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1. Introduction. In the preceding paper, Charles L.oewner constructed certain
Jordan curves with the property that the clamped plates bounded by such Jordan
curves have an oscillating Green’s function. The question concerning the sign
of the Green’s function has been raised by J. Hadamard, and this problem has
been pursued recently by R. J. Duffin and P. R. Garabedian. The construction
of Loewner is based on a method due to N. Muskhelichvili using appropriate

conformal mappings. !

The purpose of the present note is to construct such Jordan curves in an
elementary manner. For the sake of completeness we repeat a few definitions to

be found in the preceding paper.

A function of u(x, y) defined in a domain g and having therein continuous
partial derivatives of the fourth order is called a biharmonic function in g if it

satisfies the biharmonic equation

0*u d%u d*u
+ 2 + = 0.
9 x* dx? dy? dy*

(1) Véy=V2V2y =

Let g be a connected domain bounded by a finite number of analytic arcs.
Let ¢ be a fixed point in g. The Green’s function I'{p) =T"(p; ¢q) of g with re-
spect to ¢ is a function of the variable point p = p(x, y) satisfying the follow-
ing conditions:

(a) T'is a biharmonic function of p except at the singular point ¢g. Denoting
by r the distance of p from ¢, we have

(2) C=r2logr+£k,
where £(p) = k(=x, y) is biharmonic in g without exception.

(b) On the boundary of g we have the conditions:

1See the References given in the paper of Loewner.
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ar

(3) F=-5—n——0.

A function u(x, y) biharmonic in the neighborhood of x=0, y = 0 can be

written in the form:
(4) ulx, y) = (%2 + y%) ul(x,y)+u2(x,y),

where u and u, are harmonic functions in the neighborhood of x = y = 0.

The previous concepts can be extended to infinite domains by using an ana-
logue of Thomson’s transformation. As is obvious from the representation (4),

we have:

Let u(x, y) = u(r, ¢) be harmonic in the neighborhood of the origin r = 0

(r, ¢ are polar coordinates). We apply the inversion

x = x"(x"? 4+ y2)7L y = y(x"2 + y*2)71,
(5) M ,
Fe (T, =gt
The function
(6) U(x%,y) = (r)? ul(x, y)

will be then a biharmonic function in the neighborhood of x* = ®, y’= .
A function biharmonic in the neighborhood of the origin can be presented as

a linear combination of the basic bihamonic functions

r"cosng, r"sinng,

(7) i
r"2 cosngp, r"*?sinng, n=0,1,2 o+,
to which 72 log r has to be added if the function is singular at the origin (as for

instance is the case for the Green’s function with respect to the origin).

A function biharmonic in the neighborhood of x = ®, ¥ = ®w, can be repre-

sented as a linear combination of the basic biharmonic functions

- -1 3 ’
r™ cosng, r sinng,

8
(8) r?™ cosndg, r?™ sinnd, n=20,1,2 ¢+,

to which log 7 has to be added if the function is singular at infinity.

By use of the inversion (5), (6) there is no difficulty in defining the Green’s
function of an infinite domain with singular point at infinity provided that this

point is an interior point of the domain.
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2. Results. In order to prepare the construction announced above, we con-
sider the infinite plane, which we interpret as the complex z-plane, z = x + iy =

ret® , cut along the following circular arc of the unity circle:

(1) r=1, m-a<p <+ A

Here o is given, 0 < « <7. We map this infinite slit domain onto the exterior of
the unit circle of the /-plane, {=p e'¥, in such a way that z = 0 and ¢ = @ cor-
respond to each other. Furthermore, we assume that dz/d( is positive at z = =

. This mapping has the following form:

(2) z=¢(—)‘é—_—12, 0<A<l.

=X
[iere A is an appropriate function of a.

First we note that the real point z=—1 of the slit corresponds to {=1 and
¢=-1. Now let A = cos ¢ , 0 < ¢ <n/2; since

dz 1-2x¢+ 2

3 Akl S
(3) iz N T

we see that the points ¢ = e**%0 correspond to the end-points z =—eti% of the
slit. More precisely, ‘%0 corresponds to et (7=0) | _e-ia Ag (= ¢'V describes
the unit circle in the positive sense, z surrounds the circular slit; the arc -—1/10 <
¥ <1, corresponds to the inner ( concave) side of the slit, and the remaining arc
to the outer ( convex) side of it. In particular, /=1 and (= -1 are transformed

into the point z = —1 on the concave and convex border of the slit, respectively.

Inserting ¢ = etV in (2), we find that

¢ Yo (cos g - o 1)
iV

e — cos (/10 e

e?¥0 (cos o = e H0) _ 2o _

i

_eia

— cos 1//0
so that 2¢0 = 77— W; hence
(4) A= sin(a/2).

We denote the image of the circle | {| = R, R> 1, by Cp. This is an analytic
Jordan curve.

