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INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex #* is termed an unessential
identifier for ¥ if the natural projections from ¥ onto the factor complex M/M*
induce isomorphisms-onto on the homology level (see [1, §1.2]). The present
paper is a continuation and improvement of certain results obtained by Rado” and
Reichelderfer (see [1] and [3]) concerning unessential identifiers for the
singular complex R of Radd (see [1, §0.1]). We shall make use of the results,
terminology, and notation in [1] and [3] with one exception. Because of a con-
flict in notation in [1] and [3], we shall use the notation My for the homomor-

phisms
Mp C: - 615 ’
defined as the trivial homomorphism for p < 0, and for p > 0 as follows:
Mp(dos ++= 1 dpy T)° = (doy 2+ dp, TIF

(see [1, $0.31).

0.2. The principal results of the present paper may be described as fol-
lows. Let N (o, B:,z) denote the nucleus of the product homomorphism

R . R S
%, 'BP : Cp — CP .
THEOREM. The system { N (op BPR)} is an unessential identifier for R.

Furthermore, for each p we have

R AR - T~R
N(apBP)D Ap D Fp ,
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where {&R} and {fR} are the largest unessential identifiers for R obtained by
Reichelderfer [3, §P3.6] and Radd [1, $4.7], respectively. Thus {N(ap B§ )
is the largest unessential identifier presently known for R and imposes all the

classical identifications in R.

Let N(BS) denote the nucleus of the barycentric homomorphism

S.rS S
,Bp : Cp — CP .
THEOREM. The system {N ([3;)} is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg

complex S the result corresponding to that of Reichelderfer for the Radd” complex
R (see[3, $3.21).
I. PRELIMINARIES

1.1. Let vy, «++, vp denote p + 1 points in Hilbert space Ew. The bary-

center b = b(vg, +++, vp) of these points is given by
b=(vg+e++vp)/(p+1).
The following lemmas are easily verified.

1.2, LEMMA. Letv;(j=0, .-, p) denote p + 1 points in Ex, and

P
x = %ﬂ]—b(vos ""'Uj);
]:

where B isreal for j=0, ++«, p. Then

SRR .
x = —_ v;, wit = 7
bl = S B j=0§ I+ 1 g% 7

1.3. LEMMA. Let v; (j=0, «-+, p) denote p + 1 points in Ew, and

P
x = z BiYjs
] =0

with ’ (j=0,+++,p) real and satisfying
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Bo 2 By 2o 2y 2 0.

Then

p
X = Z )\]‘b(vo--- v]'),
j=o0
with

A= G+ D)= pyy,) for j=0,+ee, p=1(provided p~1 > 0),

Ap = (p+1)ﬂp7

and

. Ai:

p p
Ky -
j=0 j=o

1.4. As in [1], let d,, d,, d;, +++ denote the sequence of points (1, 0, 0,
0,+-+), (0,1,0,0,..), (0,0,1,0, ¢+ ), e+« in Eoe. For integers p, g such
thatp > 0, 0 < ¢ < p + 1, the homomorphism

9up Cp-—leﬂ
in the formal complex K of E,, is defined by the relation
(dp+1y vgs =2+ 5 vp) for ¢=0,
q*p(UO’ R} vp)= (=1)9(vgy + =+ VUg-1» dp+l’ Vgs ***» vp) for 1 <q<p,

(=1)P* (vgy eeey vp, dp+1) for g=p+1.

1.5. For p > 0, let 7, denote an element of Tp, (see [3, $1.91), and let

(igy *++, i ) denote the permutation of 0, «++ , p which gives rise to 7,. Then
P P p g

we let sgn 7, denote the sign of the permutation (ig, +++, ip): i.e., sgn 7, is

+1 or =1 according as an even or odd number of transpositions is required to

obtain (igy s+« ip).

The following lemmas are then obvious.

