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1. Introduction. By the Neumann problem we mean the following boundary-

value problem: to determine the solution u(x, t) of the equation
(1.1) u,, (% ¢t) - ut(x, t) =0

in the rectangle or semi-infinite strip R®7¢): {b<x<c; a<t<T < al, given
u(x,a)on b<x<cand uy(b, t) and u,(c, t) on a <t < T. There is a formula
in terms of the Green’s function ( essentially given by Doetsch in [ 2, p. 3611])
which gives the answer to this problem if the closed rectangle is in the interior
of a larger region in which u( x, ¢) is a continuous solution of (1.1). This formu-

la is as follows: let d = ¢ ~ b, and let

1 - t - - -
F(b’c)(x, by, s) = — [13 (x y’ S) .\ 3 (x+y 2b’ t s)]
2d 3\ 2d d? 3 2d d?

where 83 is the Jacobi Theta function; then
¢ ¢
(1.2) u(x t) =ﬁ F®) %, 1;9,a) u(y,a>dy—f F® X, 155, 5) u (b, s)ds
a
t
+ / F®:) (x o 0,8) u (e, s) ds.
a x

The purpose of this paper is to extend the use of formula (1.2) in the following
manner: we will give conditions under which a solution of the heat equation can
be written in the form (1.2) wherein u(a, y) dy, etc.; are replaced by d4(y) or
by a(y) dy, where A(y) € BV (that is, of bounded variation) or a(y) € L. And
we will examine the senses in which these extensions of formula (1.2) solve the
boundary-value problem; that is, the manner in which the solutions tend to the
prescribed boundary data for approach to a boundary point. Furthermore, we will
obtain criteria for the unique determination of the solutions of these generalized

boundary-value problems.
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We will normalize our rectangle to be R: {0 <x<1,0<t< T <}, and for
this region we will delete the superscripts from the Green’s function and denote
it simply by F(x, & ¥, s). And we will denote by H the class of solutions of

(1.1) for which both uy, and u, are continuous.

It will be convenient to display here the formula ( see [ 2, p.307])

hnd - 2
(1.3) l’a (x/2, t) = (mt)”1/2 Z exp [ (x4+tn) ],

n=-oo

from which it is clear that F(b’c)(x, t; y, s) is a uniformly continuous function
of all six variables if d is bounded away from both zero and infinity, and if the

point (x, t) is bounded away from the point (y, s).

It also follows easily from (1.3) that

Fx(x, 50, s) = —-Gy(x, t; 0, s) and Fx(x, t1,s) = —Fx(l—x, t0,s),

where

1 X -y x+y
G(x,t;y,s):—z— [Z’s( 5 ,t—-s)—l’s( 5 ,t-—-s)]

is the Green’s function for the corresponding Dirichlet problem. (See [ 3; 4; 5; 6;

71.)

2. The Stieltjes integral representation. Our first main theorem gives the so-
lution to one of the generalized boundary-value problems.

THEOREM 1. For u(x, t) to be representable in R by
(2.1) ulzx, t) = /l F(x, ty,0)dA(y) - [tF(x, t; 0, s) dB(s)
0 0
t
+ f F(x, 1, s) dC(s),
0

where A(y) € BV (0<y<1) and B(s), C(s) € BV (0 < s < s,) for every
sq < T, it is necessary and sufficient that

(1) u(x,t) € HinR,

(2) fot fux (%, s)| ds < M; uniformly for 0 <x < x, and x, < x < 1 for some
Xgs %y, where M, depends only on t,
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(3) f} luly, t)| dy < M uniformly for 0 < t< ¢, for some t,.
Proof. To prove the sufficiency, let (x, ) € R. Then there exista, b, ¢ > 0

such that u(x, ¢) is given by (1.2). But, by condition (3),

4,(x) = fx u(y, a)dy € BV[0<x<1]

o

uniformly in @ for 0 < @ < ¢,. Hence the uniformity holds for any sequence of
values of ¢ tending to zero, and thus by the well-known convergence theorems of
Helly and Bray ( see, for example, [9, p.29-31]) there exists a subsequence {a, }
and a function 4(x) € BV (0 < x <1), to which Aan(x) converges substantially,
such that

lin [ PO (s 6y, 0,) ddg (7) = [F PO 55,00 dd ).

n —oo

Then (1.2) becomes
t
(2.2) u(x, t) = L FO) (g, 4 y,o>dA(y>-/o FO:)x t5b,5) uy(b,s)ds

t
+f F(b'c)(x, t; ¢, s) ug(e, s)ds,
o

where the existence of the two latter integrals is guaranteed by condition ( 2).

