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Introduction. Let (Q, 3, i) be a probability space; that is, Q is a collection
of elements u, v, w, -+« ; J, a o-algebra of subsets of Q; and p, @ countably
additive measure on & with ¢ (Q) = 1. Let x be a function defined on Q, having
values on the real line extended by the adjunction of +o and ~w. Let x be

measurable with respect to J. We say that the expectation of x exists if one of

/x*du, /9.6' du

is finite where x*, x” are the positive part and the negative part of x, respective-
ly. The expectation of x, E{x}, is then defined to be equal to the integral
fx du. Let 3, be a o-algebra of subsets of Q with 3, C J. For every 4 € I,

the equation

the integrals

¢(4) = Axdu

defines a countably additive set function ¢ on I which is absolutely continuous
with respect to the contraction of y to J;. By a generalized form of the Radon-
Nikodym theorem there is an extended real-valued function y defined on  which

is measurable with respect to J; and satisfies the equation

$(4) = L.ydu

Received January 13, 1953. The work covered in this paper was done under a pre-
doctoral fellowship tenure from the Atomic Energy Commission. The author feels greatly
indebted to the encouraging inspiration and comments of Professor J. L. Doob under
whose direction this paper was prepared. It constitutes part of a doctoral thesis sub-
mitted to the University of Michigan.

Pacific J. Math. 4 (1954), 47-64

47



48 SHU-TEH CHEN MOY

for every A € 3, [3]. Such a function is unique within p-measure 0 and is de-
fined to be the conditional expectation of x relative to 3, denoted by E{x| 3, 1.
The integral or expectation of x, E{x}, is then the special case of conditional

expectation of x relative to J,, where

31 ={Q,null set}.

In the following we shall list some properties of conditional expectation
{2, Ch. 1; 6, Ch. 51: %, y, z, x,, -+ are extended real-valued, measurable func-

tions whose expectations exist.,

CE 1. If « is a finite real number, then

(1) Fiox|3,} = a E{x|3,}
almost everywhere. If x is nonnegative almost everywhere, then (1) is true for
either finite or infinite o.
CE2. If
Efx}>- 0w, Ely} >- w,
then

Efx+y|3,}=E{x |3} + Efy|3,}

almost everywhere,
CE 3. If x > y almost everywhere, then

E{x | 3,1 > Efy| 3,}

almost everywhere.
CE 4. The relation
|Etx | 3,3} <El|=x]] 3.}
holds almost everywhere. Therefore, if x is equal to a bounded function almost
everywhere then E{x | 3,1} is also.

CE 5. If x is measurable with respect to J, and x is equal to a bounded

function almost everywhere, and y has finite expectation, then
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(2) Efxy | 3,1 = xEly | 3,}

almost everywhere. If x, y are nonnegative, then (2) is true for any x which is
measurable with respect to I .

CEe. If

E{xn} > -

for all n, and %, < x, < +++ almost everywhere, then Ef{x, | 3,} converges

3.}, where x=1lim,_ o x, almost everywhere.

almost everywhere to Efx
CE 7. If p > 1, then
|Etx [3:}|P < Et|x|P| 34}
almost everywhere. Therefore, if
E{|%|P} < o,
then
E{|Efx|3.}P} < o;
and if

Ef|x,|P} <

for every n and

lim Ef|x,-x|P} =0,

n—od
then

lim E{|Efx,|3,} - Elx|3,}|P} = 0.

n — oo

In this paper we shall study the relation of the conditional expectation with
a transformation 7 on some spaces of measurable functions into themselves

satisfying the conditions:
T(x+y)=Tx+ Ty,

Toax = Tx, where O is a constant ,
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T(xTy) = (Tx) - (Ty).

