(3) xz =v% + ay + 1.

Now xz = 1 {(mod y) and hence

2

24 gz+1)=1+ax+22=0 (mod y).

x%(z
Furthermore, x and y are relatively prime. Thus we have

2

ylz? + az + 1 and z|y? + ay + L.

Continuing in this manner, we obtain a chain «-- , %, y, z, -+ such that any two
consecutive terms satisfy (1), and any three consecutive terms satisfy (3). We

note that x and y determine z uniquely except when x = 0.
DEFINITION. A sequence of integers { u; } with at least three terms,

cee gyl Uy Ugytet

is an a-chain if (A) any three consecutive terms satisfy the nonlinear difference

equation

_ 2
(4) Uy,  Up_y = Wy + QU+ 1,

and (B) u, =0 if and only if u, is either the first or the last term in the se-

quence.

We shall consider two a-chains { u;} and { v;{ the same, if and only if there

exists an h such that either u, = v, forall noru, =%, forall n.
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It is clear that two integers x and y satisfy (1) if and only if they are con-
secutive integers of an a-chain. Furthermore any two consecutive nonzero terms
of an a-chain determine it completely. Thus the solution of (1) is reduced to the

problem of determining all a-chains,
3. The finiteness theorem, We shall now establish the following theorem.
THEOREM 1. Ifa # t2 there is only a finite number of a-chains.

Proof. Let!{u;} be an a-chain. Since a # 12, it follows that u, # 0 for all n,
and that { u; } has neither a first nor a last element. Without loss of generality we

may suppose that
lu, | > lu |21
for all n. Now

2

]uf\ + lau | + 1> |uf

+au + 1] =lu,ugl > |uul.

Hence
lu | +lal+ 12 lu | >lul.
Therefore we can write

u0=€lu1+b,

where € = * 1l and | 6| < |a| + 1. Similarly,

= €U
u 2

+ C
9 ’

i

where €, = + 1 and |c¢| < |a| + 1. There are at most 4(2|a| + 3)? ways of

choosing €, €,, b, and c. Now

2 2
= = € € .
u1+au1+1 TR €1€2u1+(b2+c1)u1+bc

Thus for each choice of €5 €,, b, and ¢ there are at most two values of u,,

except when

= € = Cc = .
€, € =1, bez +c€ =a, and b 1

In this case we have
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and hence a = + 2. Thus if a # + 2 the number of a-chains is not more than

8(2| a| +3)? and the theorem is proved.

We note that the foregoing argument gives us a procedure for determining all

possible a-chains for a fixed value of a # £ 2.

4. The linear recurrence relation. We shall now show that any three consecu-

tive terms of an a-chain satisfy a linear relation.

THEOREM 2. For any given a-chain { u;} there is a fixed integer a such that
(5) upy —au, +u,_ +a=0
holds for any three consecutive terms of { u; }.

Proof. l.et a be the rational number such that

- a u a = 0.
lL3 u2+ 1+

We shall first show that (5) holds for all n. Since the direction of an a-chain is

reversible, it is sufficient to show that (5) implies that

- a=0.
un+2 GLun+1 + un *

Suppose that (5) holds for a fixed n, and that u,,, is not the last element of
{ u; ;. Then

= + =u au —~u +
un+2un unH (un+1 : a) + 1 n+l( n n—l) 1
= au v ~ u? - au
n+l n n n’
Now u, # 0, and hence
= - —a
Uppy = Qlpyy — Uy ’

which is the desired result. We need now only show that a is an integer. From
(5) it follows that au, is an integer for all u,. Now any two consecutive terms,
u, and u,,,, are relatively prime. Hence a is an integer, and the proof of Theo-

rem 2 is complete.
From (4) and (5) we obtain the useful identity
(6) ul - au u o+ u? +a(u, +u,_)+1=0,

-1 n-1

which holds for any two consecutive terms of an a-chain. Theorem 1 combined
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with (6) gives us the following:
COROLLARY. For fixed a £ £ 2 the Diophantine equation
2 —oaxy + ¥y +ax +ay + 1 =0

has integral solutions for only a finite number of integral values of a.