The principal results of this note are the following:

I. LetI'(p) be the Green’s function of the infinite slit domain of the z-plane
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bounded by the circular arc (1), having at z = w its singular point. This function
changes its sign in the slit domain just defined.

II. Let I'(p) be the Green’s function of the infinite domain outside of the
curve Cp, R> 1, having at z = wits singular point. This function will change its

sign in the infinite domain outside of Cr provided R is sufficiently near to 1.

From the last example it is easy to derive an example of the kind announced
in the introduction: we have to apply an inversion to the curve Cr with respect

to any fixed interior point. Here we must use the results of Chapter 1.

3. Circular slit. We seek the Green’s function I'(p) of the circular slit do-

main in the following form:
1 1 ,

(1) C'(p)=log— + 4 p——) cos s + f(p, ¥) + (r*=1) glp, ¥).
P p

Hlere A is a constant, and f(p, ¢/) and g(p, ) are harmonic functions regular
for p > 1, including p = w. The point p is represented by the complex number
z = re!® defined in 2. The relation between z = re’® and ¢=pe'¥ is given by
2 (2).

The boundary conditions of the clamped plate amount to the fact that the
function (1) and its derivative with respect to p vanish as p=1. But p =1 im-

plies that r = 1, so that we have:
() (L, ¢) = 0; e, f(p,y) = 0.

a(r?)
dp

(II) ~1 + 24 cosy + ( ) g(1l,¢) =0.
p=1

Now we note the following formulas which will be useful in our later work:

) ) A2p2—2Ap cosy+ 1
r =p ’

p2=2\p cos  + A2
—2\p cos Y + A (p2+ 1)

(2)

2-1=(p*-1)
p2=2\p cos i + \?

From the second we conclude that

1~2X cos iy + A2

(3) a(r?) 5 —2Ap cos iy + A2 (p2+ 1) 4A(=cos iy + A)
dp p=1 p2~=2Ap cos ¢y + A2

p=1
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tience condition (II) can be written as follows:

4N(=cos ¢y + A)
1 -2\ cos ¢r+ A?

(4) ~1+24 cosyy + g(1, ¢) = 0.

We determine 4 according to the condition

4r(=cos ¢+ )A)
~1+ 24 cosy + v =90,

4?2
A=(2))71,

and (4) yields

1-2X cos ¢y + A2
g(l, ¢’) = l/l 5
4A?

1+ 22 1 cos Y

(5)

g(P’ W) =

4)\2 2A P

Recapitulating, we find the following expression for the Green’s function

I'(p):

1 1 1 1+ A2 Y
(6) I'(p)=log — + — |p~—] cosyy + (r*=1) + _ COS,/.
P P 422 2Ap

In the limiting case & —> 77, A — 1, we obtain of course the Green’s function

uf the exterior of the unit circle, namely,

1 1
(7) log — + — (p2-1).
P 2

4. Conclusion. (a) The dominant term in 3 (6) is

1+ A2
r2

422

so that I" is positive as z — o. Now we write

and have
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1 1 1+ A2 1
logA + — |— — A - - =
20 LA 4A 2

1-22
aN?

-
1l

(1)

log A +

This quantity is certainly negative if \ is sufficiently near 1, more precisely if

A > A, where Ay is the only root of the equation

(2) log A +

on the range 0 <A< 1.

(b) We can show however that I must change its sign for all A, 0 < X\ < 1.
For this purpose we compute the following second derivative at the point z = ~1

on the concave side of the slit:

(d2r) 1 (d?(ﬂ)) (1-2))2
=1 - 7 + —
dp? | o1 umo dp? | oy pme AN

d(ﬂ)) 1
+ < =
o | potige A

From the second formula in 3 (2) we find

d?(r?) ) -2\ + 272
dp? 0=1, y=0 (1-1)*

(=220 +2A) (1 =M = (=22 + 2A%)(2-2)) _4A(1+3))

+ 4 ’
(1-x)* (1-x)?
so that, in view of 3 (3),
d’°T 1 1+3A 4 4
) B U S o S e i
; — -
dp 0=1, Y=0

which is indeed negative.

(c) It is interesting to compute this second derivative for all values of A. We
obtain from 3 (6):
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i

&2F) ) cos s 5 —2) cos i + 2A? (1+)\2 cosd;)
- +
Ip? | ey A 1~2X cos ¢ + A?

d [=2xp cos ¥ + A2 (p?+ 1) 1+A2 cos
+ — —
4o\ p2-2xp cosyea? [\ A 2A
(4)
2cosy —2A cosyh+2A2
+

A 1— 2\ cos ¢ + A2

4A (A = cos )
1-2) cos¢r+ A2

Hence this second derivative is positive on the convex side of the circular arc,
and negative on the concave side of this arc. On the convex side I is positive,
and on the concave side [" is negative, provided p is sufficiently near to the arc

in question.

