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1. Introduction. Given the sequence {a, | and p # 0, Schur [ 5] defined the

derivative a’ by
m

m+1,
9

(1.1) ap = Nap = (Gpyy = ag)/p
higher derivatives are defined by means of

af,f) = ANa, = :f\(a,(,f_l)), ag,f) = Qg .
In particular if p is a prime, @ an integer and a,,; = @™, then by Fermat’s theorem

’ +1
ay, = (aPm _ apm)/perl

is integral. Schur proved that if p ¥ a, then also the derivatives

A2aP™, N3P, .. APT LGP
are all integral. Moreover if ¢/ =0 (mod p) then all the derivatives ATaP™ are
integral, while if af # 0 (mod p) then every number of APa”™ has the denomi-

nator p.

A. Brauer [ 1] gave another proof of Schur’s results. About the same time
Zorn { 6] proved these results by p-adic methods and indeed proved the follow-

ing stronger theorem. For x = 1 (mod p), define
Xp = (7 = 1)/pm*t,
and as above let A’X,, denote the r-th derivative of X,,; then

— 2-— L) r__.
(1.2) ATY, = (p-1) (p*=1)---(p"=1) AT (mod p™)
(r+1)!

provided r < p; for r < p — 2, the congruence (1.2) holds (mod p™*!). It is also

shown that Schur’s theorem is an easy consequence of Zorn’s results.
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322 L. CARLITZ

In the present paper we shall give a simple elementary proof of Zorn’s con-

gruences, In addition we prove, for example, that for r < p,

pom_ Lom M., (' -1) i
(1.3) NaP" = = o, T (mod o™,
where
dPDp™ = 1 4 p™t g

for r < p~1, (1.3) holds (mod p™*1).

We next ($4) extend Schur’s and Zorn’s theorems to algebraic numbers. In
$5 we consider a generalization of another kind suggested by the arithmetic
function ( see for example [ 2, p.84-861)

(1.4) Fla,m) = X pu(d)al.

de=m

Finally ($6), we give some applications of Schur’s theorem to the Euler and
Bernoulli polynomials and numbers; the results are analogous to Kummer’s con-
gruences [ 3, Ch. 12]. In particular ArEk+ =« is integral (mod p) for p> 2,r < p,
r<m; also Ar(3k+pm/(k+ p™)) is integral (mod p) for p~14£k+1, r<p,
r<m. Here E; and B, denote the Euler and Bernoulli numbers in the notation of

Norlund [ 3].
2. Formulas for A"a,,. We shall require some preliminary results.

LEMMA 1. The following identity holds:

r=1 r
(2.1) [T (x=p= 22 (-1 [1] pili=0/2 yr-i,
i=0 i=0

where

f_l (r_l—l)"'( r"‘l'+l~1)
(22) (- D - AR NS
(p=1)(p2=1)--e (p*=1)

LEMMA 2. Put

k
fir = 2 DU PO,

i=0
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where (’;’) denotes a binomial coefficient. Then

0 (r<k)
1 ! )
(2.3) W’k,,=4—r—! H (p"-p") (r=Fk)
t =0

1
. pk(k"l)/2 U

rl

(r>k),

s

where U, is an integer.
’

Lemma 1 is will known. To prove L.emma 2, we note first that the binomial

coefficient (f) is a polynomial in x of degree r. Since by (2.1)
k k-1
Z (_l)i [k] pi(i“l)/Z pf(k—i) - H (pr__pi)’
13
i=0 i=0
the several parts of (2.3) follow without much difficulty.
LEMMA 3. For an arbitrary sequence { a,,},
r . s
(2.4) ANa, = p—rm—r(ru)/z Z (1) [I] pl(z—l)/z At -
i=0

This formula, which is given by Schur, is easily proved. In view of (2.1) it

can be put in the following symbolic form:

r=1
(2.5) Ar(lm - p—rm-r(r+1)/2 a™ n (a-—pl),
i =0

where it is understood that after expansion of the right member a* is to be re-

placed by a,.
Suppose now that p 4 a and put

(2.6) e B

so that ¢ is integral. Then by the binomial theorem we have
pr

p-Dpmts _ 5 (pis) p(mﬂ)iqfn (r>s),

i=0
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and by (2.4) this implies
prm+r(r+ 1)/2 Ara(p_l)Pm

r

p’ o
(=1)S [rs] p(r—s)(r—s—l)/z Z (pis) p(m+1)z q:n

™

s=0 1=0
p’ o r
= 3 Pl 3T (-1 L) (7)) plrme) e/
i1=0 §=0
_ Z p(m+1)i qz W,
1 =0

r
=i prm+r(r+1)/2 g:n I—I (Pi—l)

