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EDWARD R. FADELL

INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex M' is termed an unessential

identifier for M if the natural projections from M onto the factor complex M/M'

induce isomorphisms-onto on the homology level (see [1, §1.2]). The present

paper is a continuation and improvement of certain results obtained by Rado' and

Reichelderfer (see [1] and [3]) concerning unessential identifiers for the

singular complex R of Rado' (see [1, § 0.1]). We shall make use of the results,

terminology, and notation in [1] and [3] with one exception. Because of a con-

flict in notation in [1] and [3], we shall use the notation η for the homomor-

phisms

η :CS-*CR,
ip p p »

defined as the trivial homomorphism for p < 0, and for p > 0 as follows:

ηp(d0, *•• f dp9 T ) = (c? O j ••• > d p , T )

(see [1, §0.3]).

0.2. The principal results of the present paper may be described as fol-
lows. Let N (σp βp ) denote the nucleus of the product homomorphism

°pβp ••Cp^Cp

THEOREM. The system { N (σ_ β Λ ) } is an unessential identifier for R.

Furthermore, for each p we have
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where { Δ } and {Γ } are the largest unessential identifiers for R obtained by

Reichelderfer [3, §3.6] and Rado'[ 1, §4 .7] , respectively. Thus {Λ(σ βR)i

is the largest unessential identifier presently known for R and imposes all the

classical identifications in /?.

Let N ( β ) denote the nucleus of the barycentric homomorphism

THEOREM. The system \ Λ ( β ) \ is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg

complex S the result corresponding to that of Reichelderfer for the Rado' complex

R (see [3, §3.2]).

I. P R E L I M I N A R I E S

1.1. Let v0, ••• , vp denote p + 1 points in Hubert space E^. The bary-

center b = b (i>0, , vp ) of these points is given by

b = (v0 + + Vp )/ (p + 1 ) .

The following lemmas are easily verified.

1.2. LEMMA. Let Vj (j = 0, , p) denote p + 1 points in £oo, and

P

;=o

where μ. is real for j - 0, * , p. Then

P P μ, P P μ, P

7 = 0 /=/ ' + ι /=o /=/ ^ + L /=o

1.3. LEMMA. Let VJ (7 = 0 , ••• , p ) denote p + 1 points in £00, α/w/

P

7=0

ίίΛ μ. (7 = 0, , p) reaZ a/ιc? satisfying
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μ 0 ϊ- ιι

ι> >ιιp >

Then

x =

7=0

with

(/ + 1) (μ - μ. + ι ) /or / = 0, , p - 1 (provided p - 1 > 0) ,

λ p = (p + l ) μ p ,

and

P P

Σ λ/ = Σ *V '
7=0 7=o

1 4 As in [ l ] , let rf0, dlf d2, ••• denote the sequence of points (1, 0, 0,

0, ), (0, 1, 0, 0, ), (0, 0, 1, 0, ), in £«,. For integers p, q such

that p > 0, 0 < q < p + l, the homomorphism

in the formal complex K of £oo is defined by the relation

vOt ••• f Vp) for q = 0,

vq, . . . ,

for q=*

for 1 < (7 < p,

1.5. For p > 0, let τp denote an element of Tp0 (see [3, §1.9] ) , and let

v ιo> # ip ) denote the permutation of 0, , p which gives rise to Tp. Then

we let sgn Tp denote the sign of the permutation (iQ 9 , ip ): i.e , sgn Tp is

+ 1 or - 1 according as an even or odd number of transpositions is required to

obtain ( i 0 , ••• , ip).

The following lemmas are then obvious.

