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1. Introduction. Paley and Wiener [ 6] have shown that the following classes

of entire functions are equivalent:

(A) those which are o(ealzl) in the whole plane and belong to L? on the
real axis;

(B) those which can be represented in the form
a .
F(z) = f ezt f(¢) dt,
-a

with f(¢) € L? on [-q, a].

A simple proof was given later by Plancherel and Pdlya [7], and they showed
how the condition o(ealz!) could be weakened in the passage from (A) to (B).
Their result leads at once to the following, which is the form to be used in the

present discussion:

THEOREM A (Plancherel and Pélya). Let F(z) be an entire function of
order 1, type a. If F(x) € L? on (~, ) then F(z) can be represented in the
form

F(z) = f el [(t) dt,

with f(t) € L? on[-a, a].
The hypothesis concerning order and type means
(1) lim sﬁp log |F(2)|/|z]| < a, |z|— .
Theorem A implies a nontrivial result about entire functions; namely, if F(z)

satisfies (1) and is in L? on the real axis, then [ 7]
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(2) F(z) = o(elsinély — , _ ; ¢if,

We shall show here how Theorem A can be used to give very simple proofs of
other results, some of which seem accessible only with more difficulty to purely

complex-variable methods.

2. The growth of F (z). The Plancherel-Pdlya result determines the growth
of F(z) in the whole plane from the growth on the real axis:

THEOREM 1. Let F(z) be an entire function satisfying (1), such that
F(x) = O(|=|")
for some positive or negative integer n, as x —»  on the real axis. Then
F(reif) = 0( eorlsin ]y
uniformly in 6, as r — .
THEOREM 2. Let F(z) be an entire function satisfying (1), such that
|F(x)| <4
for all real x. Then

| F(x+iy)| Sz‘lealyl
in the whole plane. If A = p + iq is a zero of F(z), then
[F()| < ae®bl iz —y1/1q].

These results (which are probably well known) can be obtained at once by
[8]; for example, applying [8] to F(iz) e™®*/(Az" + B) gives Theorem 1 when
n > 0. Since our primary purpose here is to illustrate a method, however, we de-
duce them from Theorem A. Assume that F(z) in Theorem 2 has a complex zero
A=p +iq, ¢ # 0. (In the contrary case consider F(z)(z — A ~ig)/(z — X), where
A is areal zero, and let g— 0.) We have

1
Vin

where m is an integer. (A similar use of the mth power of a function is made in

(1) G(z) = [F(z)1"z=2) = f: f(e) &7t de, f(2) € L2,

[5] and [7].) By a short calculation, we get
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(2) [M iz a= [T 1612 dx < 4™ /1),

so that, by the Schwartz inequality in (1),

1 ma
(3) 'G(Z)lzﬁ\/.i— (f_ ezly}tdt) (4*™n/|ql), z==x+iy.

m ma
Hence

|F(8)|™ < |z - A|2 C 42" e2maly])

where C is constant. Taking the m*h root and letting m —> completes the proof.
The proof of Theorem 1 is similar, if we define

G(z) = (z-N"[F(2)/p(2)]",

where p(z) is a polynomial of degree n formed from the zeros, other than A, of

F(z).

The second part of Theorem 2 results when we apply the first part to F(z)/
(z —A); it could be sharpened by including more zeros. As it stands, however,

this second part already gives the following:
CoROLLARY. Let F(z) satisfy the hkypothesis of Theorem 2, and suppose
F(retf) ~ 4 eorlsin 6]

for a particular 0, as r — . Then at most a finite number of zeros \ satisfy
m+ 6 —-8>2arg A> 6 + 8 forany positive b.

3. Complex roots. A consequence of Theorem 1 is:

THEOREM 3. Let F(z) satisfy the hypothesis of Theorem 1, and let n(x)
denote the number of real roots of the equation F(z) =0 which lie in the circle

|z] < = If

(4) lim sup /r n(x) dx/x — 2ar/m+ b log r > ~w,
1

r — oo
then the equation F(z) =0 has at most b + n complex roots in the whole plane.

