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1. Introduction. Let f= f(z) denote an analytic function of the complex
variable z in the open circle | z| < R. For each positive number ¢, the mean of
order ¢ of the modulus of f(z) is defined as follows:

1 am i 1/t
3]!,(r;f)=[;; fo | f(re*®) |t d0] , (0<r<R).

The reader might consult [ 5, p. 143-144; 3; and 4, p.134-1461 for some of the

properties of this mean value function 3, (r; f).

We consider the question: does the analyticity in | z| <R of the function f
imply the convexity of the mean I;(r; f) as a function of r in the interval 0 <r <
R? It is known [ 1] that:

(A) Unless the function f is suitably restricted, the set of positive values ¢
for which the question may be answered affirmatively has a finite upper bound.

(B) If the number ¢ is of the form 2/k, with k a positive integer, then, for
every analytic function f, the mean of order ¢ is convex.

(C) If the function f vanishes at the origin, then the mean I, (r;f) is convex
for every fixed positive number ¢.

(D) If the function f has no zero in the circle, then its mean of order ¢ is
convex, provided that the positive number satisfies ¢ < 2.

(E) If the function f has at most k zeros, k > 1, in the circle, then the mean
of order ¢ is convex provided that the positive number ¢ satisfies ¢ < 2/k.

The main purpose of this paper is to prove that, for every analytic function f,
the mean of order four is convex. Moreover, we show by example that if the
number ¢ is greater than 5.66, then there is an analytic function whose mean of
order ¢ is not convex.

2. Means of nonvanishing functions. Assume that g(z) is analytic in |z| <R,
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and that the expansion for g(z) in the given circle is

glz)= 2 a, z".
n=o
Then the integral

Loy L 1 27 i6y2
h(r; g) = 2—”./(; lg(re*¥)|2 d6

has the expansion

[>.2]

h(rsg) = 3 la,|* r?",

n=0
valid in r < R. Let
Q(r; gy c) = hh” — c(h*)?,

where primes denote differentiation with respect to r, £ is the function A (r; g),
and ¢ is a constant independent of the variable r and of the function g. If C is
a class of functions {g(z)}, and if, for all functions g in this class C, for all

r <R, and for a particular positive value ¢, the inequality
Q(r;8,¢4) >0

holds, then the inequality

Q(r;8,¢) 20

holds for all ¢ < ¢q, all r <R, and all functions g in the class C. We now specify
the class C to be the class of all functions g(z) which are analytic and do not
vanish in |z| < R. If f(z) is in class C, then any single-valued branch of [ f(z)]*

where a is an arbitrary real number, is also in class C. Given a function fy(z)
in class C, and a fixed positive number ¢, let g, (z) be a single-valued branch of

[fo(2)172; and let

1 27
hy(r) = E;fo g, ()12 do.

Then
M, (rs f,) = Lhy 1Y%
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and since h, is a nonvanishing function of r, we have

d*My (15 fo)
— = = P Qlrg, (1-1/0)],
dr?
where
o (r;
po lrifo) o
th?
Every function g(z) in class C is a single-valued branch of [f(z)]‘/z, where

f(z) is some appropriate function in class C. Therefore, for positive values ¢,
the mean M;(r; f) is a convex function of r for all functions f in class C if and

only if
Qlr; g (1-1/6)1 >0

for all functions g in class C. Since the inequality 1 — 1/t < 1 —1/ty holds for
all ¢ and ¢, satisfying 0 <t < ¢y, we conclude from the preceding remarks that,
if the positive value ¢y is such that the mean W,o(r; f) is convex for all non-
vanishing f(z), then the mean M;(r; f) is convex for all nonvanishing f(z),
provided that ¢ is any positive value not exceeding ¢,.

For a simple example of a function M,(r; f) which is not convex, consider

the mean ef order eight of a single-valued branch of

f(z) =y1+z in |z] < 1.

In this case, we have
R(r) =1+ 4r? + r*;

and [~2(7)]*/® is not convex in 0 < r< 1.