1.6. LEMMA. For p > 0 and τ

p + ι £ Tp+ι0t there exists a unique πp E TpOf
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and a unique q% 0 < q < p + 1, such that

1.7. LEMMA, for p > 0, Ze£ £p+i denote the set of ordered pairs (q, πp)9

L ^ S P + l* 7 7 /?^ ^po Jhere exists a biunique correspondence

ζ :
p + i

such that

1.8. Let

denote a homomorphism in K such that

Ap (c?o * * * dp ) = i (WQ9 ••• 9 Wq )

Then [Ap] will denote the usual affine mapping from the convex hull \dQ9 9dq\

of the points d09 , dq onto the convex hull | w09 - , Wq \ of the points

wQ9 , Wq such that [Ap ] (cί, ) = M J for i = 0, , q.

1.9. Let j8 denote the barycentric homomorphism in R9 and p^ the bary-

centric homotopy operator in R of Reichelderfer ( s e e [ 3 , § 2 . 1 ] ) . The bary-

centric homomorphism

in S may be given by

S : Cs

P

 U

P

βp-σ

P

βPηP ( s e e [ 2 , § 3 . 7 ] ) .
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The corresponding homotopy operator

P*p Cp

is given by

V

1.10. Employing the structure theorems for β^9 p^p (see [3, § 2 . 2 ] ) we

obtain the following:

LEMMA. For p > 0,

ό p 0 τ p ] ) s ,

0, ...,rfp, T)s = Σ, Σ
A=o rpeTpk

Proof. We have

do,-.',dp,T)R

09 ••• 9 dp), T)
T p 0

A=O T p €

P
Σ, Σ, ( ~ 1 ) A f P ^ W o . • - . ψ + i. T[bpkτp])s
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1.11. In [ 2 ] , Rado' makes use of the following identities which we state in

terms of p^ :

P*P ηP °P = °P + i P*P' - o o < p < o o ,P*P ηP °P °P + i P*P'

p p p p p βp

R, - o o < P < o c .

The proof of (1) may be modeled after the proof for the corresponding identity

stated in terms of the classical homotopy operator p^ (see [2, § 3 . 5 ] ) . From

identities (1) and (2), we have

4 σp = σp + ι

for all integers p.

1.12. Let Pi and P2 denote the following propositions:

Pi Let c denote a p-chain of S such that

βp

Then

ip CP - °

P2 Let c denote a p-chain of R such that

Then

THEOREM. Pt = P2> ^ e > ̂ 1 i 5 ί Γ w e if and only if P2 is true.

Proof. Assume Plt and let c denote a p-chain of R such that
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Then via identity (3) we have

R

°P

Therefore

But via identity (5), we have

and P 2 follows.

= 0.

Now assume P29 and let c denote a p-chain of S such that

βS

p 4 - 0.

Then since

we have

Therefore, via P2, we have

But via (5) and the fact that σ 7/ = 1, we have

CP = βpS+i P * P σ p ηp CP = β p + i P P C P

and Pi follows.

II. T H E P R O O F O F P t

2.1. We shall use throughout this section the notation Ί for the p-cell
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(dQ9 ••• > dp, T) when there is little chance for ambiguity. Under this con-

vention a chain c having the representation

n
cp ~ Z^ λy(cf0, , dp, Ίj )

may be written Σ y = i λy 7y. Thus Ί represents both a transformation from the

convex hull | rf0, , dp \ into the topological space X and the p-cell {dQ9 9

2.2. For p < 0, the proposition P t is trivial. For p = 0, ί\ is also trivial.

For since β** = 1 and σ η = 1, we have

implying

whence clearly

* PS cS=0.
I r * 0 0

Now, take a fixed p > 1. Let

denote a p-chain of S such that

Via §1.10,

;=1 τ p € T p 0

Let E denote the set of ordered pairs (/, τp)f 1 < / < n, rp 6 Tp0. Then
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(2) βS

p c S = Σ, λ ; S 8 n TP Γ/f°P + i ho τp}-

(/.Tp)€E

We now define a binary relation "= " on E as follows:

if and only if Tj[Op + l bp0 τp], Tj*[Op + ι bp0 τp] are identical p-cells. Then

" = " as defined is obviously a true equivalence relation and induces a parti-

tioning of E into nonempty, mutually disjoint sets Es (s = 1, , t) with

t

E = U £ s .