=1

pr 1 ) )
n Z _‘ p(m+1)L+r(r——1)/2 q;l Ur,i’

i=r+1

by (2.3); W,,; and U, ; have the same meaning as in Lemma 2. We thus get

| r . pT . .
(2.7) AalP~vlp == g 1 -+ 2 — plm+ 1) (i=r) g U
r! i=rer U°

i=1

We next set up a similar formula for A7q , where ¢, is defined by (2.6). In-
deed substitution in (2.1) gives

r

Z (=1)"s [;] p(r—s)(r—s-x)/z —(m+s+1) (a(P'l)P

m+s

-1)

prm+r(r+ 1)/2 Arq _
s =0

r r

p .
- Z (=1)-S [;] p(r—-s)(r—s-l)/2—(m+s+1) Z (pis) p(m+1)z qin

s =0 i=1

= pz p(m+1)(i—1) qfn i (~1)r—s [;] (pis) p(r—s)(r—s_l)/z -5
t1=1 s=0
1

r
- T prm+r(r+1)/2 q:n+1 I_I (Pi—l)

=1

" i ;Tp(m+1)(i-—1)+r(r—1)/2 q’in U

I =r+2

’

ryi?
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by a slight modification of Lemma 2; the coefficient ] ; is integral and is de-
y g r,i g

fined by

1 , r ) ‘ .
I’ Pr(r—x)/z Ui = 55 (=15 101 (p77%) ps(s—l)/z (r=s)

s=0

Hence

r

AT ____1__ T+1i ' i P
(2.8) Agp, = || (p'~1) + 2,
I =1

1
q ;
(r+1H)1 ™ i 5 !

(m+1) (i-r=1) i 7’
i1 P qm JT,L"

Using the same method we can also evaluate ATaP™. Tt follows from (2.6)

that

m

m+s m S"“].
(2.9) aP™ " =GP (14 pmtlg )% (es - = )

and thus substitution in (2.4) yields

r €r
prm+r(r+1)/2 ATaP™ = P Z (_l)r—s[;] p(r—s)(r—s—l)/2 Z (eL_S) p(m+1)iq:‘n
s$=0 i=0

€r r
_ apm Z p(m+1)i an Z (=1)"$ [;] (eis) p(r—-s)(r~s—1)/2.

i=0 S$=0

. esy - Sy . .
Since () is a polynomial in p® of degree i, the same reasoning as before ap-

plies and we get after a little manipulation

[T, (p' -
(2.10) I el A
. ! m r
r! (p-1)
€r 1
+ aP™ Z 7 p(m+1) (i-r) (Ifn Ur’:i,
i=r+1

. .
where U . is integral.
ryi

Comparison of (2.7) and (2.10) shows that (2.7) is included in (2.10). In-
deed it is easy to set up the following formula which includes both (2.7) and
(2.10):
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H;=1(Pi_1)

1 m
(211) AT = =GP gk
r. (P-—l)r

€r 1
kp™ — (m+1)G-r) i
e i P I Vriv
1=r+1
where V. ; = Vr(]? is integral and k> 1. The proof of (2.11) is exactly like the

proof of (2.10); the first step is to raise both members of (2.9) to the k-th power.

3. The main results. In order to make use of (2.7) and (2.10) it is evidently
necessary to examine p(m“)(i_’)/i!. We suppose i>r, r<p. Then in the first
place it is easily seen [ 6, p.462] that p*~7/i! is integral (mod p), and a simple
discussion shows that pi_’/i! is divisible by p unless (i) i = p, r=p ~ 1, or

(ii) i = p + 1, r = p. We now state:

TueEOREM 1. The derivative ATalP~VP™ s integral for 1 <r<p-1, while
AP P=UP™ pos the denominator p provided a?™! £ 1 (mod p?); if aP7l=1
(mod p?) then all Aa®P=1P™ e integral.

THEOREM 2. For 1 <r<p, m>0,

m 1 " .
(3.1) Va8 = =g TT ('-1) (mod p™);
Tr:

i=1

if r<p-1, the congruence is valid (mod p™*!).

THEOREM 3. The derivative ATaP™ is integral for 1 <r < p — 1, while APaP™
has the denominator p provided aP~!' # 1 (mod p?); if a®~' =1 (mod p?) then all
ATalP=UP™ gre integral.