Since, for every analytic function f, the mean of order two is convex, it now
follows that there exists a greatest positive value ¢y, in the range 2 <ty <8,
such that ?Rto(r; t) is convex for all nonvanishing analytic functions. It will be
a corollary of our result that this greatest value ¢, satisfies the inequalities
4 <ty < 5.66.

3. Preliminary lemmata. The proof of our main theorem will be based on the

following lemmata.

LEMMA 1. Let a; (i =1,2,+++) be a sequence of positive numbers such
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that the sum

2 1/a,

i=1

converges to the finite value M. If the sequence of real variables x; (i =1,2,+++)

is restricted to satisfy the inequality
o0
2
2 a; x,* < B,
i=1

then the maximum value of the function

is (BM)'/2,

Proof. We consider first maximizing

with the variables subject to the condition
n
2 _
2 a; x;,° = B.
i=1
Let

n
M, = Z l/ai.

i=1

The critical points of the function f, are at the solutions of the simultaneous

equations

a; x; = a; % (iyj=1,444,n),

which are given by
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x?=B(Mna?), (i=1,eee,n).

Therefore, the maximum f, is M, (B/M,)'/? or (BM,)'/2. Since M, <M, and all
the values a; are positive, it follows that for all n the partial sums f, are bounded
by (BM)!/2 and the conclusion of the lemma follows.

LEMMA 2. Let S be the sum

S=2 1/(6n® -9n + 2).

n=3
Then this sum S is less than 0.09504.

Proof. The function f(n)=1/(6n% — 9n + 2) has the following expansion in
powers of 1/(n - 1):

o0

f(a) = ¥ a/tn-1),
k=2

with a; = 1/6, a3 =~1/12, a4 = 5/72. For determining subsequent values of a,
it is convenient to use the recursion formula:

Gy = (af - 3ak+1)/6-

The coefficients a, and a3 are positive and negative respectively. Therefore it
follows directly from the recursion formula that the general coefficients a; alter-
nate in sign. By another use of the recursion formula, we see that the sum a; +
a;,, is equal to (a; , —a,_ )/12, and therefore that the sign of the suma, +
a,, is the same as that of the coefficient ay _,» OF of the coefficient a. Since
the inequalities |a,| > |a3| > |ag| hold, it now follows that the numerical
values of the coefficients all decrease with increasing k. Let (k) be the
Riemann zeta-function, and let s (k)= (k) — 1. Since the foregoing expansion
for f(n) is an absolutely convergent series, the sum S may be expanded in an
alternating series of the form

S = Z a, s(k),
k=2

whose terms decrease in numerical value with increasing k. Using (see [2]) the
approximations s (2) = 0.644935, s(4) = 0.082324, s(6) = 0.017344, s(8) =
0.004078, s (10) = 0.000995, which are too large, and the approximations s (3)=
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0.202056, s(5) =0.036927, s(7)=0.008349, s(9)=0.002008, which are too
small, we obtain the value 0.09504 stated in the lemma by summing this last

series up to and including the term for k = 10.
LeEMMA 3. Let

y =Vx +/0.04752 /9x% - 10x + 1,

where x lies in the range 0 <x < 1/9. Then the maxim.m value of y is less than
(V2 - 1).

Proof. Setting the derivative of y equal to zero, we find that the value of x

maximizing y is the solution of the equation
0.04752x (10 — 18x)% — (9x% ~10x + 1) = 0.

This critical value of x lies between 0.07 and 0.08. Therefore

max y < \/0.08 + 1/0.04752 [9(0.07)? - 10(0.07) + 1]
< 0.283 + 0.129 = 0.412.