Therefore, via (2), we have

Σ Σ λ7

Take 1 < 5 < s' < t. Then for (/, Tp) G £ 5 , (/', Tp ) G Es, , the p-cells

bp0 τpX 7y/[0p + i όp0 Tp] are distinct. Therefore, since

we must have for each s, 1 < s < ί,

(4) Σ /̂ S 8 n TP /̂'•Op + i bp0 τp] = 0,

and hence

(5) T λ

since all p-cells occuring in (4 ) are identical.

2.3. Again via § 1.10,
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= Σ £ Σ Σ
j = ί k=0 rp6Tpk Tp+xβ T

(-l)k sgn τp sgn

Applying the lemma of § 1.7, we obtain

(7)
P P + l

k = 0 q-0

sgn

Thus, to prove that

λ ; Tj[bpk rp] [ 0 p + 2

7 = 1 rpeTpk πp6Tp0

[Op+2

we are led to consider for a fixed k and q$

pression

<^p, 0 <_ qr < p + l , the ex-

Ykq = Σ Σ Σ λ/
7=1 rp €Tpk ττpeTp0

TP

Now to prove Pi we need only show that Y^q ~ 0 Therefore k and q will remain

fixed throughout the remainder of this section; and even though subsequent

definitions will depend upon k and q, they will not be displayed in the notation.

2.4. For

(see [3, §1,9]) there exists a unique permutation {nQ9

such that in < < ink Let

) of 0, , k

τp =

where /̂  = ίΠί for Z = 0, , k9 and j^ = î  for k + 1 < Z < p. Then there exists
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a unique permutation (m 0 , , mk ) of 0, , A, namely (τι0, , n^ )" 1, such

that

7 p = l~p(jmQ, . . . , j m k , p

Furthermore, let /4 (τ p ) denote the set of πp G 7p 0 defined as follows. For

πp = πp ("o> > Mp ) G Tp0

we have a unique set of integers Zo, ••• , Z ,̂ 0 < Zo < < l^ <p such that

(WZO> ••• > ulfς ) is a permutation of 0, , k. Set πp G A (τp) if and only if

mo = u l 0 > *••

2.5. Let i5 denote the set of ordered pairs (τp, πp), τp £ 7p0, 77p G /4 (T^),

and S ' the set of ordered pairs (τp9 πp), τp G Γp^, 77p G TpQ. We define a

mapping

γ:B — • β '

as follows:

where τp-τp and 77p = τrp One shows with little difficulty that γ is biunique.

Therefore

/=ι Tp e TpQ τrp e A{τp)

[ 0 p + 2

2 . 6 . L e t A = A (τp(Q9 9 p)) F o r τp E Tp0 w e d e f i n e

as follows. For πp (u0, , up ) E /4, there exist integers Zo, , lk ,

0 < Zo < < I, < p, such that u, = 0, , u, = k. Define

/ πp = πp (wo, , Up
p

as follows. Let
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τp = τp(j0, . . . , jp) and τp - τp{jmo, . . . , ; m f c , j k + ι, , / p ) ,

where (mo> 5 ra^ ) is a permutation of 0, , k. Set u[ = m09 , α/̂ . = m^,

and M/= UΓ for r ^ Zo, , Ẑ  Here again it is easy to show that fr is bi-

unique. We have then

r p € T p 0 τrp

and hence

t

Σ Σ Σ
= i 77p eA (/, τp)eEs

[Op+2 ^p + 1

(see §2.2).