The proof is practically contained in a discussion of Levinson [5]. If N(x)
denotes the number of roots of F(z) =0 in the circle | z| < x, Jensen’s theorem
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combines with the conclusion of Theorem 1 to give

1 .
— [*7 log | F(re'®)|dg
27 Jo

(5) fer(x) d/x — A

1 27
— (n logr+ar|sin@|)dé + B
27 Jo

IN

It

n log r+2ar/a+ B,
where A and B are constants. Hence the number of complex zeros,
c(x) = N(x) - n(x),

satisfies
,

(6) f c(x) dx/x < (n+b)logr+ C
1

for some arbitrarily large r’s, where C is constant. It follows that c(x) < n + b,

as was to be shown.

By means of the following result, Duffin and Schaeffer have given simple
proofs, and improvements, of some theorems due to Szegs, Bernstein and Boas

(see below):

THEOREM 4 (Duffin and Schaeffer). Let F(z) be an entire function such
that

F(z) = 0(e®l7l).
If F(x) is real for all real x and satisfies | F(x)| < A, then the equation
F(z) = A cos (az + B)
has no complex roots.

Theorem 3 contains Theorem 4, and in fact gives a slight generalization of it:

THEOREM 5. Let F(z) be an entire function satisfying (1). If F(x) is real
for real x and satisfies

|F(x)]| < |P(x)],
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where P(x) is a real polynomial of degree n, then the equation
F(z) = P(z) cos(az + B)
has at most n + 1 complex roots.

A linear change of variable enables us to assume a =, B =0. Since F(z) -
P (z) cos nz is nonpositive when cos 7z = 1, and nonnegative when cos 7z = —1,

the equation
F(z) = P(z) cos nz

has a root in every interval m <z <m + 1, where m is an integer (cf. [3]). Any
root occurring at the ends of these intervals is multiple. Hence if n(x) is the
number of real zeros A satisfying |A| <x, then n(x) is at least equal to the
function n (x), defined as 0 for0 <x <1, as 2 for 1 <n < 2, and so on. A short

calculation gives

n+ n+
f n(x)dx/x > f n,(x)dx/x = 2 log(n™/n!) ~ 2n - logn,
1 1

so that Theorem 5 follows from Theorem 3 with b = 1. Since complex zeros occur

in pairs, Theorem 5 contains Theorem 4.

According to Paley and Wiener [ 6], a set of functions fe' )\,‘x} has deficiency
d on a given closed interval if it becomes complete in L? when d but not fewer
functions { e*M*} are adjoined to the set. Similarly, the set has excess e if it re-
mains complete when e terms, but not more, are removed. Here we adopt the con-
vention that a negative deficiency d means an excess —d. That the deficiency d
is well defined follows from a theorem of Levinson [5]:

THEOREM 6 (Levinson). If the set {e!™*} is complete LP on a finite in-
terval, it remains complete when any XA, is changed to another number.

The result remains true even when several A’s are equal, if we agree to re-

quire a zero of the corresponding multiplicity in the entire function

F(z) = f it f(e)dr, feLP,

which vanishes at the A,’s. In this setting, the previous theorems concerning

zeros appear as special cases of the following:

THEOREM 7. Let F(z) be an entire function satisfying (1), and suppose
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F(x) = 0(|x|™)

on the real axis. If F(z) =0 at a set { A\, } such that {e”\”xi has deficiency d
on an interval of length 2na, then F(z) has at most d + n zeros other than the

b
An’s.

The truth of the assertion is evident from
0(z) F(2)/P(z) = f” f(2) 2t de, f(e) e L2,
—-a

where (J(z) is any polynomial of degree d, and P (x) is a polynomial of degree
d+ n+1 formed from the (supposed) extra zeros of F'(z). That the result con-
tains Theorem 5 and hence Theorem 6 follows from a theorem of Levinson [5]
to the effect that { e!*n* } has deficiency at most d on [0, 27 ] if

A, | <ln| +d/2+1/4, ~0<n <o
(cf. also [6]).

