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1. Introduction. Let ¥, be a hypersurface immersed in a Kuclidean space
Sy +1. Let P be a point of ¥, corresponding to the point P’ of the hyperspherical
representation G, of V,. Let V denote the extension of a region ¢ of V,, and
V'’ the extension of the corresponding hyperspherical region ¢ of G,. If the
region around P tends to zero, the ratio V’/V tends to a limit I, which is called
the spherical curvature of V, at P [1, pp.258-2611. It is found that ' = |Q/g],
where g=|g; | and Q= [Q .| are respectively the determinants of the coef-
ficients of the first and the second fundamental forms of V,. In this note, some
properties of the spherical curvature are studied, and new interpretations of the

Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.
2. Some properties. Let a real and analytic hypersurface V, be defined by

ya.___ya(xl’”.’xn) (ad=1,+0e,n+1),
referred to a Cartesian coordinate system y* in a Euclidean space S;+;. Let a
vector-field v in V), be defined by

u“:piay“/axi (i=1,"',n)’

where the v* are real and analytic functions of the x’. Let C be a curve of V.
The normal curvature vector of v with respect to C at P is defined as the normal
component of the derived vector of the vector-field v along C at P [3]. Let «
denote a nonzero extreme value of the magnitudes of the normal curvature vectors
of v with respect to all curves of V, at P. Then «, which is called a principal
curvature of v at P, is defined by

(2.1) PI“,] _Kzgijl =0,
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where
k1l k_l
‘Pi; = Q, Qp P/gkzP P

Since || v, || is of rank 1, there is one such extreme corresponding to a vector-

field v. Its value is evidently equal to
_ i1z o ;12
(2.2) k= (¥ g2 = (H,-]-P'P’/g,-,- ptp)2,

where H;; is the fundamental tensor of the hyperspherical representation G,.

The extreme of the principal curvature of a vector-field v at P, as the field

varies, is defined by

(2.3) |H,

2
lj—K gi].|=0.

There are n such extremes «; corresponding to the principal directions for the

tensor H;j. Their product is found to be

[17 = | H/el"? = |9/,

i=1

since H = in].|=Qz/g, [1, p.260]. The principal directions for the tensor
Hij and those determined by the tensor (. are identical, since the principal
curvature of a principal vector-field can easily be shown equal to the normal

curvature of the corresponding line of curvature. Hence we have:

THEOREM 2.1. The spherical curvature of a V,, at P is equal to the product
of the extreme principal curvatures of vector-fields in V, at P, which is the same

as the product of principal curvatures of V, at P.

Since S, 4+ is Euclidean, the equations of Gauss are

Q

(2.4) Rier = @ Q= 9 @ -

ijkl il
Multiplying (2.4) by g** and summing with respect to i and &, we obtain

(2.5) Hjl = Mle + le,

where M is the mean curvature of V,, and where R, is the Ricci tensor. When

V, is a minimal hypersurface, we have M = 0, and the Ricci tensor is identical
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with the fundamental tensor of G,. If M # 0, we have

P o
(2.6) Hij ptp = Rij pp’

if and only if v is an asymptotic vector-field. If v is a unit asymptotic vector-
field, we notice, from (2.2), (2.6), and the equality

n
L
Rij Mg M) = = 22 Yoo
k=1

that the square of the principal curvature of v at P is numerically equal to the
sum of the Riemannian curvatures determined by v and n -~ 1 other mutually
orthogonal unit vectors orthogonal to v at P. Hence we have established the

following result:

THEOREM 2.2. The square of the principal curvature of an asymptotic
vector-field at P in V, is numerically equal to the mean curvature of V, at P for

the corresponding asymptotic direction.

The extreme of the principal curvatures x of asymptotic vector-fields at P in

V, is defined by

IR,

2
i~ K gijl = 0.

There are n such extreme values corresponding to the principal directions for
the Ricci tensor Rij' Their product is evidently equal to |Q/g|, if V), is minimal.
Hence we have:

THEOREM 2.3. The principal curvatures of asymptotic vector-fields at P

in V, attain their extreme values in the principal directions for the Ricci tensor.

THEOREM 2.4. The spherical curvature of a minimal V, at P is the product
of the principal curvatures of the n vector-fields at P corresponding to the

principal directions for the Ricci tensor.

3. The Gaussian curvature. When n =2, I' is called the spherical curvature
of a surface S in an ordinary space. It coincides in absolute value with the
Gaussian curvature K of S. The principal curvature of a vector-field v in V,, for
n =2 coincides in absolute value with the principal curvature of v in S, [3].
The extreme principal curvatures of vector-fields in V,, for n =2 coincide in

absolute value with the principal curvatures of S. The mean curvature of V, for
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n = 2 is identical with the Gaussian curvature of S. Hence Theorems 2.1 and 2.2

lead directly to the following new interpretations of the Gaussian curvature:

THEOREM 3.1. The Gaussian curvature of S at P is the product of the ex-
treme principal curvatures of vector fields of S at P, and is the negative of the
square of the magnitude of the Gaussian representation of a unit arc along an

asymptotic line from P in S.

