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1. Introduction. Let ((x)) = x - [x] - 1/2, where [x] denotes the greatest

integer < x9 and put

(i.i) ΪU.*>- Σ l ίτMτi

the sumπtation extending over a complete residue system (mod k) >x Then if

{h, &) = 1, the sum's {h, k) satisfies (see for example [4])

(1.2) 12hk{J(h, k) + J{k, h)\

Note that's (A, k) = s(h, k) + 1/4, where s(h, k) is the sum defined in [4],

In this note we shall give a simple proof of (1.2) which was suggested by

Redei's proof [5]. The method also applies to Apostol's extension [1]; [2].

2. A formula for s{h, k). We start with the easily proved formula

«•» ω - 5 •!.?,£
which is equivalent to a formula of Eisenstein. (Perhaps the quickest way to

prove (2.1) is to observe that

r=o W*// 1-1/2 (k \ s ) ;

inverting leads at once to (2.1)).

Now substituting from (2.1) in (1.1) we get
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(
, k-l -is x r i -i A>1 -hrs

1 ι p I I 1 ι p

1 ι \r* p I I 1 ι \ r p I

Λ λ k-l Λ k-l

= 1 + 1 Σ τP

Since the inner sum vanishes unless s + fit = 0 (mod k), we get

II*'1 1

J(Λ *) £

or, what is the same thing,

(2.2) 7(Λ, k) = — + - Σ, ~

where £runs through the A th roots of unity distinct from 1.

3. Proof of (1.2) In the next place consider the equation

(3.1) (xh-l)f(x) + (xk-l)g{x)-x-l,

where fix), gix) are polynomials, deg fix) < k — 1, deg gix) < A - l . Then

if £has the same meaning as in (2.2), it is clear from (3.1) that

Uh-i)fU)-ζ-i.

Thus by the Lagrange interpolation formula

( 3 . 2 ) 1
k

k(x- 1) k ζji x- ζ

Similarly, if η runs through the Ath roots of unity,

< 3 . 3 , ,(,,.Uίi> ' £ _!_ 4z
l A U - 1 ) A vfι x - η η k ^ l

Now it follows from ( 3 . 1 ) that A / ( l ) + kg (I) = 1; hence subst i tut ing from ( 3 . 2 )

and ( 3 . 3 ) in ( 3 . 1 ) we get the identity
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(3.4, > Σ < 41L ' 2 ; _ ! _
* tfi *~ζ ζh-l h vfiι x - η

x-l 1

(xk-l)(xh-l) hk(x-l)

Next put » a l + ί in (3.4) and expand both members in ascending powers of t*

We find without difficulty that the right member of (3.4) becomes

, x h + k-2 A2 + 3M + A ; 3 A 3 A ; + 1
(3.5) + t +

2hk \2hk

Comparison of coefficients of t in both sides of (3.4) leads at once to

_1 y _C 1 1 y _J 1_

Uhk

Therefore by (2.2) and the corresponding formula for s(k, h), we have

s(h9 k) + s{k, A) ,

which is the same as (1.2).

4. The generalized reciprocity formula. The identity (3.4) implies a good

deal more than (1.2). For example, for x = 0, we get

while if we use the constant term in (3.5), we find that

(42) i v ± + iyJL.i±!

Again if we multiply by x and let x —» oo, we get
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(4.3) 1 ^ ,

1
ζ-1 1 η-1 1

More generally, expanding (3.4) in descending powers of x, we have

( 1 < r < h + k-l)
hk

, - l ( r . l
A*

By continuing the expansion of (3.5) we can also show that

k- 1 ) .

* Σ * Σ (r > 1 )

is a polynomial in A, λ, but the explicit expression seems complicated. A more

interesting result can be obtained as follows. First we divide both sides of

(3.4) by x — 1 so that the left member becomes

I τ _±_ l_l M + 1 T - 2 - I- -
k Ϋ ζ h _ l \ x - ζ x - l ) h ^ η k _ λ \ x - η x - l

TΣ
ζ 1

+ —
h + k-2

2MU-1)

by (4.2). We now put x = eι. Transposing the last term above to the right we

find that the right member has the expansion

1 h + k (m-l)βmίm- 2

where the Bm are the Bernoulli numbers. In the left member we put

m=o

tm

where the Hm(ζ) are the so-called 'Έulerian numbers"; we thus get
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(4.6) IΣ!1Σ,—HM~1) ' - ' " - Λ"('"' )

Dut by [3, formula (6.6)], for p odd > 1,

— Σ P-^7h = sp(h> *>

where [ l ]

r ( m o d / c ) ^ A ; / X k J

and ^-(Λ;) is the Bernoulli function Thus the coefficient of t?'1 /(p — l ) ! in

(4.6) is

(4.7) 1
P

ιsp{k, h)\ ,

while the corresponding coefficient in (4.5) is

(4.8) . 1 . . . . (Bh + Bk)P" + ^ S p + ι

Hence equating (4.7) and (4.8) we get Apostol's formula [ 1, Theorem 1]:

(p + 1) \hkPsp (h, k) + khPsp{k, h)\ = {Bh + Bk)P+ι + p δ p + ι

f o r p o d d > 1 . N o t e t h a t sx(h, k ) = s " ( A , k ) .
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