4. Completeness. Pursuing the subject of completeness in more detail, we

find that some of Paley and Wiener’s work can be simplified and generalized by

use of Theorem A ( cf. Theorems XXIX and XXX of [6]).

£
THEOREM 8. Let{r,}be a set of complex numbers such that the set {e Fin¥y

has finite (positive, zero or negative) deficiency on some finite interval. Then

the deficiency is d if and only if
(7) f‘” 2972 | F(%)]? dx < o, f°° 24 | F(2)|? dx = o,
1 1
where
F(z) =Tl - 22/22).

We confine our attention to the case d = 1, since the general case is reduced
to that by considering P(z) F(z) or F(z)/P(z) as heretofore. Suppose, then,
that the set has deficiency d = 1 on an interval of length 2a. Since the set is not

complete, there is a function G( z),

(8) G(z) = f_“ f(e) €7t de,  f(¢) € L2,

such that G(\,) = 0. By the Hadamard factorization theorem (cf. also [5]) we
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have
(9) G(z) = F(z) ¥ P(2),

where P(z) is a polynomial. Now actually P(z) is constant, since otherwise
G(z) would have an extra zero, and the deficiency of the original set would be
greater than 1, Hence (9) gives

(10) F(z)=eb G(2)C,
where C is constant. If b has positive real part, then (10) shows that F(x) de-
creases exponentially as x — co. Since F is even, the same is true as x — — o,

and hence F(z)= 0 by a well-known result of Carlson. Similarly if b has nega-

tive real part. It follows that b is pure imaginary, so that
a .
(11) F(x) =f f(e) ellxtelt dt, ¢ real,
-a

and hence F(x) € L? by the Plancherel theorem.

On the other hand, if x F(x) € L? then Theorem A yields the representation
a .
zF(z) = f f(e) e**t dt,
~-a

since (11) ensures (1); and hence the deficiency exceeds 1.

Suppose next that the deficiency is an unknown but finite number, and that
(12) f'” |F(2)|? dx < o, f 2 |F(x)|? dx = .
1 ' 1

With 2a as the interval of completeness, there is a function G(z),

G(z) = /_: £(t) et ds,  f(2) € L2,

such that G(z) = 0 at all but a finite number, say n, of the A’s, and has no other
zeros. (Otherwise the set would have infinite negative deficiency). The Hada-

mard theorem gives

F(z) = %% P(z2) G(z2),

where P(z) is a polynomial. If the imaginary part of b = p + ig is positive, then
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lim sup log | F(iy)/y| <a—-gq as y — «,

and hence the same is true as y — —cc. Similarly if the imaginary part is nega-
tive. In either case, then, F(z) satisfies (1). Equation (12) now combines with
Theorem A to show that

F(z) = f g(e) e?tdr, g(2)el?,

a

so that the set { eﬁ\"x } is not complete. Thus the deficiency is at least 1.

On the other hand, if the deficiency is n > 1 then the Hadamard theorem, as

before, gives

P(z) F(z) eb? = /

® f(e) €7t di,  f(2) € L?

where P (z) is a polynomial of degree n — 1. As before, the presence of b causes
no difficulty, so that P(x) F(x) € L2, This contradicts (12).

Theorem 8 contains Theorem 6 for the case L2, although Levinson’s general

case LP seems somewhat deeper. We give an application:

THEOREM 9. Let
F(z) =110 -2212%),

where the A, are complex numbers, and let the equation F(x) = A have roots /\,',,'
where A is a complex nonzero constant. If { e} has finite deficiency d and
{el)\"x} has finite deficiency d*, then d < O implies d’ = d, and d > O implies
d’=0.1If d = 0thend” > 0.

