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1. Introduction. For the general terminology used in this paper the reader

is referred to J. M. Whittaker [2], [3]. Let

be a basic set, and let

z "= Σπni pΛz).
~ nι

The order ω and type γ of \pn(z)\ are defined as follows. Let Mi{R) be the

maximum modulus of p^(z) in \ z\ < /?. Let

(1) ω»(R)-Σ,\πni\Mt{R),
i

(2) ω(/?) = lim sup
n-*oo n log n

(3) ω= lim ω(R);
R-+OQ

and, for 0 < ω < oo f let

(4) y ( Λ ) « l imsup{ω n (Λ)} ι / ( 7 l ά ) ) e/(nω),

(5) γ= lim γ(R).

If

/>„(*)- Σ l Γ . Z\
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then \Pn{z)\ is called the reciprocal set of \pn(z)\. We shall establish for

certain basic sets new formulas expressing upper bounds of the order of the

reciprocal set in terms of the data of the original set.

2. Theorem. The following theorem holds only if an infinity of πnn £ 0; then

the whole proof should be carried out for those values of n for which πnn ^ O

This is a genuine restriction since there are basic sets such that πnn = 0 for

all n; for example, for h = 0, 1, 2, , let

p U
3 Λ

„ (7\ _ , 3 h _ _ , 3 Λ + 1 j . _ , 3 Λ + 2

NOTATION. For a fixed n, let pnh' be the set of all nonzero elements

and let

h

THEOREM 1. Let \ Pn(z ) \ be a basic set of polynomials, such that

lim sup = a (a > 1) ,
n—»oo n

and of increase less than order ω and type y, and suppose that

K = lim inf
n-*oo n log /i

α/icί

log \Pn'\
k = lim inf

Λ_»oo ri log n

Then its reciprocal set is of order Ω, where

i ) if k > ω, ίλe i Ω <; co — K
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i i ) if k < ω, then Ω < 2 ω - K — k.

Proof. Let γχ > γ; then in view of ( 4 ) we have

( 6 ) ω n ( Λ ) <
\ e /

for values of n > n0 and for sufficiently large values of R > Ro > 1. From ( 1 ) ,

we have

K J Mn(R)< ωn(R).

Then

kπnl |pnι-l R* < ω,

that is

ωn(R)
\Pni\ <

Also

then

(8) \*:Λ < ~
ω,(R)

min*\Pih'\ IP. '1

From the definition of a reciprocal set, and in view of (1), we get

ΩΛ(Λ) < Σ IP l Σ |ιr..| Ri < JL— RUn T Σ

by (7); that is, by (8),

ωn(R)
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The

Q ι . ( * ) < RDn-Dn\F(R)+ Σ, "1 Γ

I I

ω»(Λ) D

l"nnl
F(R)+

i = π o + ι I P i '
by ( 6 ) ,

where F(R) is a function independent of n.

Then for sufficiently large values of n > ra0 and R > Ro, we get

ω«(Λ) D

OJ F(R) (where A;t >̂

Hence:

i ) If k > ω (this implies kx > ω), then (nωγι/n ι ) , for values of

w > n0, will be a small quantity compared to F(R) Therefore,

lim lim sup —
R->OQ n-+oo n log n

<^ lim lim sup
[log ωn{R) Dn log R log | πnn \ log DΛ l o g F{R)\

— — — — — — — 4- — — — — — — — — — — — — — 4. — - ^ ^ _ — _ -L 1

R -+ oo /I _• oo * I Λ l o g 71 71 l o g Ίl Π l o g Λ 71 l o g Π Ίl l o g 71 I

in view of (2 ) and (3); then

Ω < ω — K

i i ) If A: < ω, then as kί approaches k we find that F(R) will be very small

compared to \nωyχ/n ι I7160 for n > n0 Therefore,

log ωτι (Λ )
lim lim sup < lim lim sup

R —* oo 71 -+ oo 71 l o g 71 Λ —» oo 71 —» oo

Dπ log β + 2 log DΛ

n log 7i

log \πnn I

7i log n n log 7i

nω (l ί-Jlogn

n log 7i

n ω log ω y

n log 7i
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in view of (2) and (3 ); then

Ω < c ω - / c + ω — A = 2 ω — K — A .

N. B. In the case of simple sets, the restriction mentioned above for πnn is

satisfied. In this case we have

— K = lim sup
7i log n

COROLLARY. // {pΛ(z)J is a simple set of polynomials,

i) if k > ω, then Ω < ω - K

ii) if k < ω, then β < 2ω — K - k
where K = — lim sup

IP«

n-*oo n log n

3. Examples. We shall look at four examples.

Let P n U) = n3n zn - n2n zn'1 - n 3 n 2 n + ι (nodd),

p π ( Z ) = n 2 n z π - n

3 / ι (neven),

then

0 (nodd),

zn = n-2 npn(2) + Π

n p 0 (z ) (neven).

By Theorem (1) of [1], we get ω = 1. Since K = — 3, k = 2, we get, according

to case i) of the theorem, Ω < 1 + 3 = 4. This is true because Ω = 4 by Corol-

lary (1.1) of [1].

N. B. This example and the following examples show that the values given

in the conclusion of the above theorem are "best possible."

ii) Let pn{z) = n2n zn-n3n/2 z2n-n2n {nodd),

)
P » U ) = ( l ) 2 " - ( 7 ) > with P o (z)
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Then

zn = n 2npn(z) + n'7n/2p2n(z) + (l+nn/2)p0(z) Uodd),

" 3 n / 2 ln\n/2

(l) P°U ) U e v e n ) '

Applying theorem (1 ) of [ l ] , we get ω = 1/2. Now K = - 2, k = 3/2. Then accord-

ing to case i), of the theorem, we get

Ω < - + 2 .

~ 2

This is true because Ω = 5/2 by Corollary (1.1) of [ l ]

iii) Let pn(z) = nn zn - nn/2 zn'1 -n3n/2 Uodd),

pn(z) = (n + 1 ) ( Λ + ι ) zn - (n +

- ( n + l ) 5 ( Λ + ι ) / 2 (neven) ,

P o ( ^ ) = 1.

Then

zn = 1 \nnpn(z) + n-3n/2pn^{z) + (nn/2

 + nn)p0(z)\ (n odd),

1 - nn^2 I J

„ e v e n ) .

Applying theorem ( 1 ) of [1], we get ω = 1. Now K = - 1, k = 1/2. Then according

to case i i ) of the theorem, we get

1 5
Ω < 2 + 1 = - .

2 2

This is true because Ω = 5/2 by Corollary (1.1) of [ l ] .



iv) Let
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o(n-i) θ(n-i) nn
^ Δ 71

(n - 1 ) 3 ( Λ " I

22(Λ-I) ( n _ i)(π-i)

+ — zn'1 (nodd),

2(n-ι) n

2 n + (n-l)3{nml)

2n nn (n

(n even),

Then

- (n - l)a<»-»> p Λ - ι ( z ) - π 5 * p 2 n + ι ( z ) ( Λ odd),

l \ n / l \ 2 n

Applying theorem ( 1 ) of [ l ] , we get ω = 1. Now K = 2, k « - 3. Then according

to case i i ) of the theorem, we get

This is true because Ω = 3 by Corollary (1.1) of [1].
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