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1. Introduction. Of the two better-known generalizations of the simple arith-
metic mean, the Hslder mean and the Cesdro mean, the latter has been the more
extensively studied. This is primarily due to the equivalence of the two when
used to define summability methods and to the following formulas. If we define

Cﬁ, the k™ order Cesdro mean of the terms Sos S1s =+ 4 Spy by the relation
k _ (n+ky-t ok
Ck = (nHkyE gk,

where

n
S0 =5 and S = 3 S5V for nyo0, k=1,2,..-,

v=0
then it follows [1, p.96] that

n
(1.1) St = X (TRt 8

v=Q
and

m

(1.2) Sk 37 (-1)7 (™) skem (m=1,2-).

v=0

The only known analogues to these formulas for the Hélder mean that this writer

kth

has been able to find are as follows. Denoting the order Holder mean of the

terms Sy, Sy, c++ 4, S, by Hﬁ, and recalling the definition that

n
Zﬂﬁ_l forn>0, k=1,2,---,

v=0

H° =S and H* =
n n n n+1
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it can be proved [ 1, p. 250] that

(1.3) HESm — S (-1 (") [AY(n+ 1= o) ™) Bk
v =0
and
(1.4) HE = 55 (-1 (M) [A(n+ 1=0)"] B (m=1,2,...),
v=0

where Au(n)=u(n+ 1) —u(n). These formulas follow from a more general ex-
pression for the coefficients in any Hausdorff transformation. It is easily seen
that the coefficients involved in (1.3) and (1.4) in many respects are not as

convenient to work with as those of (1.1) and (1.2).

In $2 below, the coefficients of (1.4) are obtained in different form, being
expressed in terms of a particular set of polynomials. A few of the properties of
these polynomials are considered in §3, while applications with respect to

Hélder summability are dealt with in $ 4.

2. A set of polynomials. It follows from the definition of the Holder mean
that

k+ k+ k
(n+1) HE*U kL = gk

for integers £ >0 and n > 0. By iteration, it follows that there exist coefficients
A]'.”(n) such that

(2.1) Hy= 22 (=1) 47 (n) HEM (m=0,1,2,-:+)
j=o

if

(2.2) A;"+‘(n)=(n—j+1) [A;"(n)+A;"_l(n)]

for 0 < j < m, where
(2.3) Ag(n)=1 and A}"(n)=0
for j <0 or j > m. By virtue of the identity

Nn+1-7)m"=(n+1=)) N(n+1-j) + N Y (n+2-)m,
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it follows that the coefficient of (1.4),
AT(n) = (}) N (n+1-)",

is a solution of (2.2) satisfying the boundary condition (2.3).

Another form of this solution is obtained when we consider the following set

of polynomials. For arbitrary nonnegative integers m and j, 0 < j < m, let

(2.4) FT'(x) = ™1,

Fr(z) = 35 #'(x-1Y,

m+1

F]’."(x) = > P(x=-1)7 .0 (x-))°,
m+1
F™(x) = x(x=1) +++ (x=m),
the symbol
2 Flx-DT oo (2=
m+1

denoting the sum of all possible but different such products where p, g, -+, s
are positive integers such that p+ g + -+« + s = m + 1. If we further let

(2.5) F;."(x) =0

whenever j <0 or j > m, it follows that

(2.6) F]'."“(x) = (x-j) [FL (%) +F]’.”(x)]

for integers j and m > 0. To prove the latter relation, apply (2.4) to get

(2.7) (= DIFL (D) +FP ()] = 30 #P(x=DT -ov (x=j+1) (x-])

m+1

+ 3 P (x=1)T een (x—j+1) (2= )5

m+1
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for 0 <j < m. In the first sum on the right, the exponents p, q, « - , r take on all
possible positive integral values such that (p+g+---+7r)+1=m+ 2. In the
second sum, the integers p, ¢, - -+, r, s take on all possible integral values such
that (p+g+---+7) +(s+1)=m+2. It follows that if we consider both sums
on the right of (2.7) together, then their sum is F™*!(x), thus completing the
proof of (2.6) when 0 < j < m. Its truth for j <0 or j > m follows when we further
consider (2.5) as well as (2.4).