It should be observed that d” is restricted to be finite in the hypothesis of
the theorem, and only then can we evaluate d” more exactly. With regard to this
assumption, the following may be said. First, the set exp (iA;x) cannot have in-
finite excess; that is, d” # —. In the other direction, the set is complete on
every interval of length less than the interval for {\,} (which does not mean,
however, that d”is finite). For the case of real A,, an elementary but long argu-
ment shows that in fact d” is finite, so that we can then dispense with this extra
hypothesis. These matters lie to one side of the present discussion, since their

proof does not involve Theorem A, and we omit them.
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A second remark may be in order. It is well known that all the A-points of a
canonical product have the same exponent of convergence, and in Theorem 9 one
can prove the stronger result that lim A(u)/u and lim A“(u)/u both exist and
are equal. Even this statement is less precise than the conclusion of the theo-
rem, however. [t is easy to construct sets with equal density, such that one set
has infinite excess and the other has infinite deficiency on a given interval. We
conjecture, incidentally, that one can make d =0, d”= m, where m is any posi-

tive integer, so that the nebulous case d = 0 cannot be improved.

To establish Theorem 9, write
fw\F(x)—Asz“ sfIFlzxzd‘2+z|A1f|F|x2d~2+1Apfx2d-2,
1

which is finite if d < 0, by Theorem 8 and the Schwartz inequality applied to the
second integral. Hence, by Theorem 8 again,

(13) d’>d if d <0.
Writing

F(z)=[F(z) -a] + a,

and turning the argument about, gives

(14) d>d’if d"<0.

Suppose now d > 0, so that, by Theorem 8,
fm |F(x)|? dx < w.
1

This implies F(x)-— 0, as is well known, so that F(x) — 4 is dominated by 4.
Hence by Theorem 8 the zeros form an exact set:

(15) d’=0 if d>0.
Similarly,
(16) d=0 if d’> 0.

Equations (13) and (16) show that d <0 implies 0 > d“> d. But then (14) gives
d > d’, since d’ < 0; and thus d < 0 implies d* = d.
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5. An inequality for entire functions. In a series of interesting papers [2],
(3], [4], Duffin and Schaeffer establish some inequalities for entire functions of
exponential type bounded on the real axis. From these they obtain, sometimes in
sharpened form, the classical inequalities of Bernstein and others for bounded

polynomials. The main results are as follows:

THEOREM 10 (Duffin and Schaeffer). Let F(z) be an entire function, real

on the real axis, which satisfies
F(z) = O(ealzl)

in the whole plane and | F(x)| <1 for —0 < x < 0. Then, with z = x + iy, we

have
|F(z)| < coshay, |F(z)|? + [F’(z)|%/a? < cosh 2ay.

If there is equality at any point except points on the real axis where F(x)=+1,
then F(x) = cos (bx + c).

Our Theorem 1 shows that the hypothesis O(aalz‘) can be replaced by (1).
The procedure in [2] is to deduce the result for y = 0 first, by means of Theorem

4. In this form the statement seems due chiefly to Boas [1 ]:

THEOREM 11 (Duffin, Schaeffer, and Boas). Let F(z) be an entire function
satisfying (1) and real on the real axis. If | F(x)| < 1 for all real x then

LF(x)]?2 + |F(x)|%/a%? <1
for all real x.

A modification of Duffin and Schaeffer’s argument' enables us to deduce
Theorem 11 from Theorem A. Suppose the hypothesis fulfilled, but let the con-

clusion be violated at a particular point x = b. By considering +F (+z/a), we may

assume

F(b)>0, F’(b) <0, and a =1,
besides
(17) |F(b)|?2 + |F’(b)|? > 1.

The equation F(b)=cos z hasaroot z=71, 0 < r < /2, since 1 > F(a) > 0.

1 The author regrets having presented this discussion to the American Mathematical
Society without knowing of Duffin and Schaeffer’s work.
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Now, in fact r> 0. For if r = 0 then F(b) =1, and (2) yields F’(b) < 0. Hence
F(x) is strictly decreasing at x = b, so that F (x) > 1 for some x < b.