2.7. LEMMA. TαA e πp{u0, ••• , wp) € Tp0 αwcf Zeί

α = [ 0 p + 2 6 p + 1 0 q r ^ πp(p + l ) p +

Lei

p+i

^ = Σ ^ ί//-
; = o

p+1

ftjίl Q* / = 0, > p + 1, and y M

7=0

denote a point of \d0, ,

7=0
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where

( i ) aj > 0, j = 0, , p + 1

( i i ) α ; =
7=0

( H i ) aUQ >aUί > ••• > aUp;

Tp0 and

au0* ••• >aup> independent of πp; i.e., if πp = πp{u,Q, 9Up)S

<X' = [Op+2

p + l

/=o

Proof. We consider only the case 1 < q < p since the fringe cases ςr = 0,

p +* 1 follow in a completely analogous manner* In case 1 < q < p we have

where

0, ••• , <7 - 1, wq

Therefore,

P+i

;=0

p + l p + l

Σ

(see §1.2). Let
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α p + l = 2 ^ 'Ί 7 > α "r = 2 ^ 7 7 f θ Γ Γ = 0, . , ςr - 1
/ = 9 ' + 1 /=r / + 1

and

f o Γ Γ = ^'

Clearly, aU(j9 ••• , α α , ctp + i are independent of πp in the sense of ( i v ) , and
au0 > > α u Furthermore, αy > 0 (/' = 0, , p -+ 1) , and

p+l p + i

7=0 7=o

Also,

ς-i P p + i

7=0 j=q 7=0

and the lemma follows.

2.8. LEMMA. Take {j, rp) and (/', Tp) G £ s (see §2.2), 1 < s < t, and

π* β A. Then

jlhpk p̂J LOp + 2

j'VOpk Tp J LUp+2

Proof. Since (/', ^ ί , (/^ ^ ) lie in Es, we have

Let

πP = ^τp πp = πp(uQ> * *# » u p ί> ^p ~ fτ£ πp = ^p (uό> * * * up ) >
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Furthermore, let

τp = rp (£ 0, , ip), τp = τp (; 0 , . , jp ) ,

-T

We have permutations (m 0 , , mjc)9 ( n 0 , , τ%k) of 0, , h such that

"' ' jmk

Take an arbitrary point of | c?0, , dp+γ j , say

p+ι p + i

/=0 / =o

Then via the lemma of § 2,7 we have

p+ι

and

7=o

p+l p+l

α'(Λ ) = 2 2 α7* ̂ / w i t h «/ > °> 22 α7^ = 1> « ^ > ' > α ί j >
7=o 7=0

with

au0 = α u g » ••• » ̂ lip = «Up a n d α p + ι = « p + ι .

Now

y = f dj , , cίy , b{dj , , c?y ), , b(dj 9 , dj )] .

Hence
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γ a ( x ) = α 0 dj + ••• + <*jςdj + a k + ι b ( d j , , dj ) + . . . +

α " 0 dim0

dp + x b{dj , ••• , dj )

aD +1 b(dj , • • • , < / / )
f ' o P

+ cip + i b (di Q , 9 d(p ) .

Now take integers Zo> •••>/&» 0 < l0 < <lk < P, such that (u/ Q , , mk

i s a permutation of 0, , k. Since πp ^ ^ ( 7p ), we have m 0 =" w/Q, •••,/??£ = w/̂

Hence α m Q > ••• > amjc.

In a similar fashion we obtain

γ'a'(x) = α^Q cfj/ + . . . + α ^ rf, / + α ^ + ι 6 (cf^ , , rf, / ) +

with α^Q > > α,JΛ and if ZQ, , tf, 0 < ZQ < < lζ < P, are integers such

that {ufζ f juf') is a permutation of 0, , k, we have

Applying §1.3, we get

k
a d d ]m0 di0 +

Z=o

with

y z = ( Z + l ) ( α m / ~ α m / + 1 ) for Z = 0, . . , k - 1,
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γk = (k + 1 ) a m k ,

and

k k

Σ yι = Σ Qmι
/=o Z=o

Similarly,

* /=o ° ι

with

and

A: k

/=0 /=0

However, since

* p ' p *

we have

lo ^ lo> •• 9 lk = lk a n d u r = uf f o r r £ lQ9 •• f lk.