1.6. LEMMA, Forp > 0 and To+1 € Tp+1 o» there exists a unique mpy € Tpo,
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and a unique q, 0 < g < p + 1, such that

(doy e dy,,

7;)+l(d0’...’d )=q*P7TP(p+1) ).

pti pti

1.7. LEMMA. For p > 0, let E, 4, denote the set of ordered pairs (q, mp),
0<qg<p+1,m € Ipo. There exists a biunique correspondence

i Tpuro —Eps,y

with
ETh4y = (@ 7)),
such that
Tp+l(d°’ ey dp+1) = q*pﬂ’p(P + 1)p+l(d0’ ey dp+l)
and
+g+1
Sgn 7,4, = (=1)P79% sgn e
1.8. Let

hp : Cp —
denote a homomorphism in K such that
hp(do cee dp) =+ (wo, eeey wq).

Then [hp] will denote the usual affine mapping from the convex hull |dg,+ -+, dg|

of the points dg, +++, dg onto the convex hull |wg, <+, wg| of the points

Woy =+ + 5 wg such that [A,] (d;) =w; for i=0, .-+, q.

1.9. Let B: denote the barycentric homomorphism in R, and pfp the bary-
centric homotopy operator in R of Reichelderfer (see [3, $2.1]1). The bary-
centric homomorphism

S.rS S
BP : Cp — Cp
in S may be given by

B: =0, B;} Mp (see [2, §$3.71).
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The corresponding homotopy operator

S S S
p*p C —_)Cp+l

is given by

S R
Pip = %41 Pup Mp

1.10. Employing the structure theorems for Bg, pfp (see [3, $2.21) we

obtain the following:

LEmmA. Forp > 0,

By(doy +oesdp, TV = 32 sgn Tp(dos +++ 5 dp, T[Op+y bpo 1%,

Tp € Tpo

pop(dos e s dp, T)° = z S (=1 sgn 7, (doy v 5 dpary Tlopr D5
=0 TpéTpk

Proof. We have

R R
0, BR(dg, +ev s dp, T)

B:(dos MR dp: T)S

I

Gp 2 (0p+1 bpo 7b(do, tecy dp), T)R

7p € Tpo
= 2 sen pldoseensdp, T10p4 bpo 1%,

and

S R
pfp(do, veesdp, T =0, p*p(d yoresdy, T)

p+1z 3 (bpk B(doy+ev s dp), DI

k=0 T, € Tp

P
= Z: Z (—l)k sgn 7@(110, cey dp+1, T[bpk 7i7])s-

k=0 T, € Tpk
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1.11. In [2], Rado’ makes use of the following identities which we state in

R .

terms ofp*p :
R R
(1) 0p+l p*p 17p ap = CTp+1 p*p’

R _ R
(2) o, B mp 0y =0, B

- <p < o,

—x <p<w.

The proof of (1) may be modeled after the proof for the corresponding identity
stated in terms of the classical homotopy operator pg (see [2, $3.5]1). From

identities (1) and (2), we have

(3) B:”p=op Bf,

R
Pep %p = Tp+1 Pap

S S R R
(5) Bp+l Pip %9 = %p+1 Pp+1 Pup

for all integers p.
1.12. Let P, and P, denote the following propositions:

Py, Let cg denote a p-chain of S such that

Then

s s S_
Bp+1 Pp ©p = 0.

P,. Let c}f denote a p-chain of R such that

Then

R R R _
Up+l p+lp*pcp—~00

THEOREM. P, = P,;i.e., Py is true if and only if P, is true.

Proof. Assume P,, and let c: denote a p-chain of R such that
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Then via identity (3) we have

Therefore

But via identity (5), we have

R R _R_
%p+1 Bpar Pup & = 05

and P, follows.

Now assume P,, and let c: denote a p-chain of S such that

s s
=0,
Bp <p
Then since
s R
Bp =9, By mps

we have
R s _
% 'BP 1 p 0.
Therefore, via P,, we have
R R s _
Tp+1 Bpay Pup Mp p = 0+
But via (5) and the fact that o, np =1, we have

R R S _aS S S_ a5 5 .S_
9541 Bprr Pup Mp €p = Bpur Pup %p Mp €5 = Bpay Pip 9 0,

and P, follows.