Furthermore,

4 t
Bb(z)=fo ux (b s) ds and C,(2) =/ uglc, s)ds € BV[0O < t< ¢]

o

for every ty < T uniformly for 0 < b < x4 and x; < ¢ <1. Hence the uniformity
holds for any sequence of values of b tending to zero and of ¢ tending to one.
Hence there exist subsequences { b, } and { ¢, } and functions

B(t), C(t) € BV(OStSto)

such that

. t (bycy) ¢
lim F (=, t; bn,s) de (s) = F(x, 0, s) dB(s)
i n 0

n—oo

and
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n—,0

L
lim f‘F”’"’c")(x, t cn,s)dCc,,(s)=f F(x &1, s) dC(s).
[1] V]

Hence u(x, t) has the representation asserted.

We will later showthat 4, B, C are independent of the particular sequences

of a, b, c used here ( see Theorem 3).

To prove the necessity of condition (1) we must differentiate under the inte-
gral sign. The only difficulty encountered in this is the disposition of the terms
which arise from the variable upper limit. If, however, one forms a difference
quotient it is easy to see that the contribution arising from the variability of the
upper limit must always vanish, due to the strong convergence to zero of the
kernel as s—¢-0.

To establish (2) we write

uy(x, t) = fl Fyulx, t;y,0) dA(y) ~ ftFx(x, t 0, s)dB(s)
0 0

¢
+ f Fo(x, t; 1, s) dC(s)
0

[ Fem sy 00 a1+ [*6,05 50, 5) dB(s)
0 0

¢
+/ Gy(l—-x, t 0, s)dC(s)
0

Uz, t) + Uy(x, t) + Uy, t).
Now
¢
1Uy(x o) 5/ Gy (% 50, $)|dB(s)| = v, (%, ¢)
0
and
v ¢
|Us(x, t)| 5/; Gy (1 -z, 0, s)|dC(s)| = vy(x,¢t),

where v,(x, t) and v;(x, t) are nonnegative solutions of (1.1). Then, by [3,
p.22-23] and [7, p.373], v,(x, t) and vy(x, t) must satisfy condition (2).
tence so must U, (x, ¢) and U, (x, t).

To examine U, (x, ¢) we need to note that, by (1.3), for0 <%, y <1,
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F,(x, t;y,0) = -

-y [_ (x—y)2]_ (x+9)? o (x+y)2

p —
471/ 243/2 4t 471724372 4t

(x+y-2) [ (x+y-2)2

4¢ ]+El(xsy’ t)’

4"1/2t3/2

where %, is bounded, say |z,| < B,. Then

¢ tpr 2 |a, | a?
f(;lUl(x,stsg./;./; s —_exp[-— Z;]|¢1A(y)|ds

ne1 4nl/2g3/2
+ tB, V, (1),

where ¢, =x~-y, a,=x+y, a3 = x+y~2, and V4(1) is the variation of 4.
Then

3

t 1 1 [t | an | [ a,f]
/;|Ul(x,s)|ds§4ﬂl/2£'/; n}:_ oo |- 22| ds |dA(p)]

1 §

+ tBl VA(l),

i

1 1 3 ) e o
an/zfo > /;2/4cess Y2 ds |dA(y) | + ¢B, V4 (1),
n=1 n

3

271/2

<N

flfw e s™V % ds|dA(y)| + tB, Va (1),
0 JO

(3/2+¢tB,) Vq(1),

i

the change of order of integration being pemmissible by Fubini’s theorem. Since
U,(x,t), Uy(x, t), and U, (x, t) separately satisfy condition (2), so must their

sum, u, (x, £).

To verify condition (3) we write

u(, z>=f0‘-[0'+jo’=ul(x, 0) + uy(x, 0) + ug(# 1),

and first consider

¢
uy(x, t) = —‘/; F(x, 0, s) dB(s).
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But, by (1.3),

%2

4(t-s)

F(x, £0,s) =g V2(t-s)"1/2 exp[ ]+'ﬁz(x,t,s),

where %, is bounded, say by B,. Then

2

1 b ocwag,_ y-w2 [P [_ x ]
./(;luz(x,tﬂdxg‘/; w (t=s) j(: exp 105 dx | dB(s) |

+ By Vg (1),

t _ _ oo x2
<j(; - 1/2(t_.s) 1/2./; exp [— 4(t—-s)]dxldB(S)l + 32 VB(t)’

= (1+B,) Vg(e).
Similarly,
fo‘ lug (%, )] dz < (1+ By) V(2.

