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1. Introduction. If a and g are elements of a group G, we shall denote by

or a(g) the element g~ιag, and then for n = 2, 3, 4, define a^Hg) =

α ( α ( π - ι > ( g ) ) .

If for some τi and all g C G, a^n'(g) = a then α will be called weakly central

of order n or simply weakly central. Thus the center elements of G are weakly

central of order 1.

As usual, let

[g, a] = a~ι g~ι ag = a~ι . a{g);

then it can readily be verified by induction on n that

n~\ times n-i times

a-1 . a{n)(g) = a~ι . [α U , g] . I""1 a . [ a . . . [α, g] . . . ]

Thus a^n' (g ) = α is equivalent to

where e is the identity of G. It follows that if o is an element of a normal nilpo-

tent finite subgroup of G then a is weakly central. Another easy consequence of

the definition is that if a is weakly central in G then a is its own normalizer in

G if and only if { a } ~ G; here \ a\ denotes the subgroup generated by α. It should

also be noted that if a is weakly centra] in G, then a is weakly central in G,

where a is the image of a under a homomorphism which takes G onto G.
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2. Theorems. We shall establish the following results.

THEOREM 1. // in a locally finite group G all elements whose orders are

powers of a certain prime p are weakly central then they comprise a normal sub-

group of G.

An immediate consequence is the following analogue to Engel's Theorem for

Lie algebras.

COROLLARY 1. // all the elements of a locally finite group are weakly

central then the group is the direct product of p- groups.

THEOREM 2. If G is a locally finite solvable group then the weakly central

elements comprise a normal subgroup of G which is the direct product of p-

groups.

This result can also be stated as follows for finite groups.

THEOREM 2a. If G is a finite solvable group then an element is weakly

central if and only if it is in the nil radical of the group. Here the nil radical

refers to the largest of all the nilpotent normal sub group s-nilpotent in the sense

that Hn = e, where Hn = [Hn~\ H] (cf. [ 1, pp. 98-102]).

It has not been determined whether solvability must necessarily be assumed

for Theorems 2 and 2a to be true.

3. Proof of Theorem 1. We shall first consider the case where G is finite,

and use induction on the order of G. Let p be the prime such that all elements of

G whose orders are a power of p are weakly central. We must show that if So is

a p-Sylow subgroup of G then So is the only p-Sylow subgroup, and hence is nor-

mal in G. We do this by obtaining a contradiction in case So is not normal in G.

Let Sl9 ••• , S^ be the conjugate Sylow subgroups of S o , and suppose first that

Si n So — { e \ for i = 1, , k. If N £ G is the normalizer of S o , then every ele-

ment y of G not in N transform So into one of the Sj. But then for e £ a G S o we

have a(y) (£ S o and consequently a(y)Q N, since

/V n Sj = So n Sj = { e },

and hence, for all positive integers n, crn' (y) ζμ So. It follows that a™ (y) ^ a

for all rc, and a is not weakly central, contrary to hypothesis.

Accordingly we need only consider the case where S; n S o = { e \ for some i.

Let D be a maximal intersection of two different Sylow subgroups. Then the nor-
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malizer Np of D in G must have more than one p-Sylow subgroup [2, Chap. IV,

Theorem 7] . It follows by our induction assumption that No must equal G; for

if Nβ were properly contained in G it would have but one p-Sylow subgroup, con-

trary to the above. But now if Np = G, then D is normal in G, and the order of

G/D is less than that of G; consequently, again by the induction assumption,

G/D has but one p-Sylow subgroup. On the other hand NQ = G has more than one

p-Sylow subgroup containing Z), and therefore so also has G/D; this again leads

us to a contradiction. Thus in this case So must be normal in G as the theorem

asserts.

REMARK The above proof shows that a weakly central element of prime

power order must lie in the intersection of at least 2 p-Sylow subgroups if the

number of p-Sylow subgroups is greater than one.

We return to the proof of Theorem 1 and consider the case where G is locally

finite. This means that any finite set of elements of G generates a finite sub-

group of G. Now we are assuming that the elements belonging to a certain prime

p are weakly central, and wish to show that they comprise a normal subgroup of

G. It is obvious that they form an invariant set, and hence they generate a nor-

mal subgroup of G. Furthermore, the product of any two elements whose orders

are powers of p has also order a power of p because of the local finiteness of G

and because the theorem is true for finite groups. It follows that the elements

whose orders are powers of p actually comprise the group they generate. This

completes the proof of Theorem 1.

4. Proof of Theorem Za. From a previous remark we know that if an element

is in the nil radical then it is weakly central. We must show conversely that if an

element is weakly central then it is in the nil radical. The proof will be made by

induction on the order of G. If the order is one then the theorem is obviously

true. We now assume the theorem true for groups whose orders are less than k,

and let G be a group of order k. Let N be the nil radical, and g a weakly central

element of G. If {g9 N \ φ G then gN is weakly central in G//V, and hence by the

induction assumption gN is contained in a proper normal subgroup M/N of G/N;

(if the nil radical of G/N is not a proper subgroup of G/N then G/N is nilpotent

and the statement is true since every proper subgroup of a finite nilpotent group

is contained in a proper normal subgroup). It follows that g and N are contained

in a proper normal subgroup M of G, and therefore by the induction assumption g

is in the nil radical NM oί M; but NM is contained in N since the nil radical is

a characteristic subgroup ( cf. [ 1, p. 102]), and hence /VM is a normal nilpotent

subgroup of G; therefore when { g, N \ Φ- G then g C /V as we wished to show.
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We now consider the case where { g, N i = G. Let Z be the center of N; then

Z is normal in G. Now if z is any element of Z such that { g, z \ Φ G, then by the

induction assumption { g, z } is nilpotent and hence has a center Q. But ί g, z } n Z

is normal in { g, z \ since Z is normal in G, and therefore

[2, Chap. IV, Theorem 14]. But then, if

H = Q n ί g, z \ n Z ,

then // is in the center of G since G = } g, N\, and hence // is normal in G. It

follows by the induction assumption that G/H is nilpotent, whence, for some k,

G C H. But since // is in the center of G,

Gk+ι = [Gk,G] c[H,G] = U ί ,

and therefore G is nilpotent; G = /V, and g £ /V as was to be shown.

Accordingly we need now only consider the case where { g, z \ = G for every

z ζl Z. Since g is weakly central then {g} cannot be its own normalizer in G;

that is, { g\ is normal in R9 where R φ. { g \. On the other hand, since G = } g9 Z !,

it follows that # or a subgroup of /? is of the form { gs z \ = G, so that R = G.

Hence g is in a cyclic normal subgroup of G, and consequently is in the nil

radical /V as we wished to show. This completes the proof of Theorem 2 a.

5. Proof of Theorem 2. We first note that the product of two weakly central

elements is weakly central since they generate a finite group in which Theorem

2a is applicable. Thus the weakly central elements comprise a subgroup which

is obviously normal. It is the direct product of p-groups by Corollary 1.
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