II. THE PROOF OF P,

2.1. We shall use throughout this section the notation 7 for the p-cell
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(dgs =<+ 5 dp, T)5 when there is little chance for ambiguity. Under this con-

vention a chain c: having the representation

n
S
Cp = Z )\](do, e ’dp: T])S
j=t

may be written Z7=1 Aj Tj. Thus T represents both a transformaticn from the
convex hull |dg, +++, dp| into the topological space X and the p-cell (dgy+-+,
dp, T)5.

D

2.2. For p < 0, the proposition P, is trivial. For p = 0, P, is also trivial.

For since B(’f =land o n =1, we have

0
implying

whence clearly
N S
By pfo ¢y = 0.

Now, take a fixedp > 1. Let

=X NT; (Aj # 0)

j=1

denote a p-chain of S such that

Via $1.10,

n
(1) BIS) cs: 2 /\jsgn'@]}[Opi-l bPO Tp]c
j=1 Tp€Tpg

Let £ denote the set of ordered pairs (j, 7,), 1 <j < n, 7 € Tpo. Then
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(2) ,3: c: = Z )\j sgn ’Tp T]'[Op+1 bpo TP]‘
(j,75)€E

We now define a binary relation ““="’ on £ as follows:
Gs ) = (j5 73)

if and only if T;[0p+1 bpo 71, Tj7[Op4y bpo 751 are identical p-cells. Then
““=” as defined is obviously a true equivalence relation and induces a parti-

tioning of £ into nonempty, mutually disjoint sets Eg (s =1, «++, ¢) with
¢
E= UE.

s=1

Therefore, via (2), we have

(3) Bf) Cs =2 2 Aj sgn 7 Tj[0p 41 bpo 1.
s=1 (j, p) € Eg

Take 1 <'s < s’ <t Then for (j, Tp) € Es, (j5 1) € Es», the p-cells
T]'[Op+l bpo '7;,], Tj»[0p+1 bpo TP'] are distinct, Therefore, since

S S
=0
p °p ’

we must have for each s, 1 <s <¢,

(4) > Ajsgn B Tj[0p41 bpo 1 =0,
(j, Tp)EEg
and hence
(5) > Ajsgn 7 =0,
(j, Tp) EE

since all p-cells occuring in (4) are identical.

2.3. Again via §1.10,
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n P
(6) B, 0%, o= 2 >>

j=L k=0 1, €Tpp Tp+1€ Tp+1g

(~1)* sgn T sgn Toay A Tilbpe 71 (0545 bpuy o741 1e
Applying the lemma of § 1.7, we obtain

ptt n
(7) B:H pfp c; = Z Z (=1)Pta+k+1 Z Z Z Aj sgn Tp
=0

k=0 q j=t Tp €Tpk Tp € Tpg

sgn mp Tilbpk 751 [0p42 bp+10 9up ap(p+ Dp+1l },
Thus, to prove that
S S S
Bp+i Pipcp = 0,

we are led to consider for a fixed k and ¢, 0 < k < p, 0 < g < p+1, the ex-

pression
n

(8) Yeg= 3 Aj sgn 7, sgn mp Ti[bpr 71
j=t Tp €Tpy 7 € Tpg

[0p+2 bp+1 094p ap (p+ 1psy 1.

Now to prove P; we need only show that Y;4 = 0. Therefore & and g will remain
fixed throughout the remainder of this section; and even though subsequent
definitions will depend upon k& and g, they will not be displayed in the notation.

2.40 For
T = 7i1(’:09""ip) € Tpo

(see [3, $1.9]) there exists a unique permutation (ng, +++, ng) of 0, «vv, k
such that ing <o+e <inge Let

7_b = ?p(jo,...,]'p),

where j, =ip; for [ =0, «+, k, and jy =i, for k+1 < 1< p. Then there exists
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a unique permutation (mg, +++ , mg ) of Oy +++ , k, namely (ng, +++, ng )", such
that

’jp)'

