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J. CorPPING

1. Introduction. G. Pdlya [2] has given various sufficient conditions on
the infinite matrix 4 to ensure that the infinite system of linear equations
Au = b, where b and u are column vectors, has a solution in u. It is remarkable

that there are no conditions on the given column vector b.

R.G. Cooke [1, pp.34-35] established the existence of reciprocals of a

matrix A satisfying Pélya’s conditions, given in the following theorem.

THEOREM 1 (Pélya). In the infinite system of linear equations
(1.1) 2 aijui=b; (i=1,2,3,...),
j=t

where { b; } is an arbitrary sequence, let (a; ) satisfy the conditions

(i) the first row ay,j contains an infinity of nonzero elements, and

{alj| +lazji+"'+|ai-1,j‘
(ii) lim inf = 0 for every fixed i > 2.
jro0 lai,jl

Then there exists an infinite sequence {uj} satisfying (1.1), such that all the

left sides are absolutely convergent.

It follows [1, pp.34-35] that if a matrix 4 =(a; ;) satisfies (i) and (ii),
then 4 has an infinity of linearly independent right-hand reciprocals, and that
if A”, the transpose of 4, satisfies (i) and (ii), then A has an infinity of linear-

ly independent left-hand reciprocals.

In this paper it is shown that Pdlya’s theorem can be applied to establish

the existence of solutions of the infinite matrix equation
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AX-XB=C,

where B and C are arbitrary given matrices, and 4 is a given matrix satisfying
(i) and (ii) of Theorem 1. The principal tool is given in Theorem 2, where the
doubly infinite set (x, ) of the matrix elements of X is found as a solution of
a simple infinite set of equations. Theorem 3 then gives the main result. In
¢¢3 and 4, other solutions are obtained in the general case, and in the special

case
AX - XB =0;
and the nature of the solutions is discussed.
2. We shall establish the following result.

THEOREM 2. Suppose 4 satisfies conditions (i) and (ii) of Theorem 1, and

B and C are arbitrary given infinite matrices. Let the set of linear equations

(2.1) Z (Bk,s an,r"an,r bs,k)xr,s =Cn,k

r,s

be written in the order (n=1,k=1), (n=2,k=1),(n=1, k=2),+-+, where
Zr,s denotes the “Cauchy sum’, (r=1,s=1), (r=2,s=1), (r=1, s =2),
««-. Then the matrix of the system of equations (2.1) satisfies the conditions
(i) and (ii) of Theorem 1.

Let M be the matrix of the sysiem of equations (2.1), so that 8y s ap,r~
8n,r bs, i is the element of M in the row defined by the pair n, %, and in the
column defined by the pair r,s. The elements of the first row of M (that is, the
row n=k=1), for which s=1,r=2,3,..+, are a;,2, @1,3,+--; hence the first
row of M contains infinitely many nonzero elements, so that condition (i) of

Theorem 1 is satisfied by M.

To show that M satisfies (ii) of Theorem 1, observe that if { i;} is any sub-

sequence of the positive integers, then the condition

|a1,yjl + |a2,u.jl Foeeet lai-l,uji
(2.11) lim inf =0

j—oo |ai,/-le

for a particular value of i implies condition (ii) of Theorem 1 for this value of
i. Hence it is sufficient to show that, corresponding to each fixed integer A > 1,

there is a semi-infinite submatrix M) of M, of order A x v, consisting of the
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first A elements of a certain infinite subset of the columns of M, such that ¥)
satisfies condition (ii) of Theorem 1 for the particular value A of ;. We shall
find such submatrices M) (A =2,3,.-.), in each of which all the elements are
either zero or elements of the matrix 4, and are so arranged that (2.11) is

satisfied for { = A,

Let the Ath row of ¥ correspond to the suffixes n =p, k=g, p and g being
fixed positive integers, not both equal to 1. Consider the column of ¥ for which
r=r{t)=p+qg+t and s =g, where ¢ is any fixed positive integer. The first
A elements in this column correspond to pairs of suffixes n, %, such that their
sum is nondecreasing (that is, 1, 1; 2, 1; 1, 2; 3, 1; 2, 2; -++), so that bothn
and k are less than p + ¢. Hence, for these pairs of values of n and £, 5, , =0,
so that no elements of the matrix B occur among the first A elements of this

column.

The only nonzero elements among the first A elements of this column are
therefore those for which 04 4 =1, thatis, k=g, and n=1,2,-++,p ~ 1, p; and

these elements are
@1,ptqtts @2,ptqts***s Ap-1,p+q+ts Op,ptqi »

We now select the columns of M) by keeping s = g fixed, and letting r = r(¢)
assume in succession all the values of p + g +t, where p, ¢ are fixed, and
=1,2,3,+++, in succession. Ilence, to show that M) satisfies condition (ii)

of Theorem 1 for the particular value i = A, we must show that

-1
ZZH | an,p+q+t‘

lim inf

?
t— o0 |ap,p+q+t‘

which is clearly true, since, by hypothesis, the mairix 4 satisfies condition

(ii) of Theorem 1. Thus Theorem 2 is now proved.

THEOREM 3. Let A satisfy conditions (i) and (ii) of Theorem 1. Then the

equation
(2.2) AX-XB=C,

where B and C are arbitrary given infinite matrices, has an infinity of solutions.

For, by Theorem 2, the equations (2.1) have an infinity of sets of solutions,
and, for each set, all the series on the left of (2.1) are absolutely convergent.
Take any such set and rearrange each of the series in (2.1) as a ‘“sum by rows”.

This gives
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oo

oo
Z Qn,r Xr, k. — Z Xn,s bs,k = Cn,k »
r=1

s=1
Thus X = (x, ) is a solution of (2.2).