Reconsidering equations (2.4 ), we note that each of the polynomials defined
there has x as a factor. Consequently there exists a unique polynomial G}"(x)
such that

(2.8) F]’."(x)=xG;."(x)

for integral m > 0 and j. Substituting into (2.5) and (2.6), and noting that
Gg(x) =1 for all x, we see that G"' (n + 1) is a solution for (2.2) satisfying the
boundary conditions (2.3). Consequently, we assert that

(2.9) HE = 35 (-1Y Gl (n+1) HE

j=o
for integers £ > 0 and m > 0.1

3. Properties of the polynomials G]'."(x). In the work that follows, it will be
more convenient to consider the polynomials G (x) defined by (2.8). As might
be expected, we find a considerable number of recurrence relations and other
formulas involving these polynomials and their coefficients. Before proceeding
to the particular applications in view, we shall list a few such relations. For

integral m > 0 and j,

1The author is indebted to the referee for suggesting the above derivation of (2.9)
which is somewhat simpler than the proof originally presented. The referee also proposed
the following alternative derivation. We vrite

Hk(x)'—' Z Hﬁxn,
n=0
and then with D =d/dx,
(1-=x) D{xH** Y (x)} = H*(x),

and symbolically,
((1-=) Dx]™ H¥*™ (x) = H¥(x).

Interpretation of the operator leads to the same results. This derivation is worth noting,
for it is analogous to the classical development of equations (1.1) and (1.2).
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(3.1) GIH(x) = (x~j) [GT (2) + G (x)];
for integral m > 1 and j,
(3.2) G;."+1(x)=(x—1) G;."__‘(x—l)+xG]'."(x);

and for integral m > 0 and j,
(33)  (/2+2) GF(j/2+2) = (-1)™ (j/2-3) CP(j/2-2).

Equation (3.1) is obtained by substituting from (2.8) into (2.6). The proof
of (3.2) is carried out by first deriving the relation

FP* (%) = «[FL (x~1) + F}' ()]

in the same manner as we derived (2.6), then substituting from (2.8). Equation
(3.3) follows from the defining equation of Fl'.”(x) when (—1) is factored from

each of the factors of the defining sum giving
F;n(x) = (-1)"*! F]’-’l(f—x)

for 0 <j < m. Replacing x by (j/2) + x and substituting from (2.8) yields the
desired result. This relation displays the symmetric nature of the polynomials
F;"(x) = xG]'.”(x) in that they are symmetric with respect to the line x = j/2

when m is odd, and symmetric with respect to the point (j/2, 0) when m is even.

Determine coefficients j4, ; such that

(3.4) G (x) = A, &+ A AT A + .4

»0 jm,n j m,m—lx jom,m

for m > 0. It follows from the definition that

(3.5) A . =0

j m,i

for either i <0, i>m >0, j<O0, or j>m> 0, and in particular 44, o =1 while
0Am,i = 0 for i >0. The following is a table of the polynomials G]'."(x) when
m=1, 2, 3, and 4:

k=1 k=2
'G;(x‘) =x Gg(x) = x?
C:(x)=x—~1 Gf(x)=2x2—3x+1
Gg(x) = x2 - 3x + 2
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k=3 k=4
Gg(x)=x3 Gg(x)=x4
G"{(x)=3x3-6x2+4x—1 G‘:(x)=4x4—-10x3+10x2—5x+1
G3(x) = 3x> - 12x% + 155~ 6 Gi(x) = 6x* - 30x° +55%2 — 45% + 14
G3(x) = x* —6x% +11x ~ 6 G3(x) = 4x* - 30x° + 80x% ~ 90x + 36
G:(x) = x% -~ 10x% + 35x% ~ 50x + 24

Substituting from (3.4) into (3.1), collecting like terms with respect to x, re-

placing m by m — 1, and equating coefficients, yields the recurrence relation

(3.6) Ap,i = (A + j—lAm-l,i) - j(jAm'l,i‘l + j—lAm—l,i—l)

jom,i jTm=-1,i

for integral m > 1 and j. Summing the latter expression with respect to j results

in the relation

J . .
(3.7) Z (—1)0 vAm,i = (_1)] jAm-x,i - ](_1)] jAm—x,i—l
v=0
j-1
+ Z (-1)* vAm-l,i-l
v=0

for 0 <i < m. An interesting particular case of the latter formula is obtained by

letting j = m and considering (3.5). It follows that
m m-1
Z (—l)v uAm,i = Z ('l)v vAm-l,i—l'
v=0 v=0

From repeated substitution, we conclude that

m

v
Z (-1) vAm,i = vo,i—m’
v=20

whence

m f .
(3.8) Z (__1)1) vAm,i _ {0 or it < m

V=0

1 fori=m

when m > 1.