= 7i7(].mo' cov s Jmps Jper?
Furthermore, let A(7,) denote the set of m, € T,, defined as follows. For

mp = np(uo, sy up) S Tpo

we have a unique set of integers lg, <2+, 1, 0 < [y <-++ <[, <p such that
(ulo’ e+, u ) is a permutation of 0, +++, k. Set mp EA(7;,) if and only if

m0=ulo, cee mk=u1k,

2.5, Let B denote the set of ordered pairs (7;,, p ), T € Tpo’ mp € A (7b),
and B’ the set of ordered pairs (7;,', rr};), ’rp' € Tpk’ n}; € Tpo- We define a

mapping
y:B —B’
as follows:
Y(Tps mp) = (75, mp

, —_—

where 7= 7, and mp = mp. One shows with little difficulty that y is biunique.
Therefore

2 Aj sgn T, sgn mp Tl-[bpk?p]

[0p+2 bp+10 9.p mp(p+ 1)p41 1.
2.6, Let 4 =A(7i’(0’ ceeyp)h For7;, € Tpo we define

fT A —A(7)
P

as follows. For np(uo, ey up) € A, there exist integers [y, +++, lk’
0<lg<eee<l, <p, such that uy, =0, 000, u, = k. Define

fo 7o = 7 s o5 )

as follows. Let
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?p=’7;,(jo,...,jp) and 7, = E(imo""’jmk’ fk+1”"’jp)'
where (mgy « ¢« ”’k) is a permutation of 0, -+« , k. Set u[o =Mgy e ul'k =my,

and u=u, for r # ly, +++, l,. Here again it is easy to show that f_ is bi-
P
unique. We have then

n
(10) qu= > 2. )jsgn 7 sgn f_rp mp TjLbpk 7]
j=1 T7p€Tpg M EA

[0p+2 bp+1o 9yp f.rp mp(p+1)p+1],

and hence

t
(11) qu=z: Z )\jsgn};,sgnf,’_pﬂp Tf[bPk 7TP]
s=1 m €A (j, 7p) €EEg

[0p+2 bp+l 09p f'rp ”p(P + 1)p+1]

(see $2.2).

2.7. LEMMA. Take mp(ugy o=+ 5 up) € Tpo and let

A = [0p+2 bp+10q*p "p(P+l)p+1]-

Let
pti
x=2 #djs
j=o
with
p+t
FJZ.O, j=0:""[7+1, and z: p,j-_— 1,
j=o

denote a point of |dgs +++ 5 dp4y |s Then

ptt

a(x) = Z aj d]',

j=o
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where

(i) aj 20, j=0,---,p+1;

p+l
(ii) 2 aj = 1;
]':
(iii) Gug 2y, > o002 Gy

(iv) Qugs *** 5@y, , Gp+y aTE independent of mp; i.e., if np = ﬂ};(u(,,---,ul;)e

Tpo and
o= [Op+2 bp+1o 9xp g (p + 1)p+l]’
then
pt+1
W(x) = 2~ afd;
j=o
with

’ ’ ’
Gug = Guf»*** 2 Gup = Gugs Gpar = Gpey

Proof. We consider only the case 1 < g < p since the fringe cases ¢ =0,
p +'1 follow in a completely analogous manner. In case 1 < g < p we have

o = [b(wo)b(wo, wl) e b(wos ey wp+1)],

where

wy=dy;,, l=0,c00 g~ wg=dpsy,wy=dy, ;, I=q+1+ee,p+1.

Therefore,
pt+t ptt [p+1 #l
O((x)=2uib(w0,---,wj)=2 Z —|wj
j=o j=o \ 15 I+1

(see $1.2). Let
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pt1

By P*L o,
ap+y = -—,au=2' for r=0,+4,9g-1
I= l+1 A |
and
pt+il "Ll
ay, = for r=gq, «+e, p.

l=r+1 L+

Clearly, a, y+--, Quys Gp+y are independent of 7, in the sense of (iv), and
Qug 2 *2v > ayy. Furthermore, aj > 0 (j=0, <<+, p+1), and

pti ptl
Z aj = Z pi=1.
Jj=0 ]j=o

Also,

p+i

=2 9dj,
j=0

q-1 P
a(x) = Z aujdu; + apr1dpr + Z ay; du,
j=0 I=q9
and the lemma follows.

2.8. LEMMA. Take (j, 7,) and (j5 ) € Es (see $2.2), 1 <s <t, and
np € A. Then

T][bpk -7;] [0p+2 bp+lo q*P pr Tr;(p + 1)P+1]

=T lbpk 7" 100042 bp4r 0 9up frh mp(p+1)parl.