We turn now to u,(x, ¢):

1 1 f1
./o.|ul(x,t)‘dx§/0../; F(x, t; y,0) dx |dA(y)].

But, again by (1.3),

1 Ry )
F(x, t;y,0) = -2~(77 t)"V 2 [exp _ (x4'ty) ]+ exp [— (x;rt}’) ]

[ (x+y 2)? ”
+ exp —_—t (x,y, t),

where u, is bounded by, say, B,. Then

- 2 2
/ Iul(x’ t)ldx< —(ﬂt) 172 [/ [exp[ (x Y) ]+exp _(x.;;y) ]

[ (x+y-2)2
Y

1 1 1 (x—y)?
Larn [ ([ oo |22
- 2(77 ) 0 -1 P 4t

(x+y-2)2
N /0'1 exp [_ T] dx] 1dA(y)| + By ¥, (1),

” dx |dA(y)| + By Va(1),
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1 _ o x2
E(”t) 1/2 -/(')1 zf_m exp [-—H]dxldA(y)l + B, VA(I),

V,(1)(2+ By)

IA

IN

Hence, for 0 < £ < ¢,

/0‘|u(x, t)| dx < V, (1) (2+ By) + Vg () (1+ By)+ V(o) (14 By) = M

This completes the proof.

3. The behavior at the boundary. We are now prepared to examine in detail
the behavior near the boundary of solutions of our generalized boundary value

problem considered in section 2. The main result of the section is:

THEOREM 2. If u(x, t) is representable in R by (2.1), then

(1) lim u(x t) = 4°(x)
t—0+
and
(2) lim uy(x, ¢) =B (t=0) lim ug(x t)=C’(t-0)
xXxX—0+ X — 1-0

, B(t-=0)~B(t-h
(whereB(t—O): lim (¢-0) (e )

, and similarly for C*(t - O)) ,
hoo+ h

wherever the derivatives in question exist.

Proof. If u(x, t) is representable by (2.1), let

u(x, t)=./;l-_/‘)t+-/;t=u‘(x,t)+uz(x,t)+u3(x,t)

as before. Let I be any open interval whose closure is contained in {0 <x < 1},
Then for x € I, F(x, t; 0, s) and F(x, t; 1, s) both converge uniformly to zero
as t—> 0+, as can be seen from (1.3). Then clearly u,(x, ¢), uz(x, t) — 0 as
t— 0+, forx € I

Also, forx € I, by (1.3),

)2
F(x, 679 0) = (4m£)"V2 exp [-— (x_‘“l] + o(1)

uniformly as t — 0+. Hence
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x~7y)?

u,(x, t)='/0'l(4-77t)_1/2 exp [-—( = ]d/l(y)+o(1).

Then (see [ 3, p. 25-26 and 65-66] and [ 7, p. 393-394])

lim u,(x,¢) = A'(x)
oo+

wherever this derivative exists. Since any x € {0 < x < 1} can be caught in such

an /, this establishes (1).

To verify conclusion (2) we write, as before,
1 t

ug (%, ) = / Fulx 6y, 0) dA(y) + / Gy(x 10, s) dB(s)
0 0

+ ./.t Gy(l—x, t; 0, s) dC(s),
0

= Ul(x’ t) + Uz(x, t) + U3(x’ t)-

As x —> 0+, U;(x, t) and U,(x, t) vanish since the kernels converge uniformly
to zero, and as x — 1 -0, U,(x, ¢) and U,(x, t) vanish for the same reason.
Then by [5], u,(x, ¢) tends to B(t=0) or C°(¢t-0) according as x tends to
zero or one, whenever the derivatives exist.

We can now give criteria for the existence of boundary values of the function

u(x, t) itself on the sides x =0, and x = 1.

COROLLARY 1. If u(x, t) is representable in R by (2.1), then u(0+,t)
exists ifB'( t—-0) does.

Proof. Let 0 <xy < 1; then
u(x, t)=fx ue(y, t) dy + ul(xg, t) (0<x<1),
X0

and the integrand is bounded in 0 < x < x,. lience the integral exists for x = 0
and defines u(0+, t).