Therefore, o u , = o^Λ > » α u; — ^u/' » a n ( ^ hence

0 0 k k

= aή0> "

T h u s

y r = y * for r = 0, ••• , k.

Furthermore,
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aur - aUr f°Γ τ ^ ô 9 9 Ifo 9 and ap+ι = αp

Therefore,

k p

γa(x) = £ y / b(di0> ••• »̂ iz )+ Σ α / + 1

. . . d')+ Vs

9 9 ** J I £m*4

with

k p p + 1

/=o l-k ί=o

Let

/=o

with

Λy = γj for / = 0 9 9 k — 1,

A/ = α

7 + 1 f°Γ / = A + 1, 5 p.

Clearly,

P

hj > 0 ( = 0, 9 p ), and ]|P Ay = 1,

/=o

Then

P

γa(x) = 21 hl
/=o

and
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P
y'oc'U) = £ hι b(diζ9 . . . , dif) = [0p + ι

Therefore, since

we have

Ίj γa(x) - 7 7 ' y ' α ' ( * ) .

Since Λ; is arbitrary in | dQ9 , rfp + i | , our lemma follows.

2.9. LEMMA. For any s, 1 < s < t9 and π£ £ A,

Λj sgn Tp sgn / ITp = u

(j,τp)βEs

 P

Proof. Since

sgn -^ sgn / τ TΓp = sgn 7p sgn Πp ,

we have

2 2 λ ; sgn -Tp sgn fτ πp = sgn π* ^ λy sgn -Tp = 0
(/, rp)6Es

 P (j,τp)6Es

via (5) of §2.2.

2.10. Employing §§2.8, 2.9, and (11) of §2.6, we see that Ykq = 0, and

hence Px follows. Let us note also that since Pi s P2$ P2 also is valid.

HI. R E S U L T S

3.1. In [ l , § 4 . 2 ] , Rado'has established a lemma, which we state here for

the barycentric homotopy operator p^ .

LEMMA. Let \Gp\ be an identifier for R, such that the following conditions

hold:

( i ) Gp DA* (see [ 1 , § 3 . 4 ] ) ,
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( i i ) cR G Gp implies that σ βR cR = 0,

(ii i) cR G Gp implies that pR

p c
R G Gp + ι .

Then 1 Gp \ is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding

lemma as given by Rado'with p (classical homotopy operator) replacing £>

Since

σ a*
PPP

is a chain mapping, the system {/V(σ β )} of nuclei of the homomorphisms

σ β is an identifier for/? (see [1 , § 1.2])• Furthermore,

N^pβp)^Ap "ince °pβp

R = β$

p°p

(see §1.11). Applying P2 directly, we see that N (σ βR) satisfies ( i i i ) of

the foregoing lemma. Therefore, since N (σ β ) is the largest identifier,

satisfying ( i i ) , we have the following maximum result yielded by the same

lemma:

THEOREM. The system {N (σ βR)} is an unessential identifier for R.

3 2. In order to compare our results with those of Rado'[l] and Reichelderfer

[3] let us first note that

kσpβ«)-N{σpβ*),

where N (σp β£) is the division hull of N {σ βR), since CR is a free Abelian

group. Then since

(see [3, §3.6]) we have

(see [1, §4.71).
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The writer has been unable to determine as yet whether N (σ β ) is ef-

fectively larger than either Δ or Γ

3 3. The following lemma (see [ l , §4.1]) is immediate from the fact that

satisfies the well-known "homotopy identity,"
+

LEMMA. Let {Gp\ be an identifier for S such that the following conditions

hold:

( i ) Cp € G implies that βS cS = 0,

( i i ) cp £ G

P implies that p*p c* e Gp + i .

Then { Gp \ is an unessential identifier for S.

The system of nuclei \N(β )} clearly is an identifier for S since β is a

chain mapping. Therefore, applying Pi we obtain the maximum result of the fore-

going lemma.

THEOREM. The system \N(β )} is an unessential identifier for S.
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