THEOREM 4. For 1 <r<p, m >0,

;
m 1 m I_I"—‘ (Pl“l)
(3.2) A'aP™ = = aP" g, L (mod p™);
r: (p_l)r

if r < p -1, the congruence is valid (mod p™*h).

If we make use of (2.11) rather than (2.7) or (2.10) we get the following

more general result.

THEOREM4'. For1 <r<p, m>0
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; .
m 1 m I_I‘: (pl—l)
AT kP =— ofP q;nk’ —i(—l—-T (mod p™);
r. p..

if r <p -1, the congruence is valid (mod p™*!).

To apply (2.8) we first examine pi_rﬂ/i! fori>r+1, 7+ 1< p. We have:

THEOREM 5. The derivative Arqm is integral for 1 <r<p-2, while Ap—lqm
has the denominator p provided aP~!' £ 1 (mod p?); if @? ™' = 1 (mod p?) then all
A'q, are integral.

THEOREM 6. For 1<r<p-1,m>0,

1 r .
Ar = —_— r+1 ( 1_1) (mod m);
(3.3) = T 1:11 p p

if r < p — 2, the congruence is valid (mod p™*').

Theorem 3 is of course Schur’s theorem; Theorems 5 and 6 are due to Zorn.

The remaining theorems are presumably new.

4. Generalization for algebraic numbers. Let % be an algebraic number field

of degree n and let P denote a prime ideal of %; also let
(4.1) No=pli  p9lp, P4 ps

for simplicity we assume p> n. If « % is integral (mod ) and P4 «, then by

Fermat’s Theorem

(4.2) 1148, B=0  (mody).

It follows from (4.2) that

(4.3) aP P L 14 B, Bm =0  (mod pmetl),

il

while (4,3) implies

p’
(4.4) /=P 5 (0 B, (rzs)

1=0

Then, exactly as in § 2,
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r pr )
R D S C Dl ST Ll SR Y1

S=0 i =0
pr T

= 3 B X (GG plrmedmen/z,
1=0 s$=0

application of Lemma 2 now leads to

r

m L L 1 .
(4.3) A7 P/70PT = — D g7 TT(pF-1) & 37 = p7 " glio

=1 i=r+1

where w; ; is integral. Note that for e > 1 the right member of (4.5) need not be
integral. Accordingly we assume e = 1; the assumption p > n is then no longer
needed.

We now have:

THEOREM 7. Let Np = p/, v2 & p, b ¥ o; then AT aPf-0p™ o integral for
1 <r<p-1, while AP aPT=DP™ has the denominator p provided -t 4
(mod 1?); if a1 = 1 (mod %) then all AT «®f=1P™ 4re integral.

THEOREM 8. With the hypotheses of Theorem 7,

m 1 Bm \" [~ .
(4.6) AT o(P-10p E—( ) IT (»*-1) (mod p™)

rl pmtt i=1
for r < p; if r < p — 1 the congruence is valid (mod P™*!).

In order to extend Theorems 3 and 47 it is convenient to suppose that Pis a

prime ideal of the first degree. The following two theorems may be proved.

THEOREM 9. Let Np = p, 12 ¥ p, b4 ;3 then AT oP™ is integral for 1 <1<
p — 1, while AP oaP™ has the denominator p provided oP™' £ 1 (mod P2 );if&p_l =
1 (mod %) then all A7 W™ are integral.

THEOREM 10. With the hypotheses of Theorem 9,

(mod p™)

s om 1 [EBm\" Tha 6P -1
(4.7) AT P :"'.-‘-(

pm+1 (p_l)r

for r < p; if r < p — 1 the congruence is valid (mod p™*1).
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For brevity we omit the extension of Theorems 5 and 6 for algebraic numbers.

5. Another generalization. Changing slightly the notation (1.1) we put

- _ _ it1
(5.1) A== e
and
Aa = (AT 1g ) — A1, ) i+x.
P mpt ( P mpitl p mp‘)/p

Then clearly ApAq = Aqu. If @ and % are arbitrary integers then if follows from

a well-known theorem concerning (1.4) that

(5.2) Sya* = Ap +e- Ap aF (k= piteeepg®)

is integral. In view of Schur’s theorem we can state the following generalization.
THEOREM 11. Let(a,k) =1 and let r < the smallest prime dividing k; define

(5.3) 8Tk = 5, 57 tak,

Then 8)a, is integral for k> 1.

Indeed because of the commutativity of the operators A, we need only ob-
12
serve that (5.2) and (5.3) imply
- rok AT ATk
(3,4.) Bka Apl APS(Z

and the theorem follows immediately.