We might also note in passing that for such ¢, the x difference quotient at the
boundary also tends to B’(t-0); for, by the mean value theorem,

u(h, t) - u(0+’ t)

- = u,(k, t) — B(t-0)
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as h — 0.

From Theorem 1 we have:

COROLLARY 2. Foru(0+, t) to exist it is sufficient that

f"°(t_s)'v2 [dB(s)]
0

converge,

Proof. Define

1 t
= F 3y, 0) dA F(0,1¢ 1, s)dC
fo) = [T P, 55,0 a4 + [ "RG0, 51, 5) dCCs)
o2, _ 172 - [__ n? ]
4—2'/‘0 7 (t-s) D exp ——(t—s) dB(s)

n=1

- g V/2 /’t-o (t-s)"Y2 dB(s),
0
and consider

lim sup |u(x, ¢) - f(2)|

x =0+

_ 2
<ﬂ_l/21imsupftO(t-s)-l/z[l-exp [* - ]]IdB(S)‘
< o s)

x—0+ 4(t-
Now given € > 0 there exists a § > 0 such that

x2

4(t—~s)

”-1/2.[:0(,:_8)—1/2 exp [_ ]]dB(s)l

< n'1/2f';°(t-s)'1/2 |dB(s)| < €,

so that

lim sup |u(x, t) ~ f(2)|

x—0+
2

(¢—s)

t-
< 7”2 lim supf (t-s)7V2 [l—eXP [— i ]}IdB(s)l+2€=2€-
0

xX— 0+
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Let € —0 to get

lim u(x, t) = u(0+ t) = f(¢),

xX—0+

which completes the proof.

We may also note that if B(s) were monotone, then, since exp [-x2/4(¢~s)]
converges to unity in a monotone way, we could invoke, the monotone conver-
gence theorem to obtain the convergence of the integral as a necessary and suf-

ficient condition for the existence of u(0+, £).
Also with Theorem 2 at our disposal we can now prove:

THEOREM 3. Let u(x, t) be representable by (2.1); then the functions
A(=x), B(t), C(t) are uniquely determined by u(x, t), so that, at every point of
continuity,

A(x) = lim f" u(y, a) dy
0

a -0+

and

B(t) = lim ftux(b,s)ds; C(t) = lim ft uy (c, s) ds.
0 0

b-o+ c—1-0

Proof. For suppose B,(t) and B,(t) arise from two distinct sequences.
Then clearly if B;(t) = B,(¢) — B,(t), we have

t
f F(x, t; 0, s) dB,(s) =0 in R.
0
Hence, differentiating, we get
¢
/; Cy(% 60, 5) dBy(s) =0
We first show B;(s) is continuous: suppose it has a jump o at ¢,; then, for £ > ¢,

t
0= fo Gy (% 5 0, 5) dB4(5) + 0 Gy, 50, 2),

where B,(s) is the boundary function remaining after the jump ¢ at ¢y is re-
moved. Then
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0 ¢ x x2 4B
"fo 2712 (s -s5)3/2 °F [‘ 4(t—s)] +(s)

x0 [ x? ] (1)
+ —————— exp |~ ———— ]|+ 0 .
20t 2(t—1ty)3 4(t-1¢)

Choose § so small that
lo|

VB4(t°+5) - VB4(£O—5) < —? ’

set t — t, = x2/4, and take x so small that x2/4 < §. Then

to+x2/4 x x2
0=f exp |- dB,(s)
to- 8 272 (ty —~ s + x2/4)3/2 4(ty — s + x2/4)

4o

+o0(1),

enl/? x2
4|0 to+x2/a x x?

02 —53 _/ . exp|-

ern x to-S 2”1/2“0 -S4+ x /4)3/2 4,.(t0 —-s+x2/4.)
{dB4(s)| + o(1).
The maximum of the integrand is at s = ¢, so that
4|o 2|0 2|0

or Mol 2ol el

en'/? x2 en x ent/?x?

and we have a contradiction as x — 0+.
Similarly the jumps of C(¢) are determined.
Suppose A,(x) and A,(x) arise from two distinct sequences, and 4;(x) =
A (x) ~ A,(x); then, as before,
0= j" F(x t;y,0) dd;(y) in R.
0
And suppose it has a jump of o at x,; then, as before,

_ 2
0 = 0(4nt) V2 4 (47¢)"V/2 [‘ exp [- (—yz’l’-] dA,(y) + o(1).
0

If § is so small that
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VA4(x0+8) - VA4(xO—5) < lel/2,

then
x,+8 - 2
0=a(4nt)“/2+(4nt)'”2/ o p[—(—}-,-——fg)—]dA4(y)+0(l),
X =8 4t
0> ol (47t)™ V2 — |o| (47t)™Y2/2 + 0(1) = |o| (47t)"Y2/2 + 0(1),

and as ¢ — 0+ we get a contradiction.