Under the restrictions that the transform of a function which is equal to a
bounded function almost everywhere is also equal to a bounded function almost
everywhere, and that T satisfies a certain continuity condition, we are able to
identify such a transformation as the one which takes x to E{xg | 371}, where
g is a measurable function and St is a o-algebra of subsets of Q with 37 C 3.
This is an attempt to answer the search for an appropriate definition of average
which would be desirable for the establishment of a mathematical theory of the
dynamics of turbulence [5, 7). In the past, J. Kamp€ De Feriet has studied the
transformation on the collection of real functions which takes only a finite
number of values [4]. Garret Birkhoff and John Sopka have studied the trans-
formation on the space of continuous functions on a compact Hausdorff space
[1, 8]. Garrett Birkhoff also treated the subject from an abstract algebraic point
of view [1]. Since the modern treatment of fluid dynamics theory is based on
probability theory, it seems to the author that a probability solution is the

natural one.

In the first section of this paper we shall consider the transformation on
the space of nonnegative measurable functions into itself. In some respect it
is analogous to the integration theory of nonnegative functions. In the second
section we consider 7 as a linear continuous transformation on L into Lp. In
the case of L, it is also proved, if T1=1 and || Tx||, < ||=||, where ||.[[

denotes the L,; norm, then Tx is the conditional expectation of x relative to a

o-algebra of subsets.

1. Transformation on the space of nonnegative measurable functions. Let
® be the collection of all nonnegative, extended real-valued functions on Q
which are measurable with respect to 3. Elements of & are denoted by x, 7,
z, +++ . Two functions are considered equal if they are equal almost everywhere.
By x =y or x > y we mean that x =y almost everywhere or x > y almost every-
where, respectively. When we say that x is bounded we mean that x is equal to
a bounded function almost everywhere. We shall use the symbol x,—x to mean
that

lim xp(w) = x(w)

n—oo
for almost all w in Q. Addition and multiplication in @ are ordinary pointwise
addition and multiplication with the conventions that & + @ = for every non-

negative number &, and O + 0 =c0 if & > 0, & c =0 if & =0. Thus 2 is

closed under addition and multiplication. We shall use symbols «, 8, «+« to
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denote nonnegative real numbers. We shall use the same symbols to denote

functions which take on a constant value o, B, - -+ almost everywhere.

We are considering a transformation 7 on 2 into @ satisfying the following

conditions:

Tl. a) T(x+vy)=Tx + Ty for every pair of elements x, y in .

b) Tox = «Tx for every nonnegative number & and every x in 2.
T2. If x is bounded then Tx is bounded.
T3. T(x.Ty)=(Tx) . (Ty) for every pair of elements x, y in 2.

T4. If {x,} is a nondecreasing sequence of elements of B for which x, — x,
then Tx, — Tx.

If Ty is the transformation which takes x to E{x |3}, then by CE 3 T is
a transformation on @ into d. CE 1 and CE 2 imply that Ty satisfies the con-
dition T1; CE 4 implies that Ty satisfies the condition T2; CE 5 implies that
Tr satisfies the condition T3; and CE 6 implies that Ty satisfies the con-
dition T4. Therefore the transformation which takes x to the conditional ex-
pectation of x relative to a o-algebra of subsets 3, C J satisfies T1, T2, T3,
and T4. It is easy to check that the transformation which takes x to E{xg|J,},
where g is a nonnegative measurable function with E{g|J,} bounded, also
satisfies T1, T2, T3, and T4. We shall prove that the last example is actually
the most general form of a transformation satisfying T1, T2, T3, and T4.

LEMMA 1.1. The inequality x > y implies Tx > Ty.
Proof. 1f y is finite valued almost everywhere, then
Tx = T(y+(x—=y))=Tx+ T(x~y) > Ty.
If y is not finite valued, let
Ad=I[w:y(w)=owl;

then x (w)=c for w € 4. Let x% y’ be defined as x(w) = x(w) for w £ 4,
x(w)=0forw € 4; y'(w)=y(w) forw £ A, and y’(w) = 0 for w € 4. Then
Tx’> Ty’ Let z be a function defined as z(w)=w if w € 4, z(w) =0 if
w & A; then

4 4
x=x"+2, ¥y =Y + 2z,

and
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Tx = Tx"+ Tz > Ty’ + Tz = Ty.
LEMMA 1.2, If x, ~> x, then Tx < lim inf Tx,.
n
Proof. Let

ym=inf[xi:i2_n];

then y, < x for every n and {y_} is a nondecreasing sequence of elements for
which y, — x. By T4, Ty, — Tx. But by Lemma 1.1, Ty, < Tx, for every

n; hence

Tx < lim inf Tx,.
n

LEMMA 1.3. If x, —x and xpn < y for every n where y and Ty are finite
valued, then Tx, — Tx.

