
Pacific Journal of
Mathematics

A NOTE ON THE DIMENSION THEORY OF RINGS

A. SEIDENBERG

Vol. 3, No. 2 April 1953



A NOTE ON THE DIMENSION THEORY OF RINGS

A. SEIDENBERG

1. Introduction. Let 0 be an integral domain. If in 0 there is a proper chain

( 0 ) c P t c P 2 c . . . c P n c ( 1 )

of prime ideals, but no such chain

( 0 ) c P [ c . . . c P ' n + ι c ( l ) ,

then 0 will be said to be n-dimensionaL Let 0 be of dimension n: the question

is whether the polynomial ring O[%] is necessarily (n+ 1)-dimensional. Here,

as throughout, x is an indeterminate.

By an F-ring we shall mean a 1-dimensional ring 0 such that O[x] is not 2-

dimensional (i. e., the proposed assertion that O[x] is necessarily 2-<iimensional

fails). Given an F-ring, we try by definite constructions to pass to a larger F-

ring having the same quotient field: this restricts the class of rings in which to

look for an F-ring—a priori we do not know they exist. In this way we also come

(in Theorem 8 below) to a complete characterization of F-rings: if 0 is 1-di-

mensional, then O[x] is 2-dimensional if and only if every quotient ring of 0,

the integral closure of 0, is a valuation ring. The rings 0 thus coincide (for di-

mension 1) with Krull's Multiplikationsringe [5; p. 554].

2. Preliminary results. The first five theorems are of a preparatory character,

and the proofs offer no difficulties.

THEOREM 1. Let 0 be an arbitrary commutative ring with 1, P i9 P2, P3 dis-

tinct ideals in 0[x], If Pγ C P2 C P3, and P2 and P3 are prime ideals, then Pί9

D2> P3 cannot have the same contraction to 0.

n 0 = P2 n 0 = p,
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and consider

O[X]/P2 = δ[χ],

where x is the residue of x and 0 2ί 0/p. Since

O[χ] . P c Pχ c P 2 ,

~x is algebraic over the integral domain 0. Let P 3 be the image of P3 then P 3 Φ-

( 0 ) ; but also P 3 n 0 £ ( 0 ) . In fact, let y C P 3 , y / 0 . Then

c o yn + cιyn~ι +•••+ c n = o

for some Cj C 0 , c Λ £ 0; and c w C P3 n 0 . Hence also P 3 n 0 / p,

COROLLARY. IfOis 1-dimensional, and P 1 ? P 2 , P 3 are distinct prime ideals

inθ[x] different from ( 0 ) wiίA P t C P 2 C P 3 , ίAezi P t n 0 = ( 0 ) , P 2 i s ίAe e^;-

tension of its contraction to 0, and P3 is maximal.

Proof. If ? ! n 0 ^ ( 0 ) , then P 1 ? P 2 , P 3 would all have to contract to the

same maximal ideal in 0. So

? t n 0 = ( 0 ) and ? 2 n 0 = p / ( 0 ) .

Were O [ # ] p C P 2 properly, then, since O [ # ] p is prime,

O[x] . p n 0 = ( 0 ) ,

whereas

O[x] p n 0 = p .

So O[%] p = P 2 . Were P 3 not maximal, we would have P 2 n 0 - ( 0 ) .

For the foregoing theorem, see also [ 4 ; Th. 10, p. 375] .

THEOREM 2. If 0 is n-dimensίonal, then 0[x] is at least (n + 1 )~dimensional

and at most ( 2n + 1) - dimensional.

Proof. Let

( 0 ) C Pι C P 2 C . . . C ? „ C ( 1 )

be a proper chain of prime ideals inO. Then

( 0 ) C O[x] Pι C O[x] . F 2 C •.. C O[x] P n C ( 1 )
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is also a proper chain of prime ideals in O[#] ; and O[x] Pn is not maximal,

since, for example,

0[x] Pn C (O[x] . Pn, x) C ( 1 ) .

(Here, as throughout, we use the symbol C for proper inclusion.) Hence O[x] is

at least {n + 1)-dimensional. Let now 0 be rc-dimensional, and consider a chain

( 0 ) c P [ c . . . c P'm c ( l )

of prime ideals in O[#] Let there be 5 distinct ideals among the contractions

( 0 ) n 0 , P[ n O , . . ,P'mnO.

T h e n

m + l < 2 s < 2 ( r c + l ) , s o m < 2n+ I.

THEOREM 3. If 0 is n-dimensional but 0[x] is not (n+ 1)-dimensional,

then for at least one minimal prime ideal p of 0 either the quotient ring 0p is an

F-ring or 0/p is m-dimensional and 0/p[x] is not (m + 1)-dimensional, and

m < n.

Proof. Suppose that for some minimal prime ideal p of 0, O[x] p is not

minimal inO[x]°; that is, there exists a prime ideal P such that

(0) C P C 0[x] p .