Then 45, B3, C3 are continuous functions of bounded variation, and by Theo-
rem 2 their derivatives are zero almost everywhere. Each of them must then have
an infinite derivative on a nondenumerable set. (See e.g. [8, p.128].) Thisthen
implies that lim u(x, ¢) and lim u, (x, t) must become infinite on a nondenumer-
able set, which is a contradiction, and the functions 43, B,, C; are constants,
Hence, since every sequence of a’s, b’s, or ¢’s contains a subsequence for
which 4,(x), etc., converges to a common limit, the limit must also be attained

for continuous approach. Thus the last statement of the theorem is established.

4. The Lebesgue integral representation. We are now in a position to estab-
lish:

THEOREM 4. Foru(x, t) to be representable in R by
(4.1) u(x, t) = le(x, &y, 0)a(y)dy - ftF(x, t0,s) b(s)ds
0 0

¢
+/ F(x,t;1,s)c(s)ds,
0

where a(y) € L(0<y<1)and b(s), c(s) € L (0<s<sy,<T<x) for every
59, (0 <sy <T), it is necessary and sufficient that

(1) u(x, t) € H in R,
t
(2) yle0+.L lux (3, ) — ux(ys)|ds =0
and
¢
l’im j; |ux(y, s) — ux(y5 s)| ds =0
¥,y = 1-0

for every t (0<t<T), and
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. 1 ’
(3) lim f lu(y, s) — u(y, s”)| dy = 0.
’ 0
s,8"=0

Proof. For the sufficiency, let the closed finite interval I C {0 < s < T} be
prescribed, and let e be any measurable set in I. Given € > 0, there exists § =
5(€, I) such that

flum,s) gy’ s)| ds < €2 for y,y” < 5.
e

Then

./;lux(y,s)ldsgflux(y’;s)ldsnt f |ux(y, s) — ux(y’ s)| ds

< /; lug(y% s| ds + €/2.
Now keep y” fixed and take m(e) so small that
[1utrods < 2,
so that, for0 <y < §,
_ﬂlux(y, )| ds < €

if m(e) is sufficiently small. Hence By (s ) are uniformly absolutely continuous;
consequently, so is B(s), and dB(s) can be replaced by 6(s) ds, where B’(s) =
b(s) almost everywhere. Similarly dC(s) = c(s)ds and dA(y) = a(y) dy.

The necessity of (1) follows by Theorem 1. To prove that of (2) we write
b(s) = by(s) - b,(s),
where b, (s) and b, (s) are both nonnegative, say, for example,
b(s) =|b(s)| and b,(s) = |b(s)| - b(s).

Let
9 (%, t)=—ftF(x, 50, s) b;(s) ds (i=1,2).
0

Then
. t
u{) (x, 0) =f Gy (% 4 0, 5) by(s) ds (i=1,2).
0
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We know from Theorem 2 that

lim ) (x, t) = b;(t) (i =1,2),

x—0+

almost everywhere, and, by Theorem 3,

I

lim /' ) (x, s) ds =f’ b;(s) ds (i=1,2).
0 0

x—0+

Since the ug)(x, t) are nonnegative (see [4, Remark 1, p.975]), we can say
(see [ 4, p.9771)

(4.2) lim ./tlui(x,s)-—bi(s)lds=0 (i=1,2).
)

x — 0+

Now consider

(4.3) ft|ux(x, s) = b(s)|ds < /tlu;‘)(x,s) - b,(s)| ds
0 0

+ft|u§¢2)(x,s)-—b2(s)]ds+ s; % 0)a(y)| dyds
0

ds.

fs Gy(l—x, 550, T) c(T)dT
0

As x — 0+, the first and second integrals on the right vanish by (4.2), and the
fourth since Gy( 1-x, s; 0, T) tends to zero uniformly in s and T as x — 0 +.