5. Explicit formulas. In this section we shall use (5) and (6) to obtain

explicit formulas for the elements of the a-chain { u; }.

Suppose first that a = — 2. Here (6) implies that
a =12 and w, +ou, = — a/2.
Therefore we have
(7) Uy = Bgs Uppyy = Uy u0+ul=—-a/2=i1.

Thus {u;} is either the finite a-chain 0, -~ @/2, 0 or a cyclic chain of period 2.
Furthermore, if a = + 2, then (7) gives us an infinite number of a-chains. Hence

Theorem 1 is false for this case.
Suppose next that a = 2. Here the solution of (5) is

(8) un=—~an2/2+bn+c,

where b and ¢ are constants which can be determined from any two terms of the

a-chain.
Finally suppose that a # + 2. We put
vo=u, — a/(a -~ 2),
and (5) becomes
(9) Upyr = @V + 7, = 0.
Let & and & " be the roots of
x —ax +1=0.

Then the general solution of (9) is

v = AET + BETR,

n

where A and B are arbitrary constants. Thus if a £ +2 we have
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(10) u = A& + BET 4 af(a-2).

n

The constants o and 5 depend not only on the given a-chain but also on the
particular elements chosen to be u, and u,. liowever, il we substitute (10) in

(4) and simplily, we obtain

(11) AB(a?-4) =1 + a%/(a - 2).

Thus the product /1.3 depends only on ¢ and a.

6. Positive and negative terms. To determine all positive integral solutions
of the system (1), it is necessary to find all pairs of consecutive positive ele-
ments of the a-chains. We now proceed to determine the signs of the elements

of all a~chains.

I {u;} is an a-chain, then clearly {-u;} is a —a-chain with the same value
of a. Thus without loss of generality we suppose a > 0. The cases a =0, 1, 2
must be discussed separately, and will be treated in later sections. Throughout
this section it will be assumed that a > 3. Thus we have u, #0 for all a, and
hence the a-chain {u;} has neither a first nor a last element. We begin by es-

tablishing a few simple properties, valid when a > 2.
[. If{u;} has two consecutive positive terms, then u, is positive for all n.

II. Any negative term of { u;} is less than at least one of its two immediate

neighbors.
Properties I and Il are easy consequences of (4).

II. If a > -2, and two consecutive terms of { u;} have opposite signs, then

the positive one has smaller absolute value.

Proof. Since a > -2, we have

u; ~au u, +u_ >0,
and III follows at once from (6).
IV. If a > -2, then any element of { u; } of least absolute value is positive.

Property IV follows immediately from II and IIL.

It can be shown that if a > 3, the smallest possible value of a is 3 - 2a.

This value is actually assumed by the a-chain with uy = u, = ~1. Thus
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a>3~2 > 2-ad?,
and(11)yields the result:

V. If a <2, then 4B < 0.

We are now in a position to discuss the nature of the a-chains, a > 3.

Suppose first that a > 3. Then u, is given by (10), and we may suppose that
&> 1. Using [, IV, and (10), we can see that either u, is positive for all n, or

{u;} has exactly one positive term, the term of least absolute value.

If o =2, then by I, IV, and (8) we see that the term of least absolute value

is positive and all others are negative.

Suppose next that |a| < 2. Then £ is a primitive dth root of unity, where
d=12/(3 - a). In this case (10) can be written in the form

u, = Csin(D + 27 n/d) + a/(a-2),

where C and D are real constants. Now a/(a — 2) <0, and {u;} has at least one
positive term by IV. Hence C £ 0. We see that {u;} is cyclic of minimal period
d=12/(3 -~ a), the positive terms of { u;} are those of least absolute value, and

there is only one positive term in each cycle.
Since a = -2 is possible only if @ = £ 2, we need now only consider a < -3.
If @ <~3 we may assume that ~1 < £ < 0. By replacing, if necessary, u, by
Up—y in (10), we may suppose also that 4 < 0. Then by ¥V, B> 0. Hence

d
u2m+2 > uzm an u2m+l < uZm—l

for all integral m. Furthermore, for m sufficiently large, u,, and u_,,_, are
positive while u,,, 4+, and u_,,, are negative. It follows from I and II that {u;}
has no consecutive positive terms and exactly one pair of consecutive negative

terms.