Proof. By Lemma 1.2,

Tx < lim inf Tx,
n

and
T(y-=x) < liminf T(y —x,).
n
By Lemma 1.1, Tx, < Ty for every n and Tx < Ty; hence the second inequality
can be written as

Ty — Tx < Ty - lim sup Tx,;
n

that is,

Tx > lim sup Tx,.
n

Now we have

lim sup Tx, < Tx < lim inf Tx,;
n n

hence

Ix, — Tx.
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LEMMA 1.4. Let € be the totality of elements y of B for which T(xy) =y Tx
for every x € d.

LIfy,y, € €, then Yy, ty, and y, -y, € €; and if y, <y, with y,
bounded, then y, -y, € g.

2. Ifa> 0,y € €, thenay € €.

3. If {yn} is a nondecreasing sequence of elements with y, € € for every
nandy —sy, theny € €.

4. If {yn} is a sequence of elements in € with Y, — Yy and there is a
bounded function z for which y, < z for every n, theny € E.

Proof. 1. We have

Tlxa(y, +y)1=T(xy )+ T(xy,) =y, Tx +y,Tx = (y, +¥,) Tx,

and
T(xy,y,) =y, T(xy,)=y, 5, Tx.
If y, is bounded and y, < y,, then
v, T2 =T (xy, )= Tlx(y, +y, =y ) =T(xy)+ Tlx(y, -y )]
=y, Tx+ Tlx(y, -y ).

If x is bounded, then Tx is bounded. We have

v, I~y Tx = (y, -y ) Tx = Tlx(y, ~y 1.

The last equality is true for all bounded x, and therefore is true for all x.
2. Clearly
T(xay) = aT(xy) = aylx.

3. We have T (xy,)=7y,Tx for every n. Further, T(xy,) and y, Tx are non-
decreasing sequences with T (xy, ) — T (»y), by T4; and y Tx — y Tx. Hence
T(xy)=1y Tx.

4. We have T (xy,)=y,Tx for every n. If x is bounded, then xz is bounded
and xy < xz for each n. By Lemma 1.3, T (xy, ) — T (xy). On the other hand,
we have y, Tx —» yTx. Hence T (xy) = yTx. The equality is true for all bounded
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%, and therefore is true for all x by T4.

We remark that 1. implies that any nonnegative polynomial P (y), of a bound-
edy € € (thatis, P(y(w)) > 0for all w € Q) is also in €.

The following lemma is obvious by T3.

LEMMA 1.5. Foreachx € 8, Tx € €.

LEMMA 1.6. Let 31 be the collection of all sets E € 3 whose characteristic
functions x p are in the € of Lemma 1.4. Then Op is a o-algebra of subsets
of Q.

Proof. We shall establish:

1. Clearly, 1 €€ for 1Tx = T(x - 1); hence Q € J 7.

2. WE,;, E; €37, then E; nk, € 31 by Lemma 1.4 and the equation

XEg,nEy, = XE, * XE, *
3. YE,, E, €31, then E, — E; € 37 by the equality
XE(-Ey T XE; T XE;nE,
and Lemma 1.4.
4. ¥E,, E, €37,then E; uE; € 31 by Lemma 1.4 and the equality
Xg,wE, = XE, Y XE, T XE{nE, *

By induction, for any finite number of sets £, E5, -+« E, € 31,

For, by 4,
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X €&

and

X
{ Uis Ei}

is a nondecreasing sequence for which

X — X

u™ . E. U™, E..