To estimate the third we note

_v)2
Fo(x, s; 9, 0) = - _1.__ [(x-—y) exp [__(i_y)_]

471232 as

(x+y)2

+ (x+ y) exp [ ]}+ u(x, 5, s),

where Z = 0(1) uniformly in y and s as x — 0+. Then

1 (% - 7)2
F : -_ xor
| Fx(x, 559, 0)] < RZIRVZ [Ix ¥ eXP[ ]

2
+ (x+y) exp ( +y) ]}+|u|

But



THE NEUMANN PROBLEM FOR THE HEAT EQUATION 581

¢ 2 9 00 1/2
f s73/2 exp [— -a—] ds = — f e vT2 dv < 2n
0 4s la| Ja?/at |a]

Hence

t
f |F(x s59,0)|ds <1+ o0(1)<2
o

for x sufficiently small. Thus the third integral on the right side of (4.3) is
dominated by

t
/o'lamtfo tFx<x,s;y,o>|dsdyszfo‘ la(y)| dy.

Then by the dominated convergence theorem we can pass to the limit under the
integral sign, by which we get zero as a limit, since F,(x, s; y, 0) tends to
zero, This proves

lim /t lug(x, s) = b(s)| ds,
0

x— 0+

from which condition (2) follows immediately.

Condition (3) follows similarly, but more easily.

5. Uniqueness, We now turn to the question of the extent to which the boun-
dary data uniquely determine the solution of the boundary-value problem. We get

one result as an immediately corollary of our Theorem 4.

CoROLLARY 3. If u(x, t) is representable by (4.1) in R, and has zero
boundary values almost everywhere for approach along the normal, then u(x, t) =
0inR.

Proof. By Theorem 2, a(y), b(s), and ¢(s) vanish almost everywhere.

The situation in the case of the Stieltjes representation is not so simple (see
[6]): We can have a function representable in R by (2.1) which has boundary
values identically zero for approach along the normal, yet which is itself not
identically zero; for example, for 0 < 24, let

Y (0<t<ty),
u(x, t) =
-F(x, £ 0, ty) (g < t).

This is a nontrivial solution of the heat equation, representable by (2.1), for

which
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u(x, 0+) = 0, uy(0+,¢) =0, u(1-0,¢)=0.
tlowever we can assert:
TneEoREM 5. Suppose u(x, t) is representable in R by (2.1), that
ulx, 0+) = 0 (0<x<1),
and that B(s) and C(s) are monotone for U< s< T <. Let
lim uy(x,2) =0 as (x,¢t)—(0,s)
along a parabolic arc of the form t— s = ax?, (a>0) and
lim uy(x, ) =0 as (x,t)—>(1,s)

along a parabolic arc of the formt —s = b(x ~1)? (b>0) for every s (0<s<T).
Then u(x, t)=0 in R

Proof. Let x be fixed, 0 < x < 1. Then, by (2.1) and (1.3},
1
u(x,t):f F(x, & 9,0)dA(y) + o(1) as t—0+.
0

Choose 0 < S <(1/2) min(x, 1 —x), so that

(y —x)?]

v JdA(y) +o0(1),

x+§
u(x, t) =f (478)"V2 exp [—
x=3

x - 2]
[ @it e [— (—yT:‘)—Jd[Am—A(x)] +o(1),

x - - 2]
f*g _r-r exp[_(y N 4G = 40T dy 10 (1),

-5 Aql/2p3/2 it
$ 2?2 221 A(x+2z)-A4(x)
=.I;8 —_——4n1/2t3/2 P [—-E—t . dz + 0(1).

Then

u(x, t) > Inf

A(x+2z) - A(x) fS z?

22
s 4gl/243/2 exp [”E]dz +0(1),

-5<z< 8 z

A(x+2) -~ A(x) $/2t1/2
= Inf f

2 é:2_€2d 0
5<z<8 z s/211/2 7172 ¢ ¢+ o(1).
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Let t —0+:

A —
u(x10+)=02 Inf (x+z) A(x)

-8<zL% z
Let § —0:
0>DA(x).
Similarly,
0<DA(x)

for every x (0 <x<1). Now A(x) is continuous, for if it had a jump it would
violate one or the other of these conditions. Then by [ 1, p.580], it must be both

nonincreasing and nondecreasing, and hence constant.

Furthermore,
t
uy (%, t) = f Gy(x, £:0, s)dB(s) + o(1) as (x, £)— (0, s).
0

Then, by [6], B(s) is constant. Similarly one sees C(s) is constant. This com-

pletes the proof.
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