Then

(0) C Op[x] . P C Op[x] . p

is also a chain of prime ideals in 0p[x], as one easily verifies. Since Op[x] p

is not maximal, this shows that 0p is an i^-ring. We pass then to the case that

O[x] . p is minimal for every minimal prime ideal p of 0. Let

be a chain of prime ideals in O[Λ;] If

p n O = p ^ ( 0 ) ,

then 0/p is at most (n — 1)-dimensional, and 0 [ # ] / 0 [ # ] p is a polynomial

ring in one variable over 0/p and is at least {n + 1)-dimensional. So we must

suppose
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P[ n O = ( 0 ) ;

but then

P'2 n 0 = p2 £ ( 0 ) ;

let p be a minimal prime ideal contained in p 2 —such exists since 0 is finite di-

mensional; then O[ x] p C P , properly, since G[ x] p is minimal but P2 is not.

Replacing P hy O[x] p, we come back to a previous case, and the proof is

complete.

COROLLARY. If 0 is an F-ring, then so is some quotient ring of 0.

The foregoing theorem shows that if for some n there exists a ring 0 which is

zz-dimensional, while 0 [ x l is not (n + 1)-dimensional, then there exist /-rings.

Thus we may provisionally confine our attention to 1-dimensiona] rings 0.

THEOREM 4. ifO is l-dimensional, and 0 is a valuation ring, then 0[x] is

2-dimensionaL

Proof. Let p be a proper prime ideal of 0, and let

(0) C P C 0[x] p ,

where P is prime. Let

fix) C P, f(χ) jί 0.

Then one can factor out from fix) a coefficient of least value, that is, write

/(*)= cg{x),

where c C p, and g{x) has at least one coefficient equal to 1; in particular,

then g(x) <£ 0[x] . p; hence c C P. So P n 0 £ (0), whence

P n 0 = p and P = 0 [ * ] . p .

This proves thatθ[%] is 2-dimensional (see Corollary to Theorem 1).

Theorem 4 restricts the size of an F-ring, since a maximal ring is a valua-

tion ring. The following theorem reduces the considerations to integrally closed

rings.

THEOREM 5. Let 0 be the integral closure of the integral domain 0. Then 0

is an F-ring if and only if 0 is an F-ring.
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Proof. Let R be an integral domain integrally dependent on 0; a basic theo-

em of Krull (see, for example, [2; Th. 4, p.254j) says that if P t C P2

 a r e prime

ideals in R, then they contract to distinct prime ideals in 0; hence dim ll < dim 0.

Another theorem (loc. cit., p. 254) says that if p χ C p 2 are prime ideals in 0, and

Pj is a prime ideal in R contracting to p 1 ? then there exists a prime ideal P 2 ,

P2 3 P i9 contracting to p 2 . Hence dim R > dim 0, and so dim R = dimO. Hence 0

is 1-dimensional if and only if 0 is 1-dimensional, and 0[%] is 2-dimensional if

and only if 0[x] is 2-dimensional.

Thus if there exist /'-rings, then there exist integrally closed F-rings, and,

taking an appropriate quotient ring, we see that there would exist an integrally

closed ^-ring 0 having just one proper prime ideal. In view of Theorem 4 (and

the close association of integrally closed rings with valuation rings) one may

ask whether an integrally closed ring with only one proper prime ideal is neces-

sarily a valuation ring. Were it so, there would be no F-rings, but it is not so:

Krull has an example [6; p.67ϋf].I"or convenience, we may mention the example:

let K be an algebraically closed field, x and y indeterminates; 0 consists of the

rational functions r(x,y ) which, when written in lowest terms, have denominators

not divisible by %, and which are such that r(0, y) G K.

3. Principal results. We now establish:

THEOREM 6. If 0 is integrally closed with only one maximal ideal p, α an

element of the quotient field of 0, and 1/α ηL 0, then G[ &] p is prime. If also

d ζf. 0, then 0[ Cc] p is not maximal.

Proof We first observe that

( 0 U 1 p, a) £ ( 1 ) ,

as an equation

1 = cQ + cι a + . . . + csa
s ( c0 G p, ct G 0),

leads to an equation of integral dependence for 1/α over 0. Let now g{x) G

0 [ % ] be a monic polynomial of positive degree. We may assume, trivially, that

(X ζμ 0; then g( (λ) = c G 0 is impossible, as g( Gί) - c = 0 would be an equa-

tion of integral dependence for α over 0; in particular, g{(λ) ^ 0. Also l/g(<X) ζμ

0, for if it were in 0, it would be a nonunit in 0, and hence would be in p, so that

1 G g(a) . p c 0[a] . p,

and this is not so. By the result on α ,
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( O [ g ( α ) ] P , g ( α ) ) ^ ( 1 ) .

Since α satisfies g(x) - g( α) = 0, 0[(X] is integral over O[g(<X)]; over any

prime ideal in O[g{d)] containing (O[g(Cί)] p, g(θi))9 there lies a prime

ideal in O[ Cί], hence

( O [ α ] p, g ( α ) ) ^ ( 1 ) .