The restriction (a,k) = 1 can be removed by taking % sufficiently large as we

shall see below.
A slight extension of Theorem 11 is contained in:

THEOREM 12. Let

€s
s ?

(ek) =1, k=pleep
and let 1, <p;y j=1,++,5; then
- 1 s k
(5.5) Apl ---Apsa
is integral for all k> 1.

We remark that the function defined in (5.2) can also be expressed in the form
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(-1)°
5 o - 2 (4 dk
e A

where ;1 (d) is the Mébius function and

e(t1 e.+1
kl = pll e o o pss ;
similarly (5.3) becomes
(-1)°

BZak =

> uld) & tatk,
koo g | &
Formulas of a different kind can be obtained by applying (2.4)to(5.4)and (5.5);

for example, (2.5) suggests the following symbolic formula:

S S r=1
r ko g-r r(r+1)/2 €j ol
Ska =k I_I p]. . H a]. I_I (a] p].),
j=1 j=1 i=0
where after expansicn aj;l cee ais is to be replaced by o™,
f f
m = pll cee ps‘s .

A similar but slightly more complicated formula can be stated for (5.5). We shall

omit the generalization of Theorems 11 and 12 to algebraic numbers.

6. Applications. In the theorems of §2 it is assumed that p 4 a. However
Theorem 3, for example, is easily extended to the case p|a. We can state that
ATaP™ is integral for r < p — 1 and arbitrary a provided m > r. For let p| a; then,
in view of (2.4), it is only necessary to verify that

m4r-i 1 1
p +—2- L(L—I)Zrm+5-r(r+1)

for 0<i<r<p-1, r>m. This can be proved by induction with respect to m. In
the next place since Theorem 11 is a direct consequence of Theorem 3 we infer
that it also holds for all @ provided r < min (e, -+, e5) in the notation of
Theorem 11.

Now consider the number

k
(6']‘) Ck = Z Aaa ’
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where 4, denote integers (mod p) and n > 1 is arbitrary. Then

n
r r k+pm
(6.2) ACk+pm= > A Aa"P (k>0),
a=1
so that by the remark in the previous paragraph A’ Cpm is certainly integral
(mod p) provided r < p — 1 and r < m. In the second place we may apply the oper
ator 82 defined in (5.2) and (5.3) and get

n
hik .
(6.3) kChh = 22 40,0

a=1

we infer that §) C, is integral provided r < the smallest prime dividing % and
r<min (i, +++, is), the notation being that of (5.2). Indeed a somewhat more
general result can be obtained by applying Theorem 15, namely,

r Ts
(6.4) At e Ay G (h>0)

S

is integral provided r, < p,, r, <€, t =1, ,s.

¢
As an instance of (6.1) we take the well-known formula for the Euler poly-

nomial

| s .
(6.5) En(z) = 3 — 3 (=10 (§) (x4 )™

s$=0 2 1=0

(We use the notation of Norlund [ 4] for the Euler and Bernoulli polynomials.) If
p> 2 and x is integral (mod p) the preceding discussion applies. In particular

using (2.4) we have:
THEOREM 13. Let p > 2 and x be integral (mod p). Then
r . Iy
ArEk+pm (x) = p—-rm—r(r+1)/2 Z (=1) [:1 pl(l~1)/2 Ek+pm—i(x)
i=0
is integral (mod p) provided r < p, r < m.

For brevity we omit the generalizations corresponding to (6.3) and (6.4).

The special case

(6.6) Z u(d) E/He(x)EO (mod m)

de=m
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may be noted

As for the Bernoulli polynomials, it can be shown that if p 4 a and x is inte-
gral (mod p) then a formula of the type (6.1) holds for

ak+1

(6.7) By (%) = B, (%)

E+1

(See for example Nielsen [ 3, Ch.14 ].) Thus it follows that

r
Aer+Pm(x) - p—rm-—r(r+1)/2 Z (—-l)i [;] pi(i—l)/Z B %)

: k+p’"—i(
1=0

is integral for r < p, r < m. If now we assume p ~ 1 ' k& and take a a primitive root
(mod p) such that @ ! = 1 (mod p") we get:

THEOREM 14. Let p> 2 and x be integral (mod p); put H, (x) = B, (x)/k.
Thenifp-14Fk+1,

R
Aer.,.pm(x) - P-rm—r(r+l)/2 Z (—l)i [:] pi(i—l)/2 Hk+pm-‘i(x)
1=0

is integral for r<p, r<m.

Finally corresponding to (6.6) we state

Z uld) Bk+e(x)50 (mod m),

de=m

for B, (x) as defined in (6.7).
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