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1. Introduction. Two matrices A and B are said to have property L if it is

possible to arrange their characteristic roots

A : λp λ25 9 λn

B'- V-v μ-2' β β 9 μ-n

in such a way that for every OC, the characteristic roots of Ok A + B are given

by (X λj + μi In [ 1 ] this property is investigated, and among other things a con-

jecture of Kac is confirmed by showing that if A and B are hermitian, then they

commute. In [2] this is generalized by replacing "hermitian" by "normal".

In this note we launch the project of generalizing such results to (complex)

Hubert space. However, since it is not clear how to formulate the problem for

general operators (especially in the presence of a continuous spectrum), we

shall content ourselves with the completely continuous case. For self-adjoint

operators we obtain a fully satisfactory generalization (Theorem 1). For the

more general case of normal operators we find ourselves obliged to make an

extra assumption roughly to the effect that nonzero characteristic roots are

paired only to nonzero roots. In the finite-dimensional case such an assumption

would be harmless; indeed, by adding suitable constants to A and B, we could

even arrange to have all the characteristic roots of A and B nonzero. It would

nevertheless be of interest to determine whether this blemish can be removed

from Theorem 2.

2. Remarks. Before we state the results, some remarks are in order. The

number λ is a characteristic root of A if A — XI has a nonzero null space. If

A is a completely continuous normal operator, its characteristic roots are either

finite in number or form a sequence approaching zero. We have an orthogonal

decomposition of the Hubert space:
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H = H(O) © / / ( A ^ Θ H{λ2)® . . . ,

where A acts on H(λι) as a multiplication by λ;. The dimension of H (A;) is

called the multiplicity of the characteristic root λf, it is finite except possibly

for the characteristic root 0.

Now even though A and B are both to be normal, QkA + B = C need not (a

priori) be normal. We must accordingly give further attention to the meaning of

the multiplicity of a characteristic root v of C. For our purposes virtually any

reasonable definition would do; we select the following one. We note that the

null spaces of the operators C — vl, (C — vl)2, «•« form an ascending chain,

and we form their union; the dimension of this union is the multiplicity of v

Note that this agrees with customary usage in the finite-dimensional case.

We shall need the (easily proved) additivity of the multiplicity. In detail:

suppose H is an orthogonal direct sum of two closed subspaces both invariant

under C; then the multiplicity of v in the whole space is the sum of its multi-

plicities in the two subspaces.

3. Results. We are now ready to define property L. We do this in a way

that is adequate for the proof, although it does not treat A and B symmetrically.

Let A and B be completely continuous normal operators. Let there be given

two sequences A/, μ; of complex numbers. We say that A and B have property L

(relative to the two sequences) provided:

(1) The λ's constitute precisely the nonzero characteristic roots of A9

each counted as often as its multiplicity.

(2) If, for a certain (X and v, there are k values of i such that v~ Cίλj + μf ,

then <xA + B has i / a s a characteristic root at least of multiplicity k.

THEOREM 1. Let A and B be completely continuous self-adjoint operators

with property L, Then A and B commute.

THEOREM 2. Let A and B be completely continuous normal operators with

property L9 relative to the sequences λ t and μ;. Suppose further that the μ's

are all nonzero. Then A and B commute.

4. Proof. The two theorems can conveniently be proved simultaneously.

We can suppose that λι is a characteristic root of maximum absolute value, that

is, I A. x I = \\A | | . For brevity write A = λ l 5 μ = μ 1 . By an application of the

definition of property L, with (X = 0, we see that μ is a characteristic root of

β. We are going to prove that there exists a nonzero vector x with
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Ax = \x, Ex = μx.

If μ Φ 0, we are ready to proceed. If μ = 0, then by hypothesis both A and B

are self-adjoint We replace B by A + B which is again self-adjoint; this re-

places μ by

So in any event we are entitled to assume that μ is nonzero.

l e t H(μ) be the (finite-dimensional) characteristic subspace of B for the

characteristic root μ, and K the orthogonal complement; let E and F be the

projections on H{μ) and K. We note that B - μl is nonsingular on K; let S be

defined as its inverse on K and as 0 on H(μ). Thus we have

(1) S F ( β ~ μ / ) = F .

Next we consider E (A - XI)t as an operator on H(μ), and we are going to

prove that it is singular. Suppose the contrary and define R to be its inverse

on H(μ), 0 on K. Then R will satisfy

( 2 ) R ( B - μ I ) = 0, R ( A - λ I ) E = E, RF = 0.

Choose (X ̂  0 so that

(3) | | < x S F ( i 4 - A / ) ( F - / i i 4 i 1 ) | | < 1.

By hypothesis, the operator ttA + B has αλ + μ as a characteristic root, say

with characteristic vector y φ 0. We have

(4) OL(A - λ / ) y + ( £ - μ / ) y = 0 .

Write y = £y + Fy in (4), apply R, and then use (2); we find that Ey — — RAFy9

and so

(5) y = Eγ+ Fy=(F~RAF)y.

Next apply SF to (4), and use (1) and ( 5 ) :

< 6 ) Fy = -aSF(A-λI)(F~RAF)y.

On contemplating (6) in conjunction with (3) we see that Fy must be 0. But

then y = 0 by (5) . This contradiction shows that we were in error in supposing

E (A - XI)E to be nonsingular on H(μ). Consequently we can find in //(μ)
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a nonzero vector x annihilated by E (A — λI)E* Then since Ex = x, we have

EAx = λx. Form the orthogonal decomposition

(7) Ax = EAx

But

since the norm of A is | λ | . Hence in (7) we must actually have Ax = λx Also

Bx - μx since x is in H (μ), and we have fulfilled our initial objective.

Let M be the orthogonal complement of x. It follows from the additivity of

multiplicity (see above) that when the operator a A + B is confined to M, the

multiplicity of its characteristic root Cίλ + μ is diminished by precisely 1, while

all other characteristic roots have unchanged multiplicity. Thus A and B, con-

fined to M9 satisfy property L relative to the sequences λj and μι for i >_ 2.

The procedure may now be repeated to get within M another joint characteristic

vector for A and B, In this way we proceed down the nonzero characteristic

roots of A. Finally we are left with the null space of A, which of course com-

mutes with whatever is left of B, Hence A and B commute.

5. Remark. As soon as we know that A and B commute (and hence can be

simultaneously put in diagonal form), we can assert that they satisfy property

L symmetrically, and indeed various stronger statements are obvious conse-

quences of simultaneous diagonal form.
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