Since all —~a-chains can be obtained by reversing the signs of a-chains, simi-
lar results hold for a < -3.

7. The case a = 2. Let us suppose first that { u;} is a 2-chain with at least
one zero element, say u, = 0. Without loss of generality we can suppose that u,
is the first term of { u;}. Then (4) yields u; = ~1. It is easily seen that 0, ~1,
Uy, +++ is a 2-chain for any integral value of u,, and that a = —u, - 2. If
u, <-4, then it follows from (8) and (10) that u, <Ofor all n> 0. f -3 <u, <0

then { u;} has finite length and no positive terms. If &, > 0, then it can be shown
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that u,, and u,,,; have opposite signs for all n > 0,

We may now assume that { u;} is a 2-chain with no zero terms. Since

(w, + 1) =u_ u,  #0,

n-1 n+l1

we see that u, # —1 for all n. We suppose next that there is an i such that u; = 1,
say u; = 1. Then uy u, = 4. Without loss of generality we can take u, > u, and
thus u, = 4, 2, or —2. Putting u, = 4, we obtain the 2-chain ..., 25, 4, 1, 1, 4,
25, +++ with a =7, whose terms are the squares of alternate elements of the
Fibonacci sequence®. Putting u, = 2, we obtain the 2-chain «.+, 9, 2, 1, 2, 9,
50, -++ with @ = 6. The odd terms of this 2-chain are perfect squares, and the
even terms are of the form 2N%. If we put u, = -2, we get the 2-chain «+., -2,

1, -2, 1, +++, which is a member of the infinite family of cyclic chains defined

by (7).

We suppose finally that { u;} is a 2-chain with all |, | > 1, and that u, is a

term of least absolute value. Now u, and u, are both relatively prime to u,, and

hence
\uo\ > lull’ ‘u2\> \ull'
Therefore
(u1 + 1) = wy u, > uf
Thus
u > 0 and u, = u, = i(ul + 1).
Now if u, =~u; ~ 1, then a = ~2, and we are led to the infinite family of 2-

chains given by (7). If uy = u; + 1, then we have
u | (e, +1)? = (u + 2)%.

Therefore u, is either 2 or 4, and we are led to the two 2-chains: ..., 3, 2, 3,
8, «++ witha=4, and ---, 5,4, 5,9, --- with a = 3. Thus every 2-chain falls

into one of three classes:
(A) an infinite class of chains with at least one zero term, one chain for

each value of a;

1The Fibonacci sequence 1, 1, 2, 3, 5, 8, -+« is defined by Ug=U; =1 and Upy; =
Up+ Up—y-
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(B) an infinite class of cyclic chains with period 2, a = -2, and no zero

terms;

(C) four special chains with all positive terms and a =3, 4, 6, and 7 re-

spectively.
We can obtain all —2-chains by reversing the signs of these 2-chains.

5. The case a =1. Here u, # 0 for all n. Without loss of generality we sup-

pose that «, has least absolute value, and that | u,| > | uq|. Since

= lul +u + 1) <(lu, | + 12,

lug u 1

2|
it follows that |ug| = | u,|. Since uy and u, are relatively prime, it follows that

u, = 1. Suppose first that u; = 1. Then sy u, = 3. Hence u, = £3. If u, =3

then we have the 1-chain?

