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1. Introduction. A chance variable x will be called a d-lattice variable if

(1) Z Prix = nd} =1
n =00
and
(2) d is the largest number for which (1) holds.

If x is not a d-lattice variable for any d, x will be called a nonlattice variable.

The main purpose of this paper is to give a proof of:

THEOREM 1. Let xy, x5, +++ be independent ideniically distributed chance
variables with E(x,;) = m > 0 (the case m = + © is not excluded); let S, =
%y + <+ +xp; and, for any h > 0, let U(a, h) be the expected number of integers
n > 0 for which a < S, < a + h. If the x,, are nonlattice variables, then

U{a, h)— —, 0 as @ —+ ©, —©.
m

If the x, are d-lattice variables, then

Ul(a, d)— —, 0 as a—» + ©, — @©.
m

(If m =+ o, h/m and d/m are interpreted as zero.)

This theorem has been proved (A) for nonnegative d-lattice variables by
Kolmogorov [ 5] and by Erdss, Feller, and Pollard [ 4]; (B) for nonnegative non-
lattice variables by the writer [ 1], using the methods of [4]; (C) for d-lattice
variables by Chung and Wolfowitz [3]; (D) for nonlattice variables such that

the distribution of some S, has an absolutely continuous part and m < cc by Chung
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and Pollard [ 2], using a purely analytical method; and (E) in the form given
here by Harris (unpublished). Harris’ proof does not essentially use the results
of the special cases (A), (B), (C), (D); the proof given here obtains Theorem 1
almost directly from the special cases (A) and (B) by way of an integral identi-
ty and an equation of Wald.

2. An integral identity. Let N, be the smallest n for which S, > 0, and write
z, = SNI; let N, be the smallest n> 0, for which Sy +, Sy, > 0, and write
z,=SN,+N, = Sn,,and so on. Continuing in this way, we obtain sequences N,
Ngy «++52y, 24, +++ of independent, positive, identically distributed chance vari-
ables such that

SN1+...+N =Zp ket 2.

Let V' (t), R(t) denote the expected number of integers n > 0 for which
T ==z etz <t and -t < S <0,
< <9, <

n 1
n <N, respectively. That ¥ (¢t) <  follows from a theorem of Stein [ 6], and
that R (¢) < o follows from £ (N, ) < o, which we show in the next section. The
integral identity is:
THEOREM 2." U(a, h) = fw [R(t—a) = R(t—a-h)]dV(t).
0

Proof. If ny is the number of integers n with

N +---+NK §n<N1+---+N

. and a < S <a+h,

K +1

we have
E(ng|Ty =t) =R(¢t-a) - R(¢t-a-1),

so that
Etne) = [[TIRG=a) = Rt —a =M1 dFy (2),

where F (t) = Prt Ty < t}. Summing over K =0, 1, 2, +++, and using the fact
that

V(e)= 22 Fy(e),
K =0
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we obtain the theorem.

3. Wald’s equation. The main purpose of this section is to note that £ (N, )
is finite, so that an equation of Wald [ 7, p. 142] holds.

THEOREM 3. £(N,) <w and mE(N,)=E(z,), so that m, E(z,) are both

finite or both infinite.

Proof. In showing £ (N, ) finite, we may suppose {x,} bounded above; for
defining x* = min {s,, #} yields an NT > N,; choosing } sufficiently large
makes E (xﬁ) >0, and £ (z’Vi< ) < o implies £ (N, )< w. Since

T

X S

N1 +...+NK
= . [

K Ny + oot Ny K

N o+eee+ Ny

we obtain, letting K —> o« and using the strong law of large numbers, first that
E(z,)=mE(N,) and next since if { x, } is bounded above and { z,,} is bounded,

that £ (N, ) is finite in this case and consequently in general.

4. The d-lattice case. For d-lattice variables, Theorem 2 yields

(3) U(nd,d) = Z r(s=n)v(s) = D2 r(s)v(s+n),
s =0 § =0

where r(s)=R(sd)=R([s-11d) andv(s)=V(sd)-V([s—-1]1d). Now

7]

2 rls)= lim R() = E(N,) <o

s =0

Theorem (A) asserts that

d
vin) — , as n—> o, —©;
E(Zl)
applying this to (1) yields
dE(Ny)
Ulndyd) — ——— , 0 asn—w, - ©,
E(z,)

and Wald’s equation yields Theorem 1 for d-lattice variables.

5. The nonlattice case. For nonlattice variables we have, rewriting Theorem



318 DAVID BLACKWELL

2 with a change of variable,

U(a, h) =fM°°[R<t) “RG=m)] dV(t+a).

For any M > 0, write
Ula, h) =1 (M, a, h) +1,(M, a, k),
where

M
L= [ R - RG-DT @)

and

I =A [R(:) = R(e—h)] dV(t+a).

2

Theorem B applied to { z, } yields

V(t+h) = V(t)—

h
E(z,)

for all A > 6 as t — w, so that, since R (¢) is monotone,

M M~h
ll=/0. R(t)dV(t+a)—[) R(t)dV(t+a+h)

1 M
—_)E(zl).-/l‘:f—h R(t)de, O as a—> @, ~
for fixed M, h. We now show that, for fixed 4, 12 (M, a, h) — 0 as }} — o uni-

formly in a. We have

(o]

M+(n+1)h
> /M [R(¢) = R(t—h)) dV (s +a)

+nh

IN

> R Myn)[V(a+M+(n+1)h) - V(a+M+nh)l,
n=0

where

R (Myn) = sup [R(t) ~ R(t-1)]
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as t varies over the interval (M + nh, ¥ + (n + 1) k). Since, by Theorem (B),

V(b+h) =V(b)—>

as b—> w0,

h
E(z)

there is a constant ¢ ( for the given 4) such that
12 (M,a,h) < c z Rl(M,n) for all ¥ and a.
n =0
Now

2 R, (M,2n) <E(N) - R(M) and > R (M, 2n+1) < E(N) = R(M),

n=90 n=0
andR(M)—-)E(Nl)as M — . Thus
|U(a, h) - II(M, a, h}| < (M, k)

for all @, where (¥, 1) — 0 as ¥ — o for fixed 4. Then

Ula b hE(Ny) ( ( 1 M
(ay h ~ < €(m, k) I (M, a, h) - / R d
a E(21) < m + 1 a E(21) —h (l) t
1 M
+ E—(—;—l—) /;I~h Il(t) dt—hE(Nl) .
so that
hE(N,)
lim sup |U(a, h) - —
a — > E(Zl)
(M, b) [l R d - ey
< e(M, : - .
< € + E(zl) —h t) dt 1)
Letting ¥ — ¢ yields
RE(N,)
Ula, h) —> ——— as a — ©,
E(z,)

1

and Wald’s equation yields Theorem 1 for ¢ —> . Similarly,
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Ula, b)Y < €(M, k) + |1 (M, a, k)|
for all a, so that

lim sup U(a, h) < € (M, k)

a— -0

and U(a, h) — 0 as a—> — oo. This completes the proof.
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