Recalling the factorial notation M) o x(x=1) e (x—-m), m> 0, we ob-

tain
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xG"":(x) = x(m+1),

But by definition, the numbers s such that
’

are the Stirling numbers of the first kind [ 2, p. 143 1.2 It now follows, since

G;:(x)'—'s x"'+s xm—l-{-....}.s

m+i,m+1 m+1,m m+1,1’

that

(3.9) A . =5

mm,i m+1,m-i+1"°
In turn, letting i = 0 in (3.6), we find that

Amyo = fAmmrg ¥ j-1dn-1,0°
As a consequence of the initial conditions that ;4 o =1 and 4y, o =0 for j >0,
it follows [ 2, p. 615] that the solution of this partial difference equation is
(3.10) A =(f;),

j m,0

When considering the polynomials G (x) as displayed in the table, we see
that, for any m, the coefficients considered by rows in light of (3.9) and (3.6)
give a possible extension of the Stirling numbers. On the other hand, when the
coefficients are considered by columns in light of (3.10), they present a possi-
ble extension of the binomial coefficients, This latter property is better dis-

played when we consider the known formula [ 2, p. 169]

2 P Y = (-7 mls, (j>1),

v=1

where S; , is the Stirling number of the second kind and thus Sj 5, =0 for 0 < <

m. Make the definitions

m m .
Pm(iyj) = 20 (1) A, vl and Q5 j) = 20 (=) 4, (v+ 1),
v=1 v=0

where m > 1. It follows from a straightforward induction proof that

(3.11) P™(0,0) = -1 and P™(i, j) =0
Nmpert——————

2The notation used here for the Stirling numbers of the first and second kind is not
the same as that used by Jordan in [2].
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whenever 0 <i<m, 0 <j<m-—i, and i + j #0. The induction can be carried out
by using the identity

PmrL(q, ) = [P™(6, j) = Q™ (i, )1 = [P™(i-1,j+1) - Q"(i-1,j+1)]
and the fact that the truth of (3.11) implies that both
(3.12) Q" (i, j) =0
for0<i<m,0<j<m-i, and

Q™(i,m—1i) = P™(i,m—~1)

for 0 <i < m.

It is of interest that

m m -1
(3.13) > (-1Y CM(x+in) = 20 wmTPM(i,m—i) +1
i=0 i=0

form>1,n=0, 1, 2, ..., and all x. That is, the sum
m .
Z (-1) G;"(x+in)
i=0

is a function of n and m alone, independent of x. This follows from(3.8),(3.11),
(3.12), and the identity

> (1) GP(x+in) =t A, o+ PT(0,0)} 2™

i=0
m-1 j ] )
+ 2 Z ("}:z)n]—” PP (v, j—v)] ™7
j=1 v=0 :
m=-1 ]
+ 2. a™t P™(i,m~i) + P™(m,0),
i:o

where m > 1. Since the sum on the left of (3.13) is independent of x, we can

write

2 (1) 6™ (x+in) = 3 (~1) 6™ (in)
i=o

i=0
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form>1,n=0, 1, £2, .., and all x. Letting n = 1, recalling that G;"(x) has
(x — i) as a factor for i > 0 and that GZ‘ (x) = x™, we see that

m .
2 (1) GM(x+i)=0
i=0
for m > 1 and all «x. If we let » =0 in (3.13), then
m .
(3.14) 2 (-1} 6M(x) =1
i=0

for m>1 and all x. It turns out that n =0, 1 are the only two cases where the

sum

m .
2 (-1} G} (% +in)
i=0
is independent of m as well as x.

Consideration of (1.4) with (2.9) yields
(3.15) Gl (n) = ("7 1) N (n=j)".