Let p* and ¢® be two distinct conjugate vector fields in S. Then we have

qB= eﬁ#daupa (a, Bsp=1,2),

where da# is the second fundamental tensor of S. The principal curvatures of

the vector-fields p® and ¢* are respectively equal to
1/2
ep, = (h,5p*P"/ g, 5p°PH) /2,
1/2
ep, = (hgaﬁ papﬁ/ghaﬁpap’e) ‘2,
where haﬁ is the third fundamental tensor of S. Hence their product is

(3.1) (epp)(epq) = (h/g)l/z.

The expression on the right side of (3.1) is equal to eK, where e is +1 or -1
according as K is positive or negative at the point under consideration. At an
elliptic point, the principal curvatures of all vector-fields are of the same sign.
At a hyperbolic point, the principal curvatures of two vector-fields are different
in sign if they lie in different sections separated by the asymptotic lines of S.
Consequently, the principal curvatures of two conjugate vector-fields have
opposite signs, since conjugate directions are separated by the asymptotic
directions of the surface. Hence at an elliptic point of S, the product of the

principal curvatures of two conjugate vector-fields is positive; while at a hyper-
bolic point of S, it is negative. At a parabolic point the normal curvature of any

vector-field with respect to any curve is zero. We may consider that every di-
rection in S at a parabolic point is both an asymptotic direction and a principal
direction of a vector-field which is to be considered. Hence at a parabolic
point the principal curvature of any vector-field is zero; consequently, the
product of the principal curvatures of two conjugate vector-fields is zero. Thus

the following theorem is proved:



THE SPHERICAL CURVATURE OF A HYPERSURFACE IN EUCLIDEAN SPACE 465

THEOREM 3.2. The Gaussian curvature of S at P is the product of the

principal curvatures of any two distinct conjugate vector-fields in S at P.

The sum of the squares of the principal curvatures of the two conjugate
vector-fields is found to be

(epp)2 + (epq)2 = M(Kp + Kq) - 2K,

where kp and kg are the normal curvatures of the curves of the two fields, and
where M is the mean curvature of S. By Theorem 3.2 the above equation can be
written as

(3.2) (ep, + epq)2 = Mk, + Kq)e

Since the product of the normal radii at a point in conjugate directions is a
maximum for characteristic lines, and a minimum for lines of curvature, and
since the sum of normal radii in conjugate directions is constant, we obtain

from (3.2) the following result:

THEOREM 3.3. The sum of the principal curvatures of two conjugate vector-
fields at P is the mean proportional between the mean curvature at P of S and
the sum of the normal curvatures in the two conjugate directions at P. The
square of the sum of the principal curvatures of two conjugate vector-fields at
P is a maximum for the principal vector-fields of S, and a minimum for the

characteristic vector-fields of S.

Let m (m > 2) directions be such that the angle of two adjoining directions
is 27/m. Let the principal curvatures of the vector-fields in such directions be
denoted by ep, , ep,, +++, ep, . Then

1 m> 2 1
—_ Z (ep.)2=—M2-K,
m ¢ ¢ 2
1=1
since

1 m> 2 1
- Z KPi == M,
i=1 2

m

where Kp, are the normal curvatures of the curves of the corresponding vector-

fields.
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THEOREM 3.4. One mth of the sum of the squares of the principal curva-
tures of m (> 2) vector-fields at P, such that the angle of two adjoining vectors
of these fields at P is 2n/m, is constant and is the same for any m greater than
two. The constant is -half of the square of the mean curvature of S minus the
Gaussian curvature of S at P.

It is easy to prove that the principal direction of a vector-field in S is or-
thogonal to the curve of the field if and only if the vector-field is an asymptotic
field. Let p® be an asymptotic vector-field in S. Then its orthogonal trajectories
are defined by

du'B = eﬁ#gap,pa'
The principal curvature of the asymptotic vector-field p® is given by
(epp) = daﬁpae/i#ng pY /[(ga/gp“ pA) (gaﬁ m gy#py eAA g,y P12,

which after simplification becomes

= eBu a LY anB -
(ep,) = €™d s8, PP /ga,@p PP = Ty,
where T, is the geodesic torsion of the curve of the asymtotic vector-field.

THEOREM 3.5. The principal curvature of an asymptotic vector-field at P
in S is equal to the geodesic torsion at P of the curve of the field, or simply
the torsion at P of the corresponding asymptotic line.

From Theorem 3.1 and Theorem 3.5 we immediately obtain the first part of
the theorem of Enneper, that the square of the torsion of a real asymptotic line
at a point is equal to the absolute value of the total curvature of the surface
at the point. By the second part of the same theorem we notice that the principal
curvatures of the asymptotic vector-fields in S are different in sign.
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