3. Certain conditions may be imposed on the solutions obtained by the
method of Theorem 3.

THEOREM 4. If A satisfies conditions (i) and (ii) of Theorem 1, then

there is an infinity of solutions of the equation
AX-XB=C,

each of which is a lower semimatrix [ 1, p. 6] whose principal diagonal elements

are zero.

Returning to Theorem 1, observe that if the given conditions of that theorem
are satisfied when the column-suffix j is restricted to a subsequence S of the
positive integers, where S is independent of the row-suffix i, then solutions

{u;} exist such that uj = 0 whenever j is not in S.

For, let H be the matrix obtained from 4 by selecting the columns of A

whose suffixes are in S, so that
hi,p =i kp (p=1,23,-++,i=1,2,3,--- ),
where { k,} is the subsequence S of the positive integers. Then F satisfies the

conditions of Theorem 1, so that, given any column-vector b, there are vectors

v such that Hv = b; that is,

oo oo
2o Gk vp = 20 hipvp = b (i=1,2,3,..-),
p=1 p=t
where each of the series is absolutely convergent.

If we now write uj = v, when j=4k, (p=1,2,3,--- ), and uj = 0 otherwise,

we have
Z ai,juj':bi (i=1,2,3,"'),
j=1

where each of the series is absolutely convergent.
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This result clearly can be applied to the matrix of (2.1). For, in the proof
of Theorem 2, in which it was shown that M satisfies conditions (i) and (ii)
of Theorem 1 we considered only the columns of M for which r > s. Hence there
are solutions {x, s} of the equations (2.1) for which %, s =0 when r < s, and
the property of absolute convergence of all the double series involved holds
as before, so that Theorem 3 again follows, with solutions X for which x, s =0
when r < s. This completes the proof of Theorem 4.

THEOREM 5. Suppose A satisfies conditions (i) and (ii) of Theorem 1,
and let P = (p, ;) be any given matrix such that AP and PB exist. Then there

is an infinity of solutions of the equation
AX-XB=2C,
for each of which x, | = pp, i for all k > n.
Consider the equation

(3.1) AX -XB=C~AP +PB.

By Theorem 4, this equation has an infinity of solutions, each of which is a
lower semimatrix whose principal diagonal elements are zero. Let Y be such

a solution. Then Y + P is a solution, of the type required of the equation
AX-XB=C.
The theorem is thus proved.

Theorem 5 may be applied to obtain transformations of the form

Y-l.AY =B,

where A satisfies conditions (i) and (ii) of Theorem 1 and B is an arbitrary
matrix, and then Y~ ! . AY is associative for multiplication. For, in Theorem 5,
put C = 0, P = I, the unit matrix. Thus solutions of the equation

(3.2) AX~XB=0

exist, which are lower semimatrices with no zero elements in the principal
diagonal. Let Y be such a solution. Then

AY -YB =0,

and Y has a two-sided reciprocal Y~! which is a lower semimatrix [1, p. 19, 221,
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Since Y is row-finite, YB exists, and hence AY exists; that is, Z?:k ai ik

exists for each ; and %. Hence

n o0
(Y Unt, =3 X vilia v

Also
{yt (YB)}n’k = {(Y"Y)B}n,k =b, b
since the double series concerned are finite, so that
Y '4Y = B,

where Y"1 AY is associative.

4. In considering the nature of the solutions obtained by the methods of
Theorems 3, 4, and 5, it would be desirable to know whether solutions exist
which belong to a given ‘“‘associative field”” [1, pp.9, 26]. For example, the

equation
(4.1) AX -XD =0,

where D is a given diagonal matrix, is of fundamental importance in quantum
mechanics, and in the theory of consistency of Toeplitz transformations of
divergent sequences. For such applications, solutions Y of (4.1) are required
such that

YDY'' = 4, Y''AY = D,

respectively [1, pp.41, 101], and such that ¥, ¥ ! and 4 belong to the same

‘“associative field.”

The method of § 3 above fails to give solutions Y of (4.1) such that

YDY'' = 4.
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For the solutions obtained by this method are lower semimatrices, so that
YDY"' = 4

would imply that A is a lower semimatrix, which is impossible under the given
conditions (i) and (ii) of Theorem 1, Moreover, although the method of ¢3

gives solutions Y of (4.1) such that
Y''.AY = D,

these solutions cannot satisfy the condition that ¥, ¥™! and 4 should belong to

the same ‘‘associative field,”” for this would again imply

YDY'' = 4,
which is impossible.

Another case in which the existence of a solution belonging to a given
‘‘associative field”’ can be shown to be impossible is provided by the following

theorem.

THEOREM 6. If A belongs to a “‘field with an associative bound,”” [1,

p.271%, then no solution of the equation
AX - X4 =1
belongs to the same field.

For suppose if possible that ¥ is a solution belonging to the same ‘‘field”

as A. Then
AY - YA =1,

and from the associative property it follows by induction that for each positive

integer n,
(4.2) AY" —Y"4 =nY™ 1,

Denoting the bound of ¥ by | Y|, and applying its properties [1, pp.26, 27]

to equation (4.2), we obtain
Rl Y = [nYP < AYR YR <2 (ALY YL

1¥or example, R, K,, K., and Hilbert matrices [1, pp- 63, 25, 29, 243].
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Observe that Y" £ O for any positive integer n, for if p is the smallest positive
integer such that YP = 0, then equation (4.2) is contradicted when n = p.

Hence | Y*"!| # 0, so that

[YI22|A|°

for each positive integer n, contradicting the hypothesis that | Y| exists.
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