As might be expected, more is found concerning the nature of the coefficients of
the polynomial G]'."(x) by studying the expression on the right of (3.15). Sub-
stituting into (3.15) from the identity

m+1
A ™ = Z oD S v x(v—j),

v=1

where S, ,, denotes the Stirling number of the second kind [2, p.181], and sim-

plifying, we obtain the relation

(n-7j)

n

m
Gl (n) = 2 (NS, ),
v=]

Substituting from the defining relation for the Stirling numbers of the first kind,

v
(v) _ Z i
x\7 = Spi X

i=1
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collecting like terms with respect to n¥, v =0, 1, -++, m, and equating coeffi-

cients, yields the relation

m-j
_ j+v ~ o
jAm,i = Z ( j )bm,j+v(s]'+v,m—i ]Sj+u,m~i+1)
v=0

for integral m >0, i, and j.

4. Application to Holder summability. For the remainder of this paper {S,}
denotes the sequence of partial sums of the arbitrary infinite series 2_a,, and
Hﬁ denotes the k! order Holder mean of the terms Sos Sqs eve s Sp If

lim HE < S,
n —oc n

then 2 a, is said to be summable Holder of order k to S, and this fact is denoted
by

2a, = S(H, k).

In the same manner, the sequence {Cﬁ} defines Cesdro summability of order £.

Likewise, Cesdro summability of order % is denoted by
2_an = S(C, k).

The Hélder and Cesaro summability methods are equivalent in that
2ay = S(H, k)
if and only if

2a, = S(C, k).

At times it will be convenient to use the operator form of denoting the H&lder
mean. That is, the 4! order Holder mean of the terms Pys Pys **" s P is denoted
by Hk(pn ). p, =S _;,k>0,andS =0 for m <0, then we have

1

n+1

n-k
HY(S,;) = 2 S, HE(S, ) = HY(H*"1(S, )
v=0

for £ > 1, and
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HO(Sn—k) = Sn—k'

It follows that

(4.1) H™(HF (p.)) = H™** (p,)
and
(4.2) H’”(pn+qn)=H’"(pn)+Hm(qn),

where m and k& are nonnegative integers.

Letting k =—m in (2.9), m > 0, we have the following definition for Hélder
means of negative integral order.

DEFINITION 1. For m > 0,

1

(4.3) H™= 3 (-1} 6"(n+1) S, _,.
i=0

Referring to the defining equation for the Cesdro mean,
m _ (n+my=-1 qm
Cm = (n¥my-1 g

n

we see that the first factor on the right is undefined for negative m when n is
sufficiently large.

From Definition 1, it follows that (2.9) can be extended to all integral values
of k. The Hélder method of summation is said to be regular since

Dap =38
implies
D ap=S(H, m)

for m > 0. With respect to negative order summation, the following extended sense
of regularity is immediate.

(i) If 2 a, is divergent, then it is not summable (H, —m) for any m > 0.
(ii) If

Za,, = S(H, -m)
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for m > 0, then
D a, = S(H, p)

for all p > —m.

Also, the right side of (4.3) can be used to define the operator H~™. From this

definition, it follows that properties (4.1) and (4.2) are true for all integral m
and k.

Applying summation by parts to (4.3), considering (3.14), and using the op-

erator notation, we find that

m=-1 i
(4.4) H™(S,) = 2 (Z (-1Y G;"(n+1)) Gn-i + Sn-m

i=0 j=o0

for m > 0. Applying the operator H1*™, we see that

m-1 i
(4.5) HI(S,) = HI™™ | 3° (Z (-1Y G,’-”(n+1>) a,,-l] + HI™(Syop)

i=0 =0
for integers m > 0 and g. Since

lim H9(S,) =S

n— o0

implies

lim HI*™(Sp_pm) = S
n—o0

for m > 0, we have the following theorem as a formal statement of our results.

TeeEOREM 1. If

D an=S(H,qg+m), m>0,

then
m-1 i .
2 (2 (LY G (n+1)| ap-i = 0(H, g+ m)
i=0 \j=0

is a necessary and sufficient condition that
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Za" = S(H) q)'

Letting ¢ = 0 in Theorem 1 yields a Tauberian theorem, that is, a theorem in
which ordinary convergence is deduced from the fact that the series is summable
and satisfies some further condition ( which will vary with the method of summa-

tion).