Since (/2 ~ 1) is greater than 0.414, the conclusion of the lemma follows.
4. The mean of order four. Let

g(z) =[f(2)]?

have the expansion
o0
g(z) = 2° a, 2",
n=0

valid in | z| < R. Following the ideas developed in § 2, we see that
¢, (r; ) = [A(H]V/4,

with
h(r) = 2 la,|? ",

n=0

and that I, (7; f) is convex in r <R if and only if
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3 o o
Q(r) = hb” - I (h%)? = Z Qii P; P; r2litp)-2

i,j =0
with
Qii =i(2i-1)+ j(2j-1) - 3ij and p; = |q;]|?,

is nonnegative in the interval 0 <7 <R. The only coefficient Q,; which is nega-
tive is Q| =~1. That the mean of order four is convex may be concluded from
the following theorem.

THEOREM. If a function g(z) is analytic in the circle |z| < R, and the

1 m . 1/4
[— f2 |g(re‘9)|2da]
277 0

is not convex as a function of r in the interval r < R, then g(z)is not the square

function

of an analytic function in |z| <R.

Proof. 1t is pointed out in the introduction that if f(0) =0, then the mean

M, (r; f) is convex for all ¢t. Therefore we may assume that
[£(0)1% = g(0) = p,
is not zero. The hypothesis of the theorem implies that
Q(r) = 2 Qij Pi P; r2liti)=
i,j=0

takes on negative values; since ¢, is the only negative coefficient, this is
possible only if the value p; = | a,|? is not zero. Therefore, we may make the

normalizations
a, = 1, al=\/§-, po =1, and p, = 2.
Let

Q,(r) =2p,p, + (12p,p, --~plz)r2 +2p, p, r*

o0

+2 2 (Qon Py Pn r?
n=3

n-2 2n)’

+ Q@ Py Py T
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with Qpp, =n(2n~-1) and Q,, =2n% ~4n + 1. Since Q(r)>Q, (r), and Q, ()

can be negative only for values of r satisfying
2 2
2p, p, - pP;T° <0,
we have in the normalized case the result that Q, () is negative for some r > 1;

and the expression

(_72 (r)=4+ (12p2 -4)r? + 4p, + 2 (12n2 - 18n + 4)p, r4

n=3

also takes on negative values. The discriminant of Qz(r) as a quadratic form

in r 2 must be positive. Therefore we have the inequality

> (6n®-9n+2)p, < (9p;-10p, +1)/2,
n=3

and the result that p_ is less than 1/9. Applying Lemma 1, we see that

o0

> la,| </S(9p2 _10p, +1)/2,

n=3

with

S= 2" 1/(6n% - 9n + 2).

n=3
By use of Lemma 2, we have
> la,l < /b, + 004752 \/op? ~ 10p, + 1;
n=2

and, by use of Lemma 3, we have

2 le,l <v2Z-1.

n=2

Applying Rouché’s Theorem to the function
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g(z) =1+V2z+ Zanz"

n=2

we see that, if the function g(z) is analytic in the circle |z| < 1, then g(z)
has exactly one zero within this circle, and therefore that g(z) is not the square
of an analytic function in this circle. Since the convexity of the mean must break
down only for values of r greater than one, we have established the theorem.

5. Examples of nonconvex means. Let f(z) be a single-valued branch of the
function [(1 -2)2/(1 - €z)]1%/%, with € = 0.19. We shall show that if ¢ > 5.66,
then the mean %, (r; f) is not convex in r < 1. Since

[F()172 =1+ (=2 + €) z + [(1 - €)?22/(1 - €2)],
it follows that
W, (r; f) = [A(IVE,
with
R(r)=1+(4—-4e+e€)r?2 +[(1-€)*r/(1 -€%r2)].
By straight-forward calculation, we have
(1+€) (1) =6 - 2€=5.62; (1+€)? A°(1) = 12 - 4€? = 11.8556;
(1+€)*h”(1) =20 + 4€ ~ 4€? ~ 4€3 = 20.588164;
and
(1+6€)* Q(r)=(1+e) [ - (1 ~1/t) (h)?]
< (14+€)*[115.71 - (1 -1/t) (140.55)]
< 0, if ¢t > 140.55/24.84 , and therefore if ¢ > 5.66.

Thus we have examples of nonconvex means M, (r; f) for ¢ > 5.66 even under
the restriction that f(z) does not vanish in its circle of analyticity.
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