=1 i i=1 7y

LEMMA 1.7. Let M be the collection of all nonnegative functions which are
measurable with respect to Sp. Then M C €.

Proof. Functions which are linear combinations with nonnegative coef-
ficients of characteristic functions of sets in I are in €. For any element of
M there is a nondecreasing sequence of such functions converging to it; there-

fore, by Lemma 1.4, it is in €.

LEMMA 1.8. Let y €€ and y be bounded. Let 3), be the least o-algebra
with respect to which y is measurable. Then 3}, C 3, or, equivalently, y € .

Proof. Let ® be a nonnegative continuous function on a finite interval con-

taining the range of y. We want to prove ®(y) € €. We may assume that
0<a<®(y)<hB,s

for ®(y) + o € € with & > 0 implies that ®(y) € £, by Lemma 1.4.

Since y is bounded by the Weierstrass theorem there is a sequence { P, (y)}
of polynomials such that P,(y) converges uniformly to @ (y). We may assume
P,(y(w)) > 0 for all w €Q; therefore, by Lemma 1.4, P,(y) € € for each
n, and @ (y) € €.

For each E € Sy, there is a sequence { ®,(y)} of continuous functions of
y with 0 < ®,(y(w)) < 1 for each n and w for which

@, (y)— xg-.

Hence, again by Lemma 1.4, x € €; thatis, E € ST'

LEMMA 1.9, For eachx € 8, Tx €ll.



56 SHU-TEH CHEN MOY

Proof. Let {x,} be a nondecreasing sequence of bounded functions for
which x, — x. Then {Tx,} is also a nondecreasing sequence of bounded
functions, and Tx, — Tx. By Lemma 1.5 and Lemma 1.8, Tx, € M for every
n; therefore Tx €.

THEOREM 1.1. If T is a transformation on the collection B of all non-
negative measurable functions on a probability space (Q, 3,.u) into itself
satisfying T1, T2, T3, T4, then T is of the form

Tx = E{xg/37},

where 3 is a g-algebra of subsets of Q with 37 C3 and g is a nonnegative
measurable function for which E{g| 31} is bounded.

Proof. Consider the set function v on J defined by
v(4) = /TxA du,

where x , is the characteristic function of 4; then T1, T2, T4 imply that v is
a finite measure on J. For a linear combination of characteristic functions

with nonnegative coefficients

n
z O(iXAi,

i=1

we have

i=1

[T(z: o XA:') dp = Z o /TxAi du = Z o; v(4;).
i=1 1=1

Hence for each x € 3,

fod'l. = fxdv.

Since v is absolutely continuous with respect to p, by the Radon-Nikodym
theorem there is a nonnegative function g for which

v(4) = Lgdﬂ

for every A € 3. Therefore for each x € 3,
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fodp.:fxgdp..

For every E € 3,

LTxdy:fXE Txdp=fT(xxE)dy=foEgdy=Lxgdy.

The previous equality and the fact that Tx is measurable with respect to I
(Lemma 1.9) imply that

Tx = Efxg | 3¢},
In particular, T1 =E{g | 37}; hence E{g | 31} is bounded.

REMARK. The representation Tx =E{gx | 37} is not unique. For example,
if g(w)=0forw € E, where E € 37 and p(E) > 0, and we let

8- [EuF:Fe3y, FaE=glulF:Fe3y, Fak = g¢l,
then Efxg | S7}=Ef{xg | 3°} for every x in B.

COROLLARY 1.1. If the collection of nonnegative constant functions is
invariant under T satisfying T1, T2, T3, T4, then, except for the trivial case
Tx = O for all x, the range of T is N, and g of Theorem 1.1 satisfies

E{g| 37} =qa,

where & =T1 # 0. In particular, if T1 = 1, then T is a projection of ® on .

Proof. T1 must not be 0. For if T1 = 0 then

/gdp =fT1 dy = 0.
Therefore g = 0, and Tx = O for every x. For eachy € I,
Ty = Elyg |37} =y Elg| 37} = ay;
therefore
T }-y =v.
x

This fact together with Lemma 1.9 implies that  is the range of 7.