Letting ¢ = —m in Theorem 1, we have the following corollary with respect to

negative order summation.

CoroLLARY 1. If

then

m-1 i
lim >~ (2 (-1) G;-"(n+1)) an-; =0

B=oiz0 \j=o0

is a necessary and sufficient condition that
2 an,=S(H,-m), m>0.

Noting that

> (1Y Gl(n+1)
j=o

is a polynomial at least of degree m, it follows that

lim »™ a, =0
n— oo

implies

i
lim | > (-1 G}"(n+1)} a_, =0,

00 .
n— j=o

and consequently we assert:
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CoOROLLARY 2. If

zan = Ss

then

lim n™ a, =0,m>0,
n-—+o00

is sufficient for
2_a, = S(H, -m).

Letting m =1 in (4.5) we have

HI(S ) = HT*'((n+1) az) + HI*1(S,_ ),

n-1
or, applying the distributive property of this operator,
(4.6) HI(S ) = Hq”(nan) + Hq”(Sn).

This relation is equivalent to a well-known analogue to Kronecker’s theorem [3,
p.485] which states that if 3_ a, is summable ( C, gq), then

H'(na,) = 0(C, q).

Conversely, it follows from (4.6) that if 2 a, is summable (H, g+ 1), then a
necessary and sufficient condition that it be summable (A, ¢) is that

na =0(H, qg+1).

For integral ¢ > 0 this is analogous to Theorem 65 of [ 1]. However, in the fore-
going case, the statement is true for all integral q. As a further extension of the

analogue to Kronecker’s theorem, we have the following.

CoroLLARY 3. If

Zan = S(4H, q),

then
m=-1 i .
Z Z (-1) CI'."(n+1) an_i=0(H,q+m)
i

[ =0 j=0
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forintegral m > 0.

For a special case where the condition of Corollary 2 is necessary as well

as sufficient, we shall prove the following.
THEOREM 2. If 2Zay, is a convergent alternating series, then
lim ™ a, =0, m >0,
n—oo
is a necessary and sufficient condition for ¥_a, to be summable (H, —m).
Proof. Letting i=0 in (3.7), we conclude that there exist constants ,a i’
’»

j=1,2, +++, m, such that

k
(4.7) 2 (-1¥ GF(n) = (-1)* 14

m m-1
m=1,0" Y%, "
j=o
m-2
+ 8, " et gan
for 0 < k < m. We recall from the definition of Gy (x) that $Amey,o >0 for0< k<

m. Consequently, for a given m, it follows that there exists an n, such that for
all even £,

k
2 (=1) G (n) > 0

i=0
and for all odd £,

k
2 (-1 6™ (n) <0
i=0

whenever n > n,. But by hypothesis, a,_, is alternating in sign with respect to
m, whence

m-1 i ) m-1 i )
(4.8) [ 2 [Z 1 67 (m)eu | = 22 | Z(-1V 6P (n)fla,_,_,
i=o \j=o i=0 |j=o0

for n > n,. Also, it follows from (4.7) that

m =
iAm—l,o’

> (-1Y G'(n)

j=o

lim n™

n— oo
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consequently there exist positive constants n, > n,, M(m), and N(m) such that

nmM(m) < | 25 (-1) GT(n)| < n™ N(m)

j=o

for 0 < i <m and n > n,. Considering this with (4.8) yields

m-1 m
M(m) 3 (———"—1) (n=i~1)"]a,_,_,| <

. -1 -
1=0 n

m=-1[ & )
2 ( 2 (-1Y G,"n(”))an—i—ll

i=0\j=0

m-1 m
SN T () (rmim D"

i=1 n—-i—1

forn>n . We conclude that

m-1 i ]
lim Z (2 (-1Y G]'."(n)) a, ;. =0

= iz0 \j=o0
if and only if
lim »™a =0.
n— oo n

The theorem now follows from Corollary 1.

Letting ¢ = -1 in (4.6), we see that any convergent series for which

lim na, # 0

n— oo

is not summable Hélder for any negative order. On the other hand, 2> 1/(n + 1)?

is convergent and

lim n%a, # 0,

n— oo

yet it follows from direct application of Corollary 1 that this series is summable

(H, -2).
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