If we define

(18) G(z)=F(z+b-r) - cos z,
then

(19) G(r) =0, G(0) <0, G(n) > 0.
Moreover,

G’(r) = F’(b) + sinr = F/(b) + [1 - F2(b)]1'2 <0,

the last inequality being a consequence of F’(b) <0 and (17). Combined with
(19), the condition G“(r) <0 shows readily that G(z) =0 has three roots r, <
r<r_ in the interval 0 <z <m; and if ro =0 or r; = 7 the corresponding root is
multiple, since | F(x)| < 1. Besides these roots, G(z) = 0 has roots r,, in each

interval [nm, (n+1) 7], n=+1, +2, + +-. Thus, the function

(20) H(z) = G(z)/(z~7) = f‘ ezt h(e)de, k()€ L2,

-1

has roots at ry and r,, n=+1, +2, .-+, where the enumeration can be so man-
aged that

(21) lrnl < Infa.

By Levinson’s theorem cited above, the set { &Y s complete L2 on
[-1, 1], and therefore h(¢) = 0 almost everywhere. If the inequality of Theorem
11 becomes an equality at a point where F'(x) £ +1, then the corresponding root

of G(z) is easily seen to be triple, so that the same discussion holds

6. Differences and derivatives. We conclude with a theorem of different type,

concerning classes of functions:

THEOREM 12. Let C denote the class of entire functions which satisfy (1)
and belong to L? on the real axis. Let h be any complex or real nonzero number,
except that | h| <2n/a if h is real. Then the class of functions F’(z), where F
ranges over C, is identical with the class of functions G(z + h) - G(z), where
G ranges over C. But if h is real and |h|> 2u/a, the latter class is always a

proper subset of the former.
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Results of the same sort without L? condition are well known; for example,

Carmichael has shown that the equation
F(z+1) - F(z) =G(z)

has a unique solution of type a on the real axis and ¢ on the imaginary axis, if
G(z) is of this same type, G(0) =1, and ¢ <. To prove Theorem 12, let ¥'(z)
be in C, so that by Theorem A we have

F(z+h) - F(z2) fa e'?t (etht _1) f(t) dt, fe L2

fa el%t [(ePht —1)/it] f(¢) it dt
= fa etz gt g(t)dt, ge L2

Hence, every function of the form F(z + h) — F(z), with F € C, is representable
as G’(t) with G € C. Similarly, let G € C, so that

G (z) = /'a it e'%t g(t)dt, ge L?
-a

= fa et?t ——L-t—— (eiht—l) g(t)dt (ht# 2nm)
-a iht
e -1
- [“ ei?t (&Mt _1) f(¢)de, f(¢) € L2.

Thus G“(z) is representable as F(z + k) — F (z) with F € C, provided ht #2nm
for ~a < t < a. The latter condition is fulfilled unless & is real, and A = 0 or
[&] > 2n/a.

Suppose now that £ is real and-| 2| > 2#/a. If
(22) fa ite'?t dt = fa et (etht 1) f(2) dt
-a -a
for f(¢t) € L2, then uniqueness of Fourier transforms in L? ensures that

f(2) = it/(eht —1)

almost everywhere; but f(¢) is not in L? with the assumed condition on k. Thus
the function on the left of (22) is representable as G’(z) but not as F(z+ h) -
F(z).



d
ON A THEOREM OF PLANCHEREL AND POLYA 835

REFERENCES

1. R. P. Boas, Jr., Some theorems on fourier transforms and conjugate trigonometric
integrals, Trans, Am. Math. Soc. (1936) p.298.

2. R. J. Duffin and A. C. Schaeffer, Some inequalities concerning entire functions of
exponential type, Bulletin of Am. Math. Soc. (1937) p.554.

3, —————, Properties of functions of exponential type, Bull. Am. Math. Soc. (1938)
p+236.

4. » On some inequalities of S. Bernstein and W. Markoff for derivatives of
polynomials, Bull. Am. Math. Soc. (1938) p.289.