Proof. Since (j, 1), (j% %) lie in Es, we have

Tj[0p+1 bpo 1= Tj+ L0ps1 bpo 7571,
Let

”p=f'rp ap=mp(ugy +++ 5 up), 1r1;=f-,-5 ap=mp (ugy <+ sup),

U= [0p+2 bp+1 0 q*p ﬂp(P + 1)p+1]’ o= [0p+2 bp+1 ) q*p ﬂ};(P + 1)p+1],

y = [bpk —7—;,], and y’ = [bpk "Fp']
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Furthermore, let
B = pliooeesiph B=Tplig sy,

Ty = Ty (igs oo sip)y T = Ty (g vees ]";).

We have permutations (mgy *++ , mg), (ngy +++ 5 ng) of 0, +++ , & such that
B = B Umgs -+ mps gass o+ )
7i;___ ’@'(j';o"°"j"‘k’ j1:+1’ ..-,j;)

Take an arbitrary point of |dg, +++ 5 dp+, |, say

ptt p+1
x=2p.].d]. yj20,2uj=l.
j=0 ]=0

Then via the lemma of $ 2.7 we have

pt+1 pt1
C((x):Z a]d] with a]'ZO, zaj=1,au0_>_..._>_a,up,
j=o j=o
and
ptt p+t
«(x)= 3 afd; with af >0, 3 af =1, 01:62"'?_‘11:{, ,
j=o j=o
with
a, =aurss++sa, =a,’ and a = a}
ug u§ » Qup up p+1 p+ie
Now

y = [dfo LR | djk’ b(djo, R} djk)’ A ] b(djo’ e d]p)]-

Hence
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you(x) = a4 dj +--v+akd +ag,, b(djo, ‘."djp)+...+

ap+1 b(d]o, MR ] d]p)

=0am, dfmo trectamy dfmk Ty b(djo’ ot ’djk)+...+
ap+1 b(djoy"',djp)
= m, djmo+'“+amk djmk+ak+lb(djmo’ ]mk)+“'+

ap+y b(dj,,, ""’d]mk djk“,---,djp)

=apmy dig+eoctapm, dip +a,, b(d;

,o--,dik)+.oc
+ap+1 b(dioa"',dip)-

Now take integers lgye«eyl, 0 < Iy <e++<lp < p, such that (ulo’”"ulk)
is a permutation of 0, -+, k. Since p € A (7;,), we have m = Ulgs === sy = Ul

Hence Amg 2+ 2 Amy, .
In a similar fashion we obtain

y’O('(x)=a,fo a’iof +eeetan, di;c +ak'+l b(dig ,--.,di]:)+--~

+agey bldigseeerdig),

with af > «ee>ay, 5 and if [§y++o, I, 0 < 1§ <+ <I{ < p, are integers such
nyg 2 2 Qny, 0 k 0 kS P

that (u[s sesey ul',:) is a permutation of 0, «++, k, we have

’ ’
n0=u16 ,...’nkr—uli:.

Applying § 1.3, we get

L b(dig s eee s dip)

Amg dig +++* +am, d

IIME"

with

Y1=(l+1)(aml-aml+l) for [=0,+e0,k-1,
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yk = (k+l)amk N

and
k k
Z)’l"‘ 2 amy -
l=0 =
Similarly,
k
ny dif + e +an, dis = Z b(df,...,dil,)
with
yl’=(l+1)(a,{l -a,{lﬂ) for [=0,¢00,k~1,
= (k+1)a"k
and

k k
2 v[=2 .
l=0 l=0
However, since
p = frp ﬂ;’ "F; = f-rg ";’
we have

=l(',,-u,lk=l,: and u; =u; for r # lO""’lk'
Therefore, Guy = al:l’é s By = a,:l'kv , and hence
4 4
Amy = Gngs s Gmy = dp o

Thus

'yrz ‘yr’ for r=0,""k.

Furthermore,
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ay, = ay! for r £ lg, o0, 1, and apiy = agsy .