If T1 =1, then
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T?% = T(1.Tx)=TxTl = Tx;
that is, 7% = T. Hence T is a projection in this case.

2. Transformation on the space L. Let Lp, p > 1, be the usual space
of all real pth power integrable functions on the probability space (Q, 3, u).
If the transformation discussed in the previous section takes functions in L in-
to functions in L, then it can be extended to be a linear transformation on
Lp into Lp by defining Tx = Tx* - Tx", where x”, x™ are the positive and nega-

tive parts of x, respectively; therefore we still have the same representation
Tx = E{xg | 37}

for every x in L, with a nonnegative function g for which E{g | 31} is bounded.
The restriction that 7 transforms nonnegative functions into nonnegative func-
tions is the same as that T be order preserving; that is, if x > y then Tx > Ty.
In this section we shall consider a transformation on Lj into Lp similar to the
previous one, but with no restriction that the order is to be preserved. We shall
employ the usual norm topology in L, and assume the transformation to be con-
tinuous in norm topology. We are able to prove with essentially the same argu-

ment as in the previous section that the same representation
Tx = E{xg | 37}

is to be arrived at, but with a function g which is no longer nonnegative.

We shall state the assumptions precisely. In the following, elements of L
are denoted by x, y, z, +-- . As before, two functions are considered equal if
they are equal almost everywhere. A function is said to be bounded if it is equal
to a bounded function almost everywhere. The symbols «, B, -+ are to denote
both real constants and functions which take a constant value almost every-
where. For a sequence of functions {x,} we shall use the expression “x, — x

in Lp” to denote

lim f[xn —x|Pdp = 0.

n— oo

T is to be a transformation on L, into L, satisfying the following conditions:
T’l. T is linear; that is,

T(axx + By) =ualx + BTy.

T2, If x is bounded, then Tx is bounded.
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T3, T(x Ty)=(Tx) - (Ty) for every pair x, y of bounded elements of Lp.

T’4. T is continuous; that is, if x, — x in Lp then Txp, — Tx in Lp.

From the properties of the conditional expectation CE 1, CE 2, CE 5, CE 6,
and CE 7, we see that the transformation which takes x to E[x | 3,] satisfies

the foregoing conditions.

LEMMA 2.1. Let £ be the totality of elements y of Lp for which T (xy)=y Tx
holds for every bounded x in Lp. Then € is a closed linear subspace of Lp.
Moreover, if vy, v, € € and Y,» ¥, are bounded, then y -y, € &; therefore

every polynomial of a bounded function in € is also in € .

Proof. The proof that € is a linear set and closed under multiplication of
bounded functions is similar to that of Lemma 1.4. To prove that it is a closed
subset of L,, let y —y in Ly and y, € € for every n; then xy,—> xy in Lp
for every bounded x, and hence 7 (xy ) — T (xy) in L, by T’4. Cn the other
hand, if x is bounded, then Tx is also bounded by T “2; hence

y,lx —y Tx
in Lp. Since
y,Ix = Txy,

for every n, we have yTx = Txy; that is, y € €. Hence € is a closed subset of

L,

LEMMA 2.2. For each x € Ly, Tx €&,

Proof. By T’3, if x is bounded then Tx € €. If x is not bounded, there is a
sequence {x,} of bounded functions for which x, — % in Lp; then Tx, — Tx
in Lp, by T"4. Now Tx, € € for each n, and the fact that & is closed (Lemma
2.1), imply that Tx € £

LEMMA 2.3. Let 3 be the collection of all sets E € S whose characteristic
functions X are in & ; then 31 is a o-algebra of subsets of (1.

The proof is the same as that of Lemma 1.6 except that we have to use the

fact that &€ is a closed subset of Lp and

Xn — X

U._. E. U
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in L to prove that Jr is closed under countable unions.