5. N. Levinson, Gap and density theorems, Am. Math, Soc. Col. Pub., Vol. XXVI, p.5-
11 and 128.

6. R.E.A,C., Paley and N, Wiener, Fourier transforms in the complex domain, Amer.

Math, Soc. Col. Pub. Vol. XIX, p.12 and 86-95.

7. M. Plancherel and G. PSlya, Fonctions Entieres et Integrales de Fourier Multiples,
Comm. Math, Helv. 9 (1936-37), p. 224-248; 10 (1937-38), p. 110-163.

8. G. PSlya and G. Szegd, Aufgaben und Lehrsidtze aus der Analysis, Dover Pub.,
Vol.1, p. 147, Problem 325.

UNIVERSITY OF CALIFORNIA, LLOS ANGELES






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
R. M. BOBINSON B. P. DILwORTH
University of California California Institute of Technology
Berkeley 4, California Pasadena 4, California
E. HEwiTT E. F. BECKENBACH
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN P. R. HALMOS BORGE JESSEN J. J. STOKER
HERBERT FEDERER HEINZ HOPF PAUL LE'VY E. G. STRAUS
MARSHALL ITALL R. D. JAMES GEORGE PdLYA KOSAKU YOSIDA
SPFONSORS
UNIVERSITY -OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECENOLOGY. STANFORD RESEARCH INSTITUTE
UNIVERSITY OF CALIFORNIA, BERKELEY STANFORD UNIVERSITY.
UNIVERSITY OF CALIFORNIA, DAVIS WASHING TON STATE COLLEGE
UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF WASHINGTON
UNIVERSITY OF CALIFORNIA, SANTA BARBARA * * *
UNIVERSITY OF NEVADA AMERICAN MATHEMATICAL SOCIETY
OREGON STATE COLLEGE NATIONAL BUREAU OF STANDARDS,
UNIVERSITY OF OREGON INSTITUTE FOR NUMERICAL ANALYSIS

Mathematical papers intended for publication in the Pacific Journal of Matheinatics
should be typewritten (double spaced), and the author should keep a complete copy.
Manuscripts may be sent to any of the editors- except Robinson, whose term expires
with the completion of the present volume; they might also be sent to M.M. Schiffer,
Stanford University, Stanford, California, who is succeeding Robinson. All other com-
munications to the editors should be addressed to the managing editor, E. F.
Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may
obtain additional copies at cost.

The Pacific Journal of Mathematics is published quarterly, in March, June, September,
and December. The price per volume (4 numbers) is $8.00; single issues, $2.50. Special
price to individual faculty members of supporting institutions and to individual members
of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the
publishers, University of California Press, Berkeley 4, California,

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office,
Berkeley, California.

UNIVERSITY OF CALIFORNIA PRESS - BERKELEY AND LOS ANGELES

COPYRIGHT 1953 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 3, No. 4 June, 1953

Paul Erd6s and Gilbert Agnew Hunt, Jr., Changes of sign of sums of random

Variables . ........ e 673
Paul Erd6s and Ernst Gabor Straus, On linear independence of sequences in

aBanach space ........... ... 689
Haim Hanani, On sums of series of complex numbers..................... 695
Melvin Henriksen, On the prime ideals of the ring of entire functions .. . ... 711
Irving Kaplansky, Completely continuous normal operators with property

L e 721
Samuel Karlin, Some random walks arising in learning models. I . . ........ 725
William Judson LeVeque, On uniform distribution modulo a

SUDAIVISION ... ..o o 757
Lee Lorch, Derivatives of infinte order.................cccuiiiiieneean.. 773
Ernest A. Michael, Some extension theorems for continuous functions. . . . .. 789
Tyre Alexander Newton, A note on the Holder mean. ..................... 807
Raymond Moos Redheffer, On a theorem of Plancherel and Pélya. ... ... .. 823

Choy-Tak Taam, On the complex zeros of functions of Sturm-Liouville




	
	
	