..., 13,3,1,1, 3, 13, 61, 291, 1393, - .-

with @ = 5. If u, = -3, we have the l-chain ..., 1, -1, 1, =3, 7, .-+ with
=~3. We suppose next that u; =~—1. Here uy u, = 1. If we put u, =1, we ob-
tain the last mentioned 1-chain again. If u, = -1, then u,; = -1 for all », and we

have the constant 1-chain «+., -1, -1, -1, .+ witha = 1.

Thus we see that there are exactly three 1-chains, one consisting entirely of
positive terms, one in which every term is ~1, and one consisting of alternating

positive and negative terms. We have proved the following theorem.

THEOREM 3. Let x and y be positive integers. Then

x|y +y+ 1 and y|x? + x + 1

if and only if x and y are consecutive terms of the sequence 1, 1, 3, 13, +« -,

where the nth term is given by

Furthermore,
x|y2 ~y + 1 and y|x? -~ x + 1
if and only if x =y =1.
9. The case a = 0. As in the previous section, we suppose | u, | minimal and

2 The accidental discovery of the relations 13| 612 + 61+ 1 and 61| 132413+ 1 led

to this entire investigation.
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luy| > |ugl- We note that if the integers u, form a O-chain then so do the inte-
gers —u, and the integers (—1)"u,. Thus it is sufficient to consider the case
where u, >0 and u, > 0. Now u, and u, are both relatively prime to u,, and

hence if u; > 1 we have

| u, u, | > (u,

+1)2>u21+1=|u0u2

Therefore

= = d hence = =1.
=1, w u =2, an hen u, =2, u 1

This leads us to the O-chain ..., 5, 2, 1, 1, 2, 5, 13, --- with a = 3.We note
that the elements of this O-chain are alternate elements of the Fibonacci se-
quence. We see that there are exactly. three 0-chains, one consisting entirely of
positive terms, one consisting entirely of negative terms, and one with alter-
nately positive and negative terms. Furthermore, we have proved the following

theorem.
THEOREM 4. Let x and y be positive integers. Then
x|y? + 1 and y|x2 + 1

if and only if x and y are consecutive elements in the sequence 1, 1, 2, 5, 13,+++

whose elements are alternate terms of the Fibonacci sequence.

10. Iable of a-chains, 0 < a < 10. By methods similar to those used in the
last three sections, it is a simple matter to determine all a-chains for small
positive values of a. In the table on page 123 we give the values of a and a,
and three consecutive terms of each a-chain, 0 < a < 10. In the table, u stands

for an arbitrary integer and r for an arbitrary positive integer.

11. Systems with a finite number of solutions. If a > 0, then the a-chain
ces, 1, 1, @+ 2, ... leads to an infinite number of positive integral solutions
of the original system (1), and +.., ~1, 1, ~a~2, ..+ leads to an infinite num-

ber of positive solutions of the system

x|y +ay + 1, y|x? —ax + 1.
On the other hand, there are values of @ for which the system
(12) x|y —ay + 1, y|lx? —ax + 1

has only a finite number of positive integral solutions. Using the results of $6,
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TABLE OF ¢-CHAINS, 0 < a < 10.
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we see that (12) has an infinite number of positive integral solutions if and

only if there exists an a-chain with a > 1 which has at least one negative term.

If @ > 8, then a necessary condition that (12) have only a finite number of
positive integral solutions is that a + 2 be prime. For if a + 2= RS, a> 8, R > 1,
S>1, then «eo, =R, 1, =S, -+ is an a-chain with a > 1. This condition is not

sufficient, for««. , =7, 3, =19, «++ is a 4l-chain with a = 5.

Futhermore, if a =1 or if 3<a <9, then (12) has only a finite number of

positive solutions. For example, the system
xly* =8y + 1, ylx2 = 8x+ 1, y >x >0

has exactly nine integral solutions, namelyx =1, y = 1, 2, 3, and 6; x = 2,
y=1l;x=3,y=7;x=5,y=14;x =11, y = 17;.and x = 14, y = 17.

YALE UNIVERSITY
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