Since 1 + g(x) is monic of positive degree, also

( O [ α ] . p, 1 + g ( α ) ) / ( 1 ) .

This shows that g(Cί) (£ O[&] p, a conclusion that also holds if g(x) is of

degree zero; that is, g (x) = 1,

We now prove that under the homomorphism g(x) —>g (Cί) of O[x] onto 0[ CC],

the inverse image of O[ Cί] p is O[#] p; this will complete the proof, as

O[x] p is prime but not maximal. Let, then,

g{x) € O[x], g(x) ^ 0[x] . p.

We write

where § 2 ( Λ ) C O [ X ] . p and no coefficient of gχ(x) is in p; in particular, this

is so for the leading coefficient c. Then g χ ( α ) / c (£ O[ α ] p, s ince g ( Λ ) / C

is monic. A fortiori, g χ ( α ) <£ O[ α ] p, whence also g( a) ^ O[ a] . p .

COROLLARY. M ίΛe case a ^ 0, i/g(%) £ O[%] and g(a) G O[a] . p,

then g(x) C 0 [ * ] . p.

THEOREM 7. Lei 0 6e an integrally closed integral domain, p a proper ideal

therein, a an element in the quotient-field of 0, but a (£ O p, I/a (£ Op. Then

0[a] p is prime but not maximal; in fact,

0[a] p n 0 = p am/ 0 [ a ] / 0 [ a ] p ~ 0/p[%],

Proo/. We know that Op[ Ct] p is prime, and

0 p [ α ] p n O[α] = O[α] - O[α] . p

by the last corollary ( and the fact that 0p p n 0 = p). Hence 0[α] p is prime.

Also here, as in the corollary, we have that if g(x) £ 0[x] and g(α) £ 0[α]

p, then ^(Λ;) £ 0[x] p; the required isomorphism follows at once.
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Theorem 7 is known in the case that 0 is a finite discrete principal order [3,

§49, p. 134-136]. The class of rings dealt with in the theorem includes this

class properly; for example, the ring 0 of the example of Krull is not a finite

discrete principal order, as xyp C 0 for all p, but γ tf. 0.

THEOREM 8. If 0 is 1-dimensional, then 0[x] is ^-dimensional if and only

if every quotient ring of the integral closure of 0 is a valuation ring.

Proof By Theorem 5, we may assume 0 to be integrally closed. If 0 is an

F-ring, then so is one of its quotient rings (Theorem 3, Corollary). This quotient

ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient

ring 0ί — Op is not a valuation ring. Let OL be an element of the quotient field of

0t such that α ξf. 0ι and Of1 (£ 0x. Then 0ί[a] is at least 2-dimensional, by

Theorem 6, and O t[%] is at least 3-dimensional, as one sees by considering the

homomorphism of 0 t [%] onto O^OC] determined by mapping x into (X. So Oi is

an F-ring. Thus 0p[x] p is not minimal in 0p[x], and it follows at once that

0[x] p is not minimal in 0 [ # ] , whence 0 is an F-ring.

Let 0 be the ring of Krull's example above, and let X be an indeterminate.

The single prime ideal p in 0 is constituted by the rational fractions r(x, y)

which, when written in lowest terms, have numerator divisible by x9 i .e., are

of the form x g(x9 y), where g(x9 y) C K[x9 y]. The polynomials in 0 [ Z ]

which vanish for X = y form a prime ideal, different from (0) since xX - xy is in

it, properly contained in O [ Z ] p.

The following theorem is well known [ 4 , Th. 13, p. 376] .

T H E O R E M 9. If 0 is a Noetherian ring of dimension n9 then O[x] is(n + 1 )-

dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noether-

ian character of 0, so by Theorem 3 we may suppose 0 is 1-dimensional. Let

then p be a proper prime ideal in 0. Then 0[x] p is minimal for every principal

ideal 0[x] ( α ) , where a £ p, a φ. 0, so by the Principal Ideal Theorem [3,

p. 37], 0[x] p is minimal in 0[%], and 0[x] is 2-dimensional by Theorem 1,

Corollary. — Instead of the Principal Ideal Theorem, one could use instead that

the integral closure O is also Noetherian (see, for example, [ 1, Th. 3, p.29]; see

also [3 , §39, p. 108]). Neither proof makes use of the full force of the quoted

theorems, so it might be of some interest to find a direct proof using less techni-

cal means.

NOTE. In a forthcoming paper we will show that if 0 is a 1-dimensional ring
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such that 0 [ x ] is 2-dimensional, then 0[xl9 ••• , xn] is (n + 1)-dimensional .

Theorem 2, above, will also be completed by examples showing that for any m9 n

with n + 1< m < 2n + 1, there exist ra-dimensional rings such that O [ x ] is m-

dimensional.
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