Therefore,

k P
yO((x)= Z ylb(diog“'adil)'i- za“,lb(dio""’dil)’
l=k

l=o0
k P
yrai(x)__:Zylb(dia’...,dil')+ a[+lb(di6,...,dil’),
=0 L=k
with
k p pt+1
2+t =2 9-=1
l=0 l=k =0
Let
y=2 hid
j=0
with
hj= Yj for j=0,+2,k-1,
b =¥k + 94y
hi=aj+x for j=k+1,«-4,p.
Clearly,
p
hi> 0 (j=0y+++,p), and Z hj = 1.
j=0
Then
pP
y o(x) = Z hl b(diO, cen, dil) = [0p+1 bpo 7;;](}’)

1=0

and
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P
}”C(’(x) = Z: hl b(dz.és M ] d‘l') = [0p+1 bpo 72)’](}’)-
l=0

Therefore, since

Tj[0p+1 bPO 7;;]()’)= Tj'[op-l»l bpo 7;)’]()’)’
we have
Tiya(x) = Tj y* o’ (x).
Since x is arbitrary in |dgs +++ , dp+1 |, our lemma follows.
2.9. LEMMA. Foranys,1 <s <t,and mp €4,
> Aj sgn T, sgn pr 7p = 0.
(j, mp)EES
Proof. Since

sgn 7, sgn f,rpn;;=sgn’rp sgn mp ,

we have
> Aj sgn 7, sgn f,rp mp = sgn mp > Ajsgn 7, =0
(j, 7pEE; (jymp)EES
via (5) of §2.2.

2.10. Employing §89.8, 2.9, and (11) of $2.6, we see that qu =0, and
hence P, follows. Let us note also that since P, = P,, P, also is valid,

ITII. REsuLTS

3.1. In [1, $4.2], Radd has established a lemma, which we state here for
the barycentric homotopy operator pfp .

LEmMA, Let {Gp} be an identifier for R, such that the following conditions
hold:

(i) Gp D A: (see [1, §3.41),
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(ii) c € Gp implies that % B =0,

P P

R oR
(iii) c, € Gp implies that p*P p € Gp+1 .

Then t Gp Y is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding

lemma as given by Rado”with p;{ (classical homotopy operator) replacing pfp.
Since
o BR :CR 5 ¢8
ptp P P

is a chain mapping, the system {N(o_RR)} of nuclei of the homomorphisms
%, B[If is an identifier for R (see [1, $1.2]). Furthermore,

R R _. R _ AS
N(ap BP)DAP since o, Bp = Bp 7,

(see $1.11). Applying P, directly, we see that N(op B ) satisfies (iii) of
the foregoing lemma. Therefore, since N(o BR) is the largest identifier,
satisfying (ii), we have the following maximum result yielded by the same

lemma:
THEOREM. The system {N(ap Blf)} is an unessential identifier for R.

3.2. In order to compare our results with those of Radd' [1] and Reichelderfer
[3] let us first note that

N R R
N(ap ,BP) = N(crp ,BP),

where ﬁ(op B;f) is the division hull of N(op ﬁzlf ), since C§ is a free Abelian
group. Then since

R R R R
N(op BP) D AP = N(Bp) + AP
(see [3, $3.6]) we have

R AR ~ 1R
N(UPBP)D Ap Drp

(see [1, $4.7]).
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The writer has been unable to determme as yet whether N (o Bg) is ef-

fectively larger than either AR or FR

3.3. The following lemma (see [1, $4.1]) is immediate from the fact that

pfp satisfies the well-known ‘‘homotopy identity,’’

s s S_ ;S
ap+1 *p +p*p-l\ap~ﬁp—1'

LemMmA. Let { Gy} be an identifier for S such that the following conditions

hold:

. N I . . S .S =
(i) cp GP implies that BP ¢y 0,

ii) cS€ cS €
(ii) cp Gp implies that p*p o Gp+1 .

Then 1 Gp} is an unessential identifier for S.

The system of nuclei {N(Bs)} clearly is an identifier for S since ﬁg is a

chain mapping. Therefore, applying P; we obtain the maximum result of the fore-

going lemma.

THEOREM. The system { N (Bg)} is an unessential identifier for S.
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