5. On the Green’s function of the infinite domain which is the exterior of C R
We denote now by I"(p) the Green’s function of the infinite domain which is the
exterior of Cp, having its singular point at infinity. We seek this function in the

form:

R P
F(p):log—-+/17\)- cosyy + B
p
(1) 2 _ y2
pr—A R
+ C +1z|2|D+E — cosy],
p% = 2\p cos iy + A? p

where 4, B, C, D, E are appropriate constants depending on R and X; here again
the point p is represented by the complex number z = re'®, and the relation be-
tween z = re'® and ¢ = pe'¥ is the same as above. We show that the constants
A, +++, E can be determined in a unique way so that [" satisfies the boundary

conditions of the clamped plate provided that R is sufficiently near to 1; more

precisely, there must be 0 < R ~ 1 < € = €(A).
The conditions
or
(2) '= — =0 for p = R
dp

are equivalent to the following:
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(3) P = — =0 for p = R,

where the function I'; is defined by
= (p? = 2Ap cos ¢y + A2) 1"

R
(4) =|log — + 4 %cos<//+3) (p?2 = 2Xp cos ¢y + A%) + C(p?2-A?%)
p

3¢

2 ; R
+p2(1=2Ap cosyy + A2 p2) |[D+E — cos ¢ ).
p

Here we used the first formula in 3 (2). Now (4) is a quadratic expression in
cos iy, Conditions (3) can be replaced by the corresponding set of equations for

the coefficients of cos ¢ in (4). These equations are somewhat simplified if in

1

(4) we replace cos ¢y by p~! cos . The resulting coefficients are:

R
Ml(p) = (log — + B (p2+A%) + C(p2 =A%) + Dp2(1+r%p?),
P
([') A 2 2 R 2 2 2
oM2(p)=—R-(p +A%) - 2A log;+B - 2ADp% + ER (1+)\%p?),
A )
My(p) = = —— - 21 ER.

The boundary conditions are equivalent to the following set of conditions:
(6) M (R) =M (R) =M, (R) = Mz(R) =M, (R) =M (R) =0.

(b) The last of these six equations can be disregarded since Y ;(p) is inde-
q g 3\p
pendent of p. The resulting five equations are linear in the five unknown quanti-

ties 4, «+- , E. They are as follows:

(7) B(R2+A2) + C(R*=)2) + DR*(1+)\%*R?) =0,

1
2RB - — (R2+X%) + 2CR + D (2R + 4)\?R%) = 0,
8

1
% (R2+A\%) = 2AB = 2ADR* + ER(1+A*R?*) =0,

1
o

2 202 A i
2A+—R-——4)\DR+21:/\ R* =0, —P—+LR

\
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In order to show that the unknowns are uniquely determined, we have to dis-
cuss the determinant of this system. As R — 1 the elements of this determinant

approach those of the following determinant ( the second and fourth equations are

divided by 2):

0 1+A%2  1-a%  1+A? 0

0 1 1 1+2A2 0
(8) 1+ A2 -2\ 0 -2A 1+A2

1 0 0 -2 A2

1 0 0 0 1

Subtracting here the first column from the last we obtain:

0 1+A2 1-2? 1+A2

0 1 1 1+2A2
)2

(1-2%) 14+A2 -2 0 ~2

1 0 0 0

1+A2  1-\2 1+ A2
= —(1-=22) 1 1 1+2A2

-2\ 0 -2\

1+a%2  1-A2 ,
=222 (1-A2 =423 (1= 0.
( ) oy 0 ( ) #

6. Conclusion. From 5 (7) it is obvious that the parameters 4, ... , I are
rational functions of R and A. Let A be fixed, 0 <X < 1. Then these parameters
are rational functions of R, and the evaluation of the determinant 5 (8) shows
that they are regular in a certain neighborhood of R = 1. Incidentally, we find
from 3 (6) that

1 1+ A2
(1) Ae_f=—, D=-B-=

o 4)\2,C=0 as R = 1.

Inserting z=0, p =1/A, ¥ = 0 in 5 (1), we obtain an elementary function of
R which is regular at R = 1. It is a combination of log R and the rational func-
tions A, B, C of R. Now this function is negative for A = 1 (provided A is suf-
ficiently small). From this the same property follows for the function 5 (1)
provided R is sufficiently near to 1. This yields the desired property of the
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domain outside of the level curve Cp of the conformal mapping of the circular

slit domain onto the exterior of the unit circle.

In order to prove the same property for all A (and for sufficiently small values

of R~ 1), we compute

42T
dp?

(2) .
P=R,Y=0

We note that the curve CR intersects the real axis in two points; the curve is
convex at the left point and concave at the right point of the intersection, pro-
vided R ~ 1 is small enough. The second derivative (2) we consider is associ-

ated with the concave point of intersection. Now ( 2) has the same sign as

2
(3) 1

b

d 2
P p=R, Y=o

where I"| is defined as in 5 (4). From 5 (4) we see again that (3) is a function
of R which is regular at R = 1. Since it is negative for R = 1, it must be negative

for all R > 1 sufficiently near to 1.

This establishes the assertions.

STANFORD UNIVERSITY
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