LEMMA 2.4. Let M be the totality of elements of Ly which are measurable
with respect to the 3 1 of Lemma 2.3, then N C €,

Proof. Linear combinations of characteristic functions of sets of Jp are
in €. The facts that the totality of such functions is dense in M, and that € is
a closed subset of Ly, imply that I C €.

LEMMA 2.5. Lety €€ and y be bounded. Let Sy be the smallest o-algebra
of subsets of Q with respect to which y is measurable. Then 5}, C 37 or, equi-
valently, y € M.

Proof. Let @ be a continuous real function on a finite interval containing
the range of y. Since y is bounded, by the Weierstrass theorem there is a se-
quence { P, (y)} of polynomials of y for which P,[y (w)] converges to ®[y (w)]
uniformly in w. Hence P,(y) — @ (y) in Lp; therefore, by Lemma 2.1, Pp(y) € e
for every n, and ®(y) € €.

For each E € Sy, there is a sequence {®,(y)} of continuous functions of
y for which ®,(y) —x_ in L, where x is the characteristic function of E.
Hence, again by Lemma 2.1, X, € €; thatis, £ € Jp.

LEMMA 2.6. For each x €Ly, Tx € m.

Proof. For each x € L, there is a sequence {x,} of bounded functions in
Lp for which x, — % in Ly, Hence Tx, — Tx in L, by T"4. By T2, Tx, is
bounded for every n. By Lemma 2.2 and Lemma 2.5, Tx, €l for every n. Since
M is a closed subset of Ly, Tx € m.

THEOREM 2.1. If T is a transformation of Ly into Ly satisfying T’1, T’2,
T’3, T4, then T is of the form

Tx = E{zg | 3},

where Op is a o-algebra of subsets of G with 31 C S and g € Lg, where
1/p + 1/q =1, for which E{g| 31} is bounded (in the case of p=1, then g is
a bounded function).

Proof. We consider the function £ (x) defined on Lp by

Ax) = /Tx du.
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T’1 implies that 4 is linear. Also, {is continuous, for if x, — x in Lp then

Tx, — Tx in Lp, which implies Tx, — Tx in L ; therefore-

L(x,) = /Tx,,du — /Tx dp = A(x).
Now 4 can be expressed as

Ux) = /xg du,

where g € L, with 1/p + 1/¢ = 1. (In the case p = 1, g is bounded almost every-

where.) Hence,
/Tx du =/xg du

for every x € L. The same argument as in the proof of Theorem 1.1 shows that
Tx = E{xg | 371,
and that E{ g | 31} is bounded.
THEOREM 2.2. If p=1, and T satisfies the further conditions that

Tl=1 and |[Tx||, <|lx|l,

for every x € L, , where

xll, = [zl de,
then

Tx = E{x | 37}
for every x.

Proof. Copsider the set function v defined on 3 by
v(E) = ”E(XE) =foE du,

where y is the characteristic function of E, and £ is the linear functional
defined in the proof of Theorem 2.1. Since £ is continuous, v is a completely
additive set function. T1 = 1 implies that v (Q) = 1. For any set £ € 3,
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() = [Ty dul < (1T x, lde = 1T %, 1,

<llx Nl = [x, du=uE).

Now we want to show that v(E) = p (E) for every £ € J. First we shall prove
[v(E)| = p(E).

Suppose
[v(E)| < p(E)

for a certain £ ; then

1=p(Q)=p(E)Y+ p(Q—E) > |v(E)| + |v(Q-E)| > v(Q)=1.

This is a contradiction. Hence

[v(E)| = p(E).
Now for any E, we have either

v(E) = p(E) or v(E) =~ p(E).

Suppose

v(E) =~ p(E);
then

v(Q-E) =1+ p(E).

This is possible only when p(E)= 0. Therefore

v(E) = p(E)

for every E € 3.

The fact that v = p implies that the g in Theorem 2.1 is equal to 1 almost
everywhere, for

v(E) = /E()(E) = ./Egdu.
